CSE 105
THEORY OF COMPUTATION

Fall 2021

http://cseweb.ucsd.edu/classes/fa21/cse105-a/
Today's learning goals

• Apply the Pumping Lemma in proofs of nonregularity
• Identify some nonregular sets
Pumping Lemma

If A is a regular language, then there is a p (number of states in DFA recognizing A) where, if s is any string in A of length at least p, then s may be divided into three pieces, $s = x y z$ such that

- and
- for each $i \geq 0$, $x y^i z \in A$,
- $|x y| \leq p$.

Sipser p. 78 Theorem 1.70
Which of the following sentences best describes the pumping lemma:

A) It is a property of every regular language
B) It is a property of every non-regular language
C) It is a closure property of regular languages
D) It is a closure property of non-regular languages
E) I don’t know
Answer

- The pumping lemma asserts a property satisfied by every regular language
- But we use it to prove nonregular languages
 - Assume L is regular (for contradiction)
 - Apply pumping property
 - Get a contradiction
 - Therefore L is not regular
Using the Pumping Lemma

Claim: The set $L = \{0^n1^n \mid n \geq 0\}$ is not regular.
Using the Pumping Lemma

Claim: The set $L = \{0^n1^n \mid n \geq 0\}$ is not regular.

Proof: Assume, towards a contradiction, that L is regular.

Pumping Lemma gives property of all regular sets. Can we get a contradiction by assuming that the Pumping Lemma applies to this set?
Claim: The set $L = \{0^n1^n \mid n \geq 0\}$ is not regular.

Proof:

- Assume, **towards a contradiction**, that L is regular.
- Therefore, the Pumping Lemma applies to L and gives us some number p, the pumping length of L.
- In particular, this means that every string in L that is of length p or more can be "pumped".

...Idea: can we find some long string in L that can't be?
Using the Pumping Lemma

Claim: The set \(L = \{0^n1^n \mid n \geq 0\} \) is not regular.

Proof: … In particular, this means that every string in \(L \) that is of length \(p \) or more can be "pumped".

Goal: pick a string \(s \) in \(L \) of length at least \(p \) that cannot be pumped, i.e., such that

- for any division of \(s \) as \(s = xyz \) with \(|y| > 0 \) and \(|xy| \leq p \)
- there is some value \(i \geq 0 \) with \(xyz \) not in \(L \)

So we have a contradiction, and \(L \) is not regular.
Claim: The set $L = \{ 0^n1^n \mid n \geq 0 \}$ is not regular.

Proof: …

Goal: pick a string s in L of length at least p such that any division of s as $s = xyz$ with $|y| > 0$ and $|xy| \leq p$ gives some value $i \geq 0$ with xy^iz not in L.

Choose $s = 0^p1^p$. Consider any $s = xyz$ with $|y| > 0$, $|xy| \leq p$.

Using the Pumping Lemma

Claim: The set \(L = \{0^n1^n \mid n \geq 0\} \) is not regular.

Proof: …

Goal: pick a string \(s \) in \(L \) of length at least \(p \) such that any division of \(s \) as \(s = xyz \) with \(|y| > 0 \) and \(|xy| \leq p \) gives some value \(i \geq 0 \) with \(xy^iz \) not in \(L \).

Choose \(s = 0^p1^p \). Consider any \(s = xyz \) with \(|y| > 0 \), \(|xy| \leq p \).

Since \(|xy| \leq p \), \(x = 0^m \), \(y = 0^n \), \(z = 0^r1^p \) with \(m + n + r = p \), \(n > 0 \).
Using the Pumping Lemma

Claim: The set \(L = \{0^n1^n \mid n \geq 0\} \) is not regular.

Proof: …

Goal: pick a string \(s \) in \(L \) of length at least \(p \) such that \(\text{any} \) division of \(s \) as \(s = xyz \) with \(|y| > 0 \) and \(|xy| \leq p \) gives some value \(i \geq 0 \) with \(xy^iz \) not in \(L \)

Choose \(s = 0^p1^p \). Consider any \(s = xyz \) with \(|y| > 0, |xy| \leq p \).

Since \(|xy| \leq p \), \(x = 0^m, y = 0^n, z = 0^r1^p \) with \(m+n+r = p, n > 0 \).

Picking \(i = 0 \): \(xy^iz = xz = 0^m0^r1^p = 0^{m+r}1^p \), not in \(L \)!
Using the Pumping Lemma

Claim: The set \(L = \{0^n1^n \mid n \geq 0\} \) is not regular.

Proof: …

Goal: pick a string \(s \) in \(L \) of length at least \(p \) such that any division of \(s \) as \(s = xyz \) with \(|y|>0 \) and \(|xy|\leq p \) gives some value \(i\geq0 \) with \(xy^iz \) not in \(L \)

Choose \(s = 0^p1^p \). Consider any \(s = xyz \) with \(|y|>0, |xy|\leq p \).

Since \(|xy|\leq p \), \(x=0^m, y=0^n, z=0^r1^p \) with \(m+n+r=p, j>0 \).

Picking \(i=0 \): \(xy^iz = xz = 0^m0^r1^p = 0^{m+r}1^p \), not in \(L \)!

Contradicts the Pumping Lemma! So \(L \) must not be regular.
Using the Pumping Lemma

Claim: The set \(L = \{0^n1^n \mid n \geq 0\} \) is not regular.

Proof:
Assume towards a contradiction \(L \) is regular.

So by Pumping Lemma, \(L \) has a pumping length, call it \(p \).

FACT: \(p \) is a pumping length for \(L \) (by definition).

CLAIM: \(p \) is not a pumping length for \(L \).

Conclude: contradiction!
Key ingredients in proof

Claim: Language L is not regular.

