Today’s lecture

• The diagonal language (Diag) is undecidable
• Identifying and proving other undecidable languages
• Mapping reducibility
• Acceptance problem (A_{TM}) is undecidable
Summary

- RE U coRE is countable
- $P(\{0,1\}^*)$ is uncountable
- There is a language L in $P(\{0,1\}^*) \setminus (\text{RE U coRE})$!
Undecidable Languages

• There are uncountably many undecidable languages!

• In fact, there are uncountably many languages that are not even in RE (or coRE)!

• Questions:
 - Can we find a specific language not in RE or coRE?
 - Can we find interesting languages not in RE or coRE?
 - Is HALT_{TM} undecidable?
Diagonalization

- \([0,1)\) is uncountable because given any list of \(r\) in \([0,1)\)
 - \(0.\overline{0}0100010\ldots\)
 - \(0.\overline{1}1001000\ldots\)
 - \(0.01\overline{1}10001\ldots\)
 - \(0.10\overline{1}10101\ldots\)
 - \(0.1001\overline{1}000\ldots\)

 we can build an \(r=0.\overline{1}0011\ldots\) that is not in the list

- We can make a list of all \(L\) in \(RE: L(M_1), L(M_2), L(M_3)\ldots\)

- Can we build a language not in this list?
A language not in RE

- We want a language L that is
 - different from $L(M_1)$
 - different from $L(M_2)$
 - different from $L(M_3)$
 -
 - different from $L(M_k)$
 -
A language not in RE

- We want a language L that is different from $L(M_1)$
- We want L to be different from $L(M_2)$
- We want L to be different from $L(M_3)$
- We want L to be different from $L(M_k)$
- We want L to be different from \ldots

Two numbers are different if they differ at some digit.

Two languages are different if they differ at some string w:

Either w in $L(M)$ but not in L,
Or w in L but not in $L(M)$.
A language not in RE

- We want a language L that is
 - different from $L(M_1)$ at $<M_1>$
 - different from $L(M_2)$ at $<M_2>$
 - different from $L(M_3)$ at $<M_3>$
 -
 - different from $L(M_k)$ at $<M_k>$
 -
- $L = \{ <M> \mid M \text{ it a TM such that } <M> \text{ is not in } L(M) \}$
A “diagonal” language

- \(\text{Diag=} \{<M>| M \text{ is a TM s.t. } <M> \text{ is not in } L(M) \} \)

- Why is Diag different from \(L(M_k) \)?
 - We need a string \(w \) that belongs to one but not the other
 - Let \(w = <M_k> \)
 - If \(<M_k> \) is in \(L(M_k) \), then
 - Not (Not “\(<M_k> \) is in \(L(M_k) \)"
 - “\(<M_k> \) is not in \(L(M_k) \)” is false
 - \(<M_k> \) is not in Diag
 - If \(w \) is not in Diag, then \(w \) is in \(L(M_k) \)
A “diagonal” language

- \text{Diag}=\{<M>| M \text{ is a TM s.t. } <M> \text{ is not in } L(M) \}\}

Why is Diag different from \(L(M_k)\)?

- We need a string \(w\) that belongs to one but not the other
- Let \(w = <M_k>\)
- If \(<M_k>\) is in \(L(M_k)\), then
 - Not (Not "<M_k> is in \(L(M_k)\)"")
 - "<M_k> is not in \(L(M_k)\)" is false
 - \(<M_k>\) is not in \text{Diag}
- If \(w\) is not in \text{Diag}, then \(w\) is in \(L(M_k)\)

Question: What can you tell about \text{Diag}?

A) Diag is in RE, but not in coRE
B) Diag is coRE, but not in RE
C) Diag is neither in RE nor in coRE
D) Diag is decidable
E) I don’t know
Diag is in coRE

- $\text{Diag}=\{<M> \mid M \text{ is a TM s.t. } <M> \text{ is not in } L(M) \}$

- Here is a recognizer for Diag

 $M_{\text{diag}}(w) =$

 1) Check if $w = <M>$ for some TM M. If not, accept.
 2) Parse w as $<M>$ for some TM M
 3) Run M on input w
 4) If $M(w)$ accepts, then accept, else reject.
Diag is in coRE

- Diag = \{ <M> \mid M \text{ is a TM s.t. } <M> \text{ is not in } L(M) \}
- Here is a recognizer for \textbf{Diag}:

 \begin{align*}
 M_{\text{diag}}(w) = \\
 1) \text{ Check if } w = <M> \text{ for some TM } M. \text{ If not, accept.} \\
 2) \text{ Parse } w \text{ as } <M> \text{ for some TM } M \\
 3) \text{ Run } M \text{ on input } w \\
 4) \text{ If } M(w) \text{ accepts, then accept, else reject.}
 \end{align*}

Is \(M_{\text{diag}} \) a decider?

