CSE 20 Discussion

Week 2

1. Fill in the blanks of the definition of the recursive function *ones*, which takes a bitstring as input and gives the number of 1s in the bitstring as output. Note that the set of all bitstrings is denoted as $\{0,1\}^*$.

 \rightarrow

ones:

Basis Step:

Recursive Step:

- 2. Base Conversion Practice
 - Please fill out the following table below for fixed width representations:

base 10	base 16	base 2
(width 2)	(width 1)	(width 4)
$(10)_{10,2}$		
$(11)_{10,2}$		
$(12)_{10,2}$		
$(13)_{10,2}$		
$(14)_{10,2}$		
$(15)_{10,2}$		

- Find the base 2 expansions of the following:
- - i. $(1337)_8$
 - ii. $(A96B1)_{16}$
- Find the base 8 expansion of $(1101010111110)_2$
- Find the base 16 expansion of $(101011100011001110)_2$ Find the base 2, fixed-width binary expansion of 0.1 with integer part width 1 and fractional part width 8.

- 3. When we have two positive integers n and m, dividing n by m means writing n as mq + r where q is the (integer) quotient and r is the (integer) remainder, with $0 \le r < m$. We can also write q as n div m and r as n mod m. (a) Compute 11 **div** 3 and 11 **mod** 3

 - (b) Compute -7 **div** 4 and -7 **mod** 4

- 4. For each of the numbers below, write the number in:
 - binary expansion
 - binary fixed-width 4
 - sign-magnitude width 4
 - 2's complement width 4
 - or determine that it is not possible.
 - (a) 5
 - (b) -7
 - (c) -8

(Optional)

Consider the logic circuit

For which of the following settings(s) of input values is the output $y_1 = 0$? (Select all and only those that apply.)

- i. $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, and $x_4 = 0$
- ii. $x_1 = 1$, $x_2 = 1$, $x_3 = 1$, and $x_4 = 1$
- iii. $x_1 = 1$, $x_2 = 0$, $x_3 = 0$, and $x_4 = 1$
- iv. $x_1 = 0$, $x_2 = 0$, $x_3 = 1$, and $x_4 = 1$

(Optional)

Consider the logic circuit

For which of the following settings(s) of input values is the output $y_1 = 1$ and $y_2 = 1$? (Select all and only those that apply.)

- i. $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, and $x_4 = 0$
- ii. $x_1 = 1$, $x_2 = 0$, $x_3 = 1$, and $x_4 = 1$
- iii. $x_1 = 1$, $x_2 = 1$, $x_3 = 0$, and $x_4 = 0$
- iv. $x_1 = 0$, $x_2 = 0$, $x_3 = 1$, and $x_4 = 1$