CSE 120
Principles of Operating Systems

Fall 2020

Lecture 1: Course Introduction

Geoffrey M. Voelker
Lecture 1 Overview

• Class overview
• Administrative info
• Introduction to operating systems

• Go ahead and ask questions in chat
 ♦ I’ll monitor and answer them when I see them
Personnel

- Instructor
 - Geoff Voelker

- TAs and Tutors
 - Jiayou Guo (TA)
 - David Hacker (Tutor)
 - Hannah Hsu (Tutor)
 - Evan Laufer (Tutor)
 - Yingzhen Qu (TA)
 - Ana Selvaraj (Tutor)
 - Tianyi Shan (TA)
 - Mingyao Shen (TA)
 - Priyal Suneja (Tutor)
CSE 120 Class Overview

• Course material taught through class lectures, textbook readings, and handouts
 ♦ Starting with Lecture 2, I will post slides the day before class

• Course assignments are
 ♦ Homework questions
 ♦ Three large programming projects in groups
 ♦ Midterm and final exams

• Discussion sections
 ♦ Lecture material, homework, projects

• Other forums
 ♦ Piazza
Textbook

Homeworks

• There will be 4 homeworks throughout the quarter
 ♦ Reinforce lecture material

• Homeworks provide practice learning the material
 ♦ Unfortunately, wasted a lot of time and energy dealing with homework cheating in the past
 ♦ So: You get full credit for a technical answer related to the homework question
 ♦ Amount learