CSE 20 DISCRETE MATH

Fall 2020

http://cseweb.ucsd.edu/classes/fa20/cse20-a/

Today's learning goals

- Use predicates with set of tuples as their domain to relate values to one another
- Evaluate nested quantifiers: both alternating and not.

Recall

A **predicate** is a function from a given set (domain) to {T,F}.

Cartesian product of sets A and B, $A \times B = \{ (a,b) \mid a \text{ in A and b in B} \}$

Cartesian Products and Predicates

Definition (Rosen p123): Let A and B be sets. The **Cartesian product** of A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$. Hence,

$$A \times B = \{(a, b) \mid (a \in A) \land (b \in B)\}.$$

Recall: Each RNA strand is a string whose symbols are elements of the set $B = \{A, C, G, U\}$. The **set of all RNA strands** is called S. The function rnalen that computes the length of RNA strands in S is:

Basis Step: If $b \in B$ then $rnalen: S \to \mathbb{Z}^+$ Recursive Step: If $s \in S$ and $b \in B$, then rnalen(sb) = 1 + rnalen(s)

L with domain $S \times \mathbb{Z}^+$ is defined by, for $s \in S$ and $n \in \mathbb{Z}^+$,

 $L(s,n) = \begin{cases} T & \text{if } rnalen(s) = n \\ F & \text{otherwise} \end{cases}$

Element where L evaluates to T:

Element where L evaluates to F:

Cartesian Products and Predicates

BC with domain $S \times B \times \mathbb{N}$ is defined by, for $s \in S$ and $b \in B$ and $n \in \mathbb{N}$,

$$BC(s, b, n) = \begin{cases} T & \text{if } basecount(s, b) = n \\ F & \text{otherwise} \end{cases}$$

Which of these is a witness that proves that

$$\exists t \ BC(t)$$

- **4.** (
- B. (GA, 2)
- C. (GG, C, 0)
- D. None of the above, but something else works.
- E. None of the above, because the statement is false.

The **existential quantification** of P(x) is the statement "There exists an element x in the domain such that P(x)" and is written $\exists x P(x)$. An element for which P(x) = T is called a **witness** of $\exists x P(x)$.

Cartesian Products and Predicates

BC with domain $S \times B \times \mathbb{N}$ is defined by, for $s \in S$ and $b \in B$ and $n \in \mathbb{N}$,

$$BC(s, b, n) = \begin{cases} T & \text{if } basecount(s, b) = n \\ F & \text{otherwise} \end{cases}$$

Which of these is a counterexample that proves that

$$\forall (s, b, n) \ (BC(s, b, n))$$
 is false?

- A. (G, A, 1)
- B. (GC, A, 3)
- C. (GG, G, 2)
- D. None of the above, but something else works.
- E. None of the above, because the statement is false.

The universal quantification of P(x) is the statement "P(x) for all values of x in the domain" and is written $\forall x P(x)$. An element for which P(x) = F is called a **counterexample** of $\forall x P(x)$.

Predicate	Domain	Example domain element where predicate is T
basecount(s,b) = 3		
$basecount(s, \mathbf{A}) = n$		
$\exists n \in \mathbb{N} \ (basecount(s,b) = n)$		
$\forall b \in S \ (basecount(s,b) = 1)$		

 $\forall s \exists n \ BC(s, \mathbf{A}, n)$

For **each** strand, there is some number such that the strand has that number of A's.

 $\forall s \exists n \ BC(s, \mathbf{A}, n)$

For **each** strand, there is some number such that the strand has that number of A's.