Proof: Assume, towards a contradiction, that L is regular. By the Pumping Lemma, there is a pumping length p for L.

Consider the string s =

You must pick s carefully: we want |s|≥p and s in L.

Confirm these facts as part of your proof

Now we will prove a contradiction with the statement "s can be pumped"

Consider an **arbitrary** choice of x,y,z such that s = xyz, |y|>0, |xy|≤p.

This means that... What properties are guaranteed about x,y,z?

Consider i=... In this case, xy^i*z =, which is not in L, a contradiction with the Pumping Lemma applied to L and so L is not regular.
Another example

Claim: The set \(\{a^n b^m a^n \mid m, n \geq 0\} \) is not regular.

Proof: \(\ldots \text{Consider the string } s = \ldots \).

You must pick \(s \) carefully: we want \(|s| \geq p \) and \(s \) in \(L \).

Now we will prove a contradiction with the statement "\(s \) can be pumped".

Which choices of \(s \) cannot be used to complete the proof?

A. \(s = a^p b^p \) B. \(s = ab^p a \) C. \(s = a^p b^p a^p \) D. \(s = a^p b a^p \)

E. None of the above (all of these choices work).
Another example

Claim: The set \(\{a^m b^m a^n | m, n \geq 0\} \) is not regular.

Proof: … Consider the string \(s = \ldots \).

You must pick \(s \) carefully: we want \(|s| \geq p \) and \(s \) in \(L \).

Now we will prove a contradiction with the statement "\(s \) can be pumped".

Consider an arbitrary choice of \(x, y, z \) such that \(s = xyz \), \(|y| > 0\), \(|xy| \leq p\). This means that… What properties are guaranteed about \(x, y, z \)?

Consider \(i = \ldots \). In this case, \(xyz^i = \ldots \), which is not in \(L \), a contradiction with the Pumping Lemma applying to \(L \) and so \(L \) is not regular.
Claim: The set \{w \ w^R \mid w \text{ is a string over } \{0,1\} \} is not regular.

Proof: Consider the string \(s = \ldots\)

You must pick \(s\) carefully: we want \(|s| \geq p\) and \(s\) in \(L\).

Now we will prove a contradiction with the statement "\(s\) can be pumped"

Consider \(i = \ldots\)

Which \(s\) and \(i\) let us complete the proof?

A. \(s = 0^p0^p, i=2\)
B. \(s = 0110, i=0\)
C. \(s = 0^p110^p, i=1\)
D. \(s = 1^p001^p, i=3\)
E. None of them
How do we choose i?

Claim: The set $\{0^j1^k \mid j, k \geq 0 \text{ and } j \geq k\}$ is not regular.

Proof: …Consider the string $s = \ldots$

You must pick s carefully: we want $|s| \geq p$ and $s \in L$.

Now we will prove a contradiction with the statement "s can be pumped"

Consider $i = \ldots$

Which s and i let us complete the proof?

A. $s = 0^p1^p$, $i=2$
B. $s = 0^p1^p$, $i=p$
C. $s = 0^p1^p$, $i=1$
D. $s = 0^p1^p$, $i=0$
E. I don't know
Regular sets: not the end of the story

• Many **nice / simple / important** sets are not regular

• Limitation of the finite-state automaton model
 • Can't "count"
 • Can only remember finitely far into the past
 • Can't backtrack
 • Must make decisions in "real-time"

• We know computers are more powerful than this model…

Which conditions should we relax?
The next model of computation

- **Idea**: allow *some* memory of unbounded size
- **How?**
 - Generalization of regular expressions: *Context-free grammars*
 - Generalization for DFA: *Pushdown Automata*
Diagonalization

- Let R be the set of syntactically valid regular expressions over binary alphabet \{0,1\}
 - R is a language over the alphabet $\Sigma = \{0,1,\varepsilon,\{,\},\cup,(,),\ast\}$
 - Encode Σ as 3-bit “bytes”: 000, 001, 010, ..., 111
- For each regular expression E in R we have
 - A string $\text{encode}(E)$ in $\{0,1\}^*$
 - A set of strings $L(E) \subset \{0,1\}^*$
- Let $D = \{ \text{encode}(E) : \text{encode}(E) \text{ is not in } L(E) \} \subset \{0,1\}^*$
- Challenge Question: is D regular?
Claim: D is not regular

- \(D = \{ \text{encode}(E) : \text{encode}(E) \text{ is not in } L(E) \} \subset \{0,1\}^* \)
- Assume D is regular
- Then, \(D = L(E) \) for some Regular Expression E
- Let \(w = \text{encode}(E) \). Question: is \(w \) in \(D \)?

A) Yes
B) No
C) I don’t know
D) I entered an infinite loop and my brain exploded
D is not regular

- **D = \{ \text{encode}(E) : \text{encode}(E) \text{ is not in } L(E) \} \subset \{0,1\}^\ast**
- Assume D is regular
- Then, **D = L(E)** for some Regular Expression E
- Let **w = encode(E)**. **Question**: is **w** in D?
 - Yes? Then “encode(E) is not in L(E)” is true, ie. w is not in D
 - No? Then “encode(E) is not in L(E)” is false, ie. w is in D
- So, w is in D if and only if w is not in D
More fun with regular expressions

- Let R be the set of syntactically valid regular expressions over binary alphabet $\{0,1\}$
 - R is a language over the alphabet $\Sigma = \{0,1,\varepsilon,\{,\},\cup,(),^*\}$
 - Encode Σ as 3-bit “bytes”: 000, 001, 010, …, 111

- Questions:
 - Is R a regular language (over Σ)?
 - Is $\text{encode}(R)$ a regular language (over $\{0,1\}$)?

- If not, how can you formally describe the set of syntactically valid regular expressions?