A) Yes, because \(L(M_{\text{diag}}) = \text{Diag} \)

B) No, because it can loop at step 1

C) No, because it can loop at step 2

D) No, because it can loop at step 3

E) I don’t know
Diag is in coRE

- Diag = \{ <M> \mid M \text{ is a TM s.t. } <M> \notin L(M) \}
- Here is a recognizer for Diag:

 \[M_{\text{diag}}(w) = \]

 1) Check if \(w = <M> \) for some TM \(M \). If not, accept.
 2) Parse \(w \) as \(<M> \) for some TM \(M \)
 3) Run \(M \) on input \(w \)
 4) If \(M(w) \) accepts, then accept, else reject.

What can you say about Diag:

A) Diag is decidable
B) Diag is in RE, but not coRE
C) Diag is in coRE, but not RE
D) Diag is neither in RE nor coRE
E) I don’t know
Summary

- Diag is in coRE because $L(M_{\text{diag}}) = \text{Diag}$
- Diag is not in RE because $\text{Diag} \neq L(M_k)$ for all TM M_k
- Diag is undecidable
- Diag is in RE, but not coRE
- So far: We have found specific languages not in RE or coRE.
- Can we find more interesting examples?
 - What about $\text{HALT}_{\text{TM}} = \{<M,w> | M(w) \text{ terminates}\}$?
 - What about $\text{A}_{\text{TM}} = \{<M,w> | M(w) \text{ accepts}\}$?
Tool: Reducibility

- Reading: Chapter 5
- We will cover the material in a different order
 - Focus on what the text calls “mapping reducibility”
 - See textbook Ch 5.3
- Why?
 - More intuitive and easier to use than general reductions
 - Most commonly used in computer science
Idea

• Goal: identify and prove undecidable languages
• Let U be the set of undecidable languages
• Define a “reduction” operation such that U is closed under reduction
• Show that HALT_{TM}, A_{TM}, can be obtained from Diag by reduction
• Conclusion: HALT_{TM}, A_{TM} are undecidable!
• Bonus: mapping reductions can be used also to study languages that are not in RE or coRE
Computable Functions

• Let $f: \Sigma^* \rightarrow \Sigma^*$ be a function from strings to strings

• Function f is (Turing-)computable if there is a (deterministic) TM M such that for every input string w,
 - $M(w)$ terminates
 - Upon termination, the tape contains the string $f(w)$

• Remarks:
 - We don’t care about accepting or rejecting the input
 - Tape content is used to describe computations with output in Σ^*
Mapping reducibility

• Let $A, B \subseteq \Sigma^*$ be any two languages

• Definition: A is map-reducible to B (written “$A \leq_m B$”) if there is a function f such
 1) The function f is computable (by a TM M)
 2) For all $w \in A$, we have $f(w) \in B$
 3) For all w not in A, we have that $f(w)$ is not in B

• Equivalently: $(w \in A) \iff (f(w) \in B)$
Reductions and Undecidability

• Assume
 – $A \leq_m B$, i.e., there is a map reduction from A to B
 – A is undecidable

• Claim: B is also undecidable

• Proof:
 – Let F be a TM computing a map reduction from A to B
 – WTS: if A is undecidable, then B is undecidable
 – Equivalently: if B is decidable, then A is decidable
Reductions and undecidability

- Let F be a TM computing a map reduction from A to B
- **WTS:** if B is decidable, then A is decidable
 - Let M is a decider for B
 - Goal: build a decider M' for A
- $M'(w)$:
 1) Compute $w' = F(w)$
 2) Run $M(w')$
 3) If $M(w')$ accepts, then accept w, otherwise reject w
Reductions and undecidability

