Legal Notice

The Zoom session for this class will be recorded and made available asynchronously on Canvas to registered students.
Announcements

1. HW 1 is due today! Turn it in now if you haven’t yet!

2. HW 2 is out, due before class in 1 week, October 20.
Last time: Block ciphers

This time: Pseudorandom functions and chosen plaintext attacks
Pseudo-random functions (PRFs)

Deterministic algorithm F:

- $k \in K$, $x \in X$, $y \in Y$
- $F_k(x) = y$
- Should be computationally indistinguishable from a truly random function

In contrast to the (pseudo)random permutations from last lecture, this function is not required to be one-to-one.
Distinguishing experiment for PRFs

\[D \quad 0 \]

1. Chooses \(f = \begin{cases}
\text{random fn} \\
\text{PRF } F_k \text{ } k \in \{0,1\}^n
\end{cases} \)

2. query \(x_i \)

\[f(x_i) \]

\[x_2 \]

\[f(x_2) \]

\[\vdots \]

\[b \in \{0,1\} \]

Definition

\(F_k \) is a secure PRF if \(\forall \) efficient \(D \)

\[| \Pr[D(F_k) = 1] - \Pr[D(\text{random fn}) = 1] | \text{ negligible} \]
Is a PRP indistinguishable from a PRF?

Consider a distinguishing experiment between functions and permutations.

Observation: The only way to distinguish between a permutation and a non-permutation function is to find a collision, inputs so that \(f(x_1) = f(x_2) \).

Let \(|X| = N\). By the birthday bound, the adversary will observe a collision in outputs in a PRF with constant probability after \(\sqrt{N} \) inputs.

Theorem

An adversary that makes \(Q \) queries can distinguish a random permutation from a random function with probability at most \(Q^2 / 2N \).
Constructing PRGs from PRFs

Theorem

Let x_1, \ldots, x_ℓ be fixed, distinct elements, and F be a PRF. $G(k) = (F_k(x_1), F_k(x_2), \ldots, F_k(x_\ell))$ is a secure PRG.

Proof.

Assume for contradiction that adversary A_G can distinguish this PRG from random. Can construct a distinguisher A_F for the PRF.
Counter Mode

In the previous construction \(x_1, \ldots, x_\ell \) just need to be distinct elements. So just choose \(r \) and let \(x_1 = r, x_2 = r + 1, \ldots \)

stream: \(F_{1c}(r), F_k(r+1), F_{1c}(r+2), \ldots \)

Then we can use this as a stream cipher to encrypt:

\[
\text{Enc}_k(m) = (r, F_k(r) \oplus m[0], F_k(r + 1) \oplus m[1], \ldots, F_k(r + \ell) \oplus m[\ell])
\]

\[
\text{Dec}_k(c) = (F_k(r) \oplus c[0], F_k(r + 1) \oplus c[1], \ldots, F_k(r + \ell) \oplus c[\ell])
\]

This is semantically secure.
Attack models we’ve seen so far:

Ciphertext-only attack
- Most restrictive attack model

Known plaintext attack
- Historical example: WWII Enigma-encoded messages from Germans ending in “Heil Hitler”
- Modern example: Observing ciphertext from someone visiting the main page of Wikipedia over HTTPS.

Both of these are covered by semantic security.

New attack model:
Chosen plaintext attack
- Historical example: British military would place mines in particular locations hoping Germans would send encrypted messages about that location.
- Modern example: Attacker-controlled Javascript on a web page causes victim web client to make a HTTPS connection.
Chosen plaintext attack

![Diagram of Chosen Plaintext Attack]

Definition
Enc is CPA-secure if ∀ efficient A, Pr[A succeeds] ≤ 1/2 + ε for ε negligible
Another definition of chosen plaintext attack

Definition

Enc is CPA-secure if

\[| \Pr[A \text{ outputs } 1 \mid b = 1] - \Pr[A \text{ outputs } 1 \mid b = 0] | \text{ negligible} \]
Theorem

No deterministic cipher can be CPA-secure.
Theorem

No deterministic cipher can be CPA-secure.

Proof.
Adversary queries \((m_0, m_1)\) then \((m_0, m_0)\).
\qed
Using a PRF for CPA-secure encryption

• Generate k at random.

• Encryption:
 1. Generate r uniformly at random.
 2. $\text{Enc}_k(m) = (r, F_k(r) \oplus m)$

• Decryption:
 1. Parse $c = (r, s)$
 2. $\text{Dec}_k(c) = F_k(r) \oplus s$.
Theorem

The $\text{Enc}_k(m) = (r, F_k(r) \oplus m)$ construction on the previous slide is CPA-secure.

Proof.

By contradiction. Assume adversary A can win CPA-security game \#1 with non-negligible advantage, construct a PRF distinguisher.
Proof.

Assume A distinguishes pseudorandom F with advantage $d > \text{negl.}$

1. If F pseudorandom, $\Pr[A \text{ succeeds}] = 1/2 + d$

2. If F is a truly random function f: A makes Q oracle queries.
 - If nonce r_c used in challenge is repeated, A learns value of $f(r_c)$ and succeeds with probability 1.

 $$\Pr[r_c \text{ repeated across oracle queries}] \leq \frac{Q}{2^n}$$

 - If r_c not used in challenge, no information: $\Pr[\text{success}] = 1/2$

 $$\Pr[A \text{ succeeds}] \leq 1/2 + \frac{Q}{2^n}$$

 $$|\Pr[D | F] - \Pr[D | F_k]| = |1/2 + d - (1/2 + \frac{Q}{2^n})| = d - \frac{Q}{2^n} > \text{negl.}$$
Using stream ciphers in a CPA-secure way

Augment stream cipher with an initialization vector or IV.

- \(\text{Enc}_k(m) = (IV, G(k, IV) \oplus m) \)

For this to be secure, \(G(k, IV) \) needs to be pseudorandom when IV is known.

Insecure if IV is ever reused.

WEP insecurity. WEP is broken in multiple ways: it uses a 24-bit IV, which repeats with 50% probability after 5,000 packets.
If we use a block cipher in counter mode with a randomized starting value \(r \), this is CPA-secure.

\[
\text{Enc}_k(m) = (r, F_k(r) \oplus m[0], F_k(r + 1) \oplus m[1], \ldots, F_k(r + \ell) \oplus m[\ell])
\]

\[
\text{Dec}_k(c) = (F_k(r) \oplus c[0], F_k(r + 1) \oplus c[1], \ldots, F_k(r + \ell) \oplus c[\ell])
\]

The value \(r \) is the IV.

This is an ok choice of mode of operation for AES.
Cipher block chaining (CBC) mode

1. IV has same length as block length.
2. \(c_i = \text{Enc}_k(c_{i-1} \oplus m_i) \)
3. Output \((\text{IV}, c_0, c_1, c_2, \ldots)\).

IV should be random.

CBC mode is CPA-secure, but suffers from implementation vulnerabilities that you get to break in HW 3.
• HW 2 is due before class in 1 week, October 20.