CSE 105
THEORY OF COMPUTATION

Fall 2021

http://cseweb.ucsd.edu/classes/fa21/cse105-a/
Today’s lecture

- Examples of decidable languages
- Examples of undecidable languages
- Reading: Finish Sipser Chapter 4
- More about mapping reducibility
- Read Sipser Chapter 5.3 (again!)
Some example languages

• Acceptance problem:
 - $A_{DFA} = \{ <M,w> | M \text{ is a DFA and } M(w) \text{ accepts} \}$
 - $A_{TM} = \{ <M,w> | M \text{ is a TM and } M(w) \text{ accepts} \}$

• Emptyness problem:
 - $E_{DFA} = \{ <M> | M \text{ is a DFA and } L(M) \text{ is the empty set} \}$
 - $E_{TM} = \{ <M> | M \text{ is a TM and } L(M) \text{ is the empty set} \}$

• Equivalence problem:
 - $EQ_{DFA} = \{ <M,M'> | M \text{ and } M' \text{ are DFAs and } L(M) = L(M') \}$
Some example languages

• Acceptance problem:
 – $A_{DFA} = \{ <M,w> | M \text{ is a DFA and } M(w) \text{ accepts } \}$ DECIDABLE
 – $A_{TM} = \{ <M,w> | M \text{ is a TM and } M(w) \text{ accepts } \}$ UNDECIDABLE

• Emptiness problem:
 – $E_{DFA} = \{ <M> | M \text{ is a DFA and } L(M) \text{ is the empty set } \}$ DECIDABLE
 – $E_{TM} = \{ <M> | M \text{ is a TM and } L(M) \text{ is the empty set } \}$ UNDECIDABLE

• Equivalence problem:
 – $EQ_{DFA} = \{ <M,M'> | M \text{ and } M' \text{ are DFAs and } L(M) = L(M') \}$ DECIDABLE
A\textsubscript{DFA} is decidable

- P\textsubscript{ADFA}(x) =
 - Parse input x as \langle\langle Q, \Sigma, \delta, s, F \rangle, w \rangle. If parse fails, then reject.
 - Let q = s
 - For i=1..|w|
 - Let q = \delta(q,w[i])
 - If q is in F, then accept, otherwise reject
A_{DFA} is decidable

\[P_{ADFA}(x) = \]

- Parse input x as \(\langle Q, \Sigma, \delta, s, F \rangle, w \rangle\). If parse fails, then reject.
- Let \(q = s \)
- For \(i = 1 \ldots |w| \)
 - Let \(q = \delta(q, w[i]) \)
- If \(q \) is in \(F \), then accept, otherwise reject

Which of the following is true?

A) \(L(P_{ADFA}) = A_{DFA} \)
B) \(P_{ADFA} \) is a decider
C) both A) and B)
D) Neither A) nor B)
A_{PDA} is decidable

- $P_{APDA}(x) =$

1) Parse input x as $\langle Q, \Sigma, \Gamma, \delta, s, F, w \rangle$. If parse fails, then reject.

2) Let $C = \{(s, w, [])\}$. (initial configuration)

3) if $(q, [], t) \in C$ for some $q \in F$ and $t \in \Gamma^*$, then accept

4) For any $(q, aw, ct) \in C$ and $(q', c') \in \delta(q, a, c)$

 If $(q', w, c't)$ is not in C,

 then $C \leftarrow C \cup \{(q', w, c't)\}$ and go to 3)

5) Reject
A\textsubscript{PDA} is decidable

- \textbf{P\textsubscript{APDA}}(x) =

 1) Parse input \(x\) as \(<<Q, \Sigma, \Gamma, \delta, s, F>, w>\).
 2) Let \(C = \{(s, w, [])\}\). (initial configuration)
 3) if \((q, [], t) \in C\) for some \(q \in F\) and \(t \in \Gamma^*\), then accept
 4) For any \((q, aw, ct) \in C\) and \((q', c') \in \delta(q, a, c)\)
 If \((q', w, c't)\) is not in \(C\),
 then \(C \leftarrow C \cup \{(q', w, c't)\}\) and go to 3)
 5) Reject

Which of the following is true?
A) \(L(P\textsubscript{APDA}) = A\textsubscript{PDA}\)
B) \(P\textsubscript{APDA}\) is a decider
C) both A) and B)
D) Neither A) nor B)
E_{DFA} is decidable