- Let F be a TM computing a map reduction from A to B
- \textbf{WTS:} if B is decidable, then A is decidable
 - Let M is a decider for B
 - Goal: build a decider M' for A
- M'(w):
 1) Compute \(w' = F(w) \)
 2) Run M(w')
 3) If M(w') accepts, then accept w, otherwise reject w

\begin{enumerate}
\item M' is a decider
\item A) Yes
\item B) No, because it may loop in step 1
\item C) No, because it may loop in step 2
\item D) It depends on w
\item E) I don't know
\end{enumerate}
Reductions and undecidability

- Let F be a TM computing a map reduction from A to B
- WTS: if B is decidable, then A is decidable
 - Let M is a decider for B
 - Goal: build a decider M' for A

- $M'(w)$:
 1) Compute $w' = F(w)$
 2) Run $M(w')$
 3) If $M(w')$ accept, then accept w, otherwise reject w

What can you say about $L(M')$?
- A) $L(M') = A$
- B) $L(M') \subset A$
- C) $L(M') \supset A$
- D) None of the above
- E) I don't know
Proof of $A \subseteq L(M')$

- Let $F: A \leq_m B$, and $L(M) = B$

- $M'(w)$:
 1) Compute $w' = F(w)$
 2) Run $M(w')$, and accept iff $M(w')$ accept

- Assume $w \in A$, then
 - $F(w) \in B$ (by definition of reduction)
 - $M(w')$ accepts
 - $M'(w)$ accepts
Proof of $A \supset L(M')$

- Let $F: A \leq_m B$, and $L(M) = B$

- $M'(w)$:
 1) Compute $w' = F(w)$
 2) Run $M(w')$, and accept iff $M(w')$ accept

- Assume w is not in A, then
 - $F(w)$ is not in B (by definition of reduction)
 - $M(w')$ rejects
 - $M'(w)$ rejects
A_{TM} is undecidable

- We give a reduction F from Diag to A_{TM}

- F(w):
 - Parse w as <M> for some TM M
 - Let w' = <M,w>
 - Output w'

- Assume w = <M> is in Diag
- Then w is not in L(M)
- Then <M,w> is not in A_{TM}.

- So, w' is in A_{TM}
A_{TM} is undecidable

- We give a reduction F from $A=\text{Diag}$ to $B=A_{TM}$

- $F(w)$:
 - Parse w as $<M>$ for some TM M
 - Let $w' = <M, w>$
 - Output w'

- Assume $w = <M>$ is in Diag
- Then w is not in $L(M)$
- Then $<M, w>$ is not in A_{TM}.
- So, w' is in A_{TM}

Claim: F is a reduction from A to B

A) Yes, because if $w \in A$, then $F(w) \in B$
B) Yes, but the proof is not complete
C) No, F is not a valid reduction
D) I don't know
\(A_{TM} \) is undecidable (cont.)

- We give a reduction \(F \) from \(A = \text{Diag} \) to \(B = A_{TM} \)

- \(F(w) \):
 - Parse \(w \) as \(<M>\) for some TM \(M \)
 - Let \(w' = <M, w> \)
 - Output \(w' \)

- Assume \(w \) is not in Diag. There are two cases:
 - \(W = <M> \) for some TM such that \(w \) is in \(L(M) \).
 - Then \(<M, w> \) is in \(A_{TM} \), i.e., \(w' \) is not in \(A_{TM} \)
 - \(W \) does not parse as \(<M>\). What is the output of \(F \) if parsing fails?
A_{TM} is undecidable (fixed)

- We give a reduction F from $A=\text{Diag}$ to $B=A_{\text{TM}}$

- $F(w)$:
 - Parse w as $<M>$ for some TM M
 - If parsing fails, then output $<M_a, \text{“I love CSE105”}>$, where $M_a(x) = \text{accept}$
 - Let $w' = <M,w>$
 - Output w'

- Assume w is not in Diag. There are two cases:
 - $W=<M>$ for some TM such that w is in $L(M)$.
 - Then $<M,w>$ is in A_{TM}, i.e. w' is not in A_{TM}
 - W does not parse as $<M>$. What is the output of F if parsing fails?
For next Time

- Try to prove that HALT_{TM} is undecidable
- Reading: Sipser Chapter 5
- HW6 due tomorrow night!