Discussion

Week 10

Review: Relations

Definition: When A and B are sets, we say any subset of $A \times B$ is a **binary relation**.

Definition: When A is a set, we say any subset of $A \times A$ is a (binary) relation on A.

Definition: (*Rosen 9.1*) A relation R on a set A is called **reflexive** means $(a, a) \in R$ for every element $a \in A$.

Definition: (*Rosen 9.1*) A relation R on a set A is called **symmetric** means $(b, a) \in R$ whenever $(a, b) \in R$, for all $a, b \in A$.

Definition: (*Rosen 9.1*) A relation R on a set A is called **transitive** means whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for all $a, b, c \in A$.

Definition: (*Rosen 9.5*) A relation is an **equivalence relation** if it is reflexive, symmetric, and transitive.

Definition: (*Rosen 9.5*) An equivalence class of an element $a \in A$ for an equivalence relation R on the set A is the set $\{s \in A | (a, s) \in R\}$. We write this as $[a]_R$.

1. Recall that in a movie recommendation system, each user's ratings of movies is represented as a *n*-tuple (with the positive integer *n* being the number of movies in the database), and each component of the *n*-tuple is an element of the collection $\{-1, 0, 1\}$.

Assume there are five movies in the database, so that each user's ratings can be represented as a 5-tuple. Let R be the set of all ratings, that is, the set of all 5-tuples where each component of the 5-tuple is an element of the collection $\{-1, 0, 1\}$.

Consider the following two equivalence relations on R:

 $H = \{(u, v) \in R \times R \mid \text{users } u \text{ and } v \text{ dislike the same number of movies}\}$

 $A = \{(u, v) \in R \times R \mid \text{users } u \text{ and } v \text{ agree about the first movie in the database} \}$

Extra practice: Prove that each of the above relations are equivalence relations.

Recall that the **equivalence class** of an element $x \in X$ for an equivalence relation \sim on the set X is the set $\{s \in X | (x, s) \in \sim\}$. We write this as $[x]_{\sim}$.

Additionally, a **partition** of set A is a set of non-empty disjoint subsets $A_1, A_2, ..., A_n$ such that $A_1 \cup A_2 \cup ... \cup A_n = A$.

- (a) What is the equivalence class of $[(-1, -1, -1, -1, -1)]_H$?
- (b) Give the equivalence classes $[(1,0,0,0,0)]_A$, $[(0,0,0,0,0)]_A$, and $[(-1,0,0,0,0)]_A$ in setbuilder notation. How large are these equivalence classes?
- (c) Give a partition of R which has 3 elements.

2. Fill in the definition for the predicate isPalindromic(s) which takes an RNA strand s and returns T if s is the same strand as its reverse and F otherwise.

> Basis Step: if $b \in B$ Recursive Step: If

 $is Palindromic: S \rightarrow \{T, F\}$ if b \in B is Palindromic(b) = T if b_1 \in B and b_2 \in B is Palindromic(b_1b_2) = , then isPalindromic() =

(a) Trace the evaluation of *isPalindromic*(AUCUA)

(b) Trace the evaluation of *isPalindromic*(AUCGUA)

(c) Why did we need the second basis step in this definition?

- 3. Let P(n) be the statement $1^2 + 2^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$. Using induction we will show that $\forall n \in \mathbb{Z}^+ P(n)$.
 - (a) Show that P(1) is true, completing the basis step
 - (b) What is the inductive hypothesis?
 - (c) What do you need to prove in the inductive step?
 - (d) Complete the inductive step.

- 4. Translate these specifications into English where F(p) is "Printer p is out of service," B(p) is "Printer p is busy," L(j) is "Print job j is lost," and Q(j) is "Print job j is queued."
 - (a) $\exists p(F(p) \land B(p)) \to \exists j L(j)$
 - (b) $\forall pB(p) \to \exists jQ(j)$
 - (c) $\exists j(Q(j) \land L(j)) \to \exists pF(p)$
 - (d) $(\forall pB(p) \land \forall jQ(j)) \rightarrow \exists jL(j)$