- $P_{\text{EDFA}}(w) =$

 1) Parse input w as $\langle Q, \Sigma, \delta, s, F \rangle$. If parse fails, then reject.
 2) Let $X = \{s\}$
 3) For all q in X and a in Σ
 - Let $q' = \delta(q,a)$
 - If q' is not in X, then $X \leftarrow X \cup \{q'\}$ and restart the loop at 3)
 4) If X intersects F, then accept, else reject.
\(\mathbb{E}_{DFA} \) is decidable

\(\mathbb{P}_{EDFA}(w) = \)

1) Parse input \(w \) as \(\langle Q, \Sigma, \delta, s, F \rangle \). If parse fails, then reject.
2) Let \(X = \{s\} \)
3) For all \(q \) in \(X \) and \(a \) in \(\Sigma \)
 - Let \(q' = \delta(q,a) \)
 - If \(q' \) is not in \(X \), then \(X \leftarrow X \cup \{q'\} \) and restart the loop at 3)
4) If \(X \) intersects \(F \), then accept, else reject.

Which of the following is true?

A) \(L(\mathbb{P}_{EDFA}) = \mathbb{E}_{DFA} \)
B) \(\mathbb{P}_{EDFA} \) is a decider
C) both A) and B)
D) Neither A) nor B)
EQ_{DFA} is decidable

- $P_{\text{EQDFA}}(<M,M'>)$
 1) Check if both M and M' are DFA. If not, then reject.
 2) Use closure properties of regular languages to build a DFA M'' for
 \[L(M'') = (L(M) - L(M')) \cup (L(M') - L(M)) \]

 - Run $P_{\text{EDFA}}(<M'>).$ If P_{EDFA} accepts, then accept, else reject.

- **Notice** $L(M) = L(M')$ if and only if $L(M'')$ is empty
 - P_{EQDFA} is a decider
 - $L(P_{\text{EQDFA}}) = \text{EQ}_{\text{DFA}}$
EQ_{DFA} is decidable (by reduction)

- $F(<M,M'>)$:
 1) If input does not parse (M,M' are not DFAs), then output “garbage”
 2) Use closure properties of regular languages to build a DFA M'' for
 \[L(M'') = (L(M) - L(M')) \cup (L(M') - L(M)) \]
 3) Output $<M''>$

- Notice $L(M)=L(M')$ if and only if $L(M'')$ is empty

- Equivalently, $<M,M'> \in \text{EQ}_{\text{DFA}}$ if and only if $F(<M,M'>) \in E_{\text{DFA}}$
\textbf{EQ}_{\text{DFA}} \text{ is decidable (C)}

- \textbf{F}(<M,M'>):
 1) If input does not parse (\(M,M'\) are not DFAs), then output "garbage"
 2) Use closure properties of regular languages to build a DFA \(M''\) for \(L(M'') = (L(M) - L(M')) \cup (L(M') - L(M))\)
 3) Output \(<M''>\)

- Notice \(L(M)=L(M')\) if and only if \(L(M'')\) is empty

- Equivalently, \(<M,M'> \in \text{EQ}_{\text{DFA}}\) if and only if \(F(<M,M'>) \in \text{E}_{\text{DFA}}\)

Is \(F\) a mapping reduction from \(A=\text{EQ}_{\text{DFA}}\) to \(B=\text{E}_{\text{DFA}}\)?

A) Yes, because \(w \in A\) iff \(F(x) \in B\)
B) No, because \(B\) is decidable
C) No, it is a reduction from \(B\) to \(A\)
D) What is a reduction anyway?
Mapping reducibility

- Let $A, B \subseteq \Sigma^*$ be any two languages
- Definition: A is map-reducible to B (written “$A \leq_m B$”) if there is a function f such that:
 1) The function f is computable (by a TM M)
 2) For all $w \in A$, we have $f(w) \in B$
 3) For all w not in A, we have that $f(w)$ is not in B
- Equivalently: $(w \in A) \iff (f(w) \in B)$
Reductions and undecidability

What we proved:

• Theorem: if $A \prec_m B$, and A is undecidable, then B is undecidable.