$s = \mathtt{A}$	s = U	s = G	$ \dots $	$s = \mathtt{UGC}$	
$BC(\mathtt{A},\mathtt{A},n)$	$BC(\mathtt{U},\mathtt{A},n)$	$BC({ t G},{ t A},n)$		$BC(\mathtt{UGC},\mathtt{A},n)$	
$(\mathbf{A}, \mathbf{A}, 0)$	$(\mathtt{U},\mathtt{A},0)$	(G, A, 0)		(UGC, A, 0)	
(A,A,1)	$(\mathtt{U},\mathtt{A},1)$	(G, A, 1)		(UGC, A, 1)	
(A,A,2)	$(\mathtt{U},\mathtt{A},2)$	(G, A, 2)		(UGC, A, 2)	
÷	:	i i		<u>:</u>	

 $(\exists n \ BC(\mathtt{A},\mathtt{A},n)) \land (\exists n \ BC(\mathtt{C},\mathtt{A},n)) \land \exists n \ BC(\mathtt{G},\mathtt{A},n) \land \cdots \land (\exists n \ BC(\mathtt{UGC},\mathtt{A},n)) \land \cdots$

 $\exists n \forall s \ BC(s, \mathbf{U}, n)$

There is **some** number such that all strands have that number of U's.

 $\exists n \forall s \ BC(s, \mathbf{U}, n)$

There is some number such that all strands have that number of U's.

n = 0		n=1		n=2		
$BC(s,\mathtt{U},0)$	0)	$BC(s, \mathtt{U}, \mathtt{I})$	1)	BC(s, U, S)	2)	
(A, U, 0)	T	(A, U, 1)	F	(A, U, 2)	F	
(U, U, 0)	F	$({\tt U},{\tt U},1)$	T	(U, U, 2)	F	
(C, U, 0)	T	(G,U,1)	F	(G, U, 2)	F	
(G, U, 0)	T	(C, U, 1)	F	(C, U, 2)	F	
(AA, U, 0)	T	(AA, U, 1)	F	(AA, U, 2)	F	
(AU, U, 0)	F	(AU, U, 1)	T	(AU, U, 2)	F	
(AG, U, 0)	T	(AG, U, 1)	F	(AG, U, 2)	F	
:		:		:		
$(\mathtt{UCU},\mathtt{U},0)$	F	(UCU, U, 1)	F	(UCU, U, 2)	T	
:		:		:		

 $(\forall s \ BC(s, \mathtt{U}, 0)) \lor (\forall s \ BC(s, \mathtt{U}, 1)) \lor (\forall s \ BC(s, \mathtt{U}, 2)) \lor \cdots$

Evidence for nested quantifiers

More generally, for predicate P with domain $X \times Y$: The statement

$$\forall x \exists y P(x,y)$$

means every table for an assignment of x ($\forall x$) must have at least one witness row ($\exists y$). One subtable can serve as a counterexample to give evidence that this statement is false. On the other hand, the statement

$$\exists y \forall x P(x,y)$$

means some table for an assignment of y ($\exists y$) must have every row T ($\forall x$). One subtable can serve as a witness to give evidence that this statement is true.

What about $\forall x \forall y P(x,y), \forall y \forall x P(x,y), \exists x \exists y P(x,y), \exists y \exists x P(x,y)$?

Evaluate each quantified statement as T or F.

$\forall s \ \forall b \ \exists n \ BC(s,b,n)$	$\forall s \ \forall n \ \exists b \ BC(s,b,n)$	$\forall b \ \forall n \ \exists s \ BC(s,b,n)$
$\exists s \ \forall b \ \exists n \ BC(s,b,n)$	$\forall s \; \exists n \; \forall b \; BC(s,b,n)$	$\exists b \ \exists n \ \forall s \ BC(s,b,n)$

Extra example: Write the negation of each of the statements above, and use De Morgan's law to find a logically equivalent version where the negation is applied only to the BC predicate (not next to a quantifier).

Challenge: write symbolically

"There are (at least) two different strands that have the same number of As"

Summary

- Cartesian products describe sets as combinations of elements from sets
- Predicates with sets of tuples as their domain can relate values to one another
- When quantifiers are nested, the order matters. We read left to right.
- When quantifiers are nested, we can visualize and interpret them in several ways
 - As nested tables, one for each value in the outermost quantification
 - As a conjunction or disjunction of other quantified statements

For next time

Read website carefully
http://cseweb.ucsd.edu/classes/fa20/cse20-a/

- Next pre-class reading:
 - Section 1.5 Table 1 (p. 60)