• Equivalently, if $A \prec_m B$ (i.e., A map reduces to B), then
 - $(A$ is undecidable $) \rightarrow (B$ is undecidable $)$

• Equivalently, if $A \prec_m B$ (i.e., A map reduces to B), then
 - $\neg(B$ is undecidable $) \rightarrow \neg(A$ is undecidable $)$
 - $(B$ is decidable $) \rightarrow (A$ is decidable $)$
Reductions and undecidability

- Let F be a TM computing a map reduction from A to B
- What we proved: if B is decidable, then A is decidable
 - Let M is a decider for B
 - Goal: build a decider M' for A
- $M'(w)$:
 1) Compute $w' = F(w)$
 2) Run $M(w')$
 3) If $M(w')$ accepts, then accept w, otherwise reject w
Reductions and undecidability

- Let F be a TM computing a map reduction from A to B
- WTS: if B is in RE, then A is in RE
 - Let M be a TM such that L(M) = B
 - Goal: build a TM M’ such that L(M’) = A
- M’(w):
 1) Compute w’ = F(w)
 2) Run M(w’)
 3) If M(w’) accepts, then accept w, otherwise reject w
Reductions and undecidability

- Let \(F \) be a TM computing a map reduction from \(A \) to \(B \).
- \(\text{WTS: if } B \text{ is in RE, then } A \text{ is in RE} \)
 - Let \(M \) be a TM such that \(L(M) = B \).
 - Goal: build a TM \(M' \) such that \(L(M') = A \).

\[M'(w): \]
1) Compute \(w' = F(w) \)
2) Run \(M(w') \)
3) If \(M(w') \) accepts, then accept \(w \), otherwise reject \(w \).

\(M' \) is a decider

A) Yes
B) No, because it may loop in step 1
C) No, because it may loop in step 2
D) It depends on \(w \)
E) I don’t know
Reductions and undecidability

Let F be a TM computing a map reduction from A to B

WTS: if B is in RE, then A is in RE

1. Let M be a TM such that $L(M)=B$
2. Goal: build a TM M' such that $L(M')=A$

$M'(w)$:

1. Compute $w' = F(w)$
2. Run $M(w')$
3. If $M(w')$ accepts, then accept w, otherwise reject w

What can you say about $L(M')$?

A) $L(M') = A$
B) $L(M') \subset A$
C) $L(M') \supset A$
D) None of the above
E) I don’t know
Proof of $A \subseteq L(M')$

- Let $F : A <_m B$, and $L(M) = B$

- $M'(w)$:
 1) Compute $w' = F(w)$
 2) Run $M(w')$, and accept iff $M(w')$ accept

- Assume $w \in A$, then
 - $F(w) \in B$ (by definition of reduction)
 - $M(w')$ accepts
 - $M(w)$ accepts
Proof of $A \supset L(M')$

- Let $F: A \prec_m B$, and $L(M) = B$

- $M'(w)$:
 1) Compute $w' = F(w)$
 2) Run $M(w')$, and accept iff $M(w')$ accept

- Assume w is not in A, then
 - $F(w)$ is not in B (by definition of reduction)
 - $M(w')$ rejects or loops
 - $M(w)$ rejects or loops
... therefore

- If $A \leq_m B$ and B is RE, then A is RE
- What about coRE?
- Claim: if F is a reduction from A to B, then F is also a reduction

A) From B to A
B) From B to A
C) From A to B
D) I don’t know
If $A \leq_m B$ and B is RE, then A is RE

What about coRE?

Theorem: if F is a reduction from A to B, then F is also a reduction from A to B

- $(w \in A) \iff (F(w) \in B)$
- $\neg(w \in A) \iff \neg(F(w) \in B)$
- $(w \in A) \iff (F(w) \in B)$

Corollary: if $A \leq_m B$ and B is coRE, then A is coRE
Mapping reducibility Summary

- Assume $A \leq_m B$, i.e., there is a map reduction from A to B
- Then, we have
 - If B is RE, then A is RE
 - If B is coRE, then A is coRE
 - If B is decidable, then A is decidable
 - If A is undecidable, then B is undecidable
 - If A is not in RE, then B is not in RE
 - If A is not in coRE, then B is not in coRE
For next Time

- Try to prove that HALT^TM is undecidable
- Reading: Sipser *Chapters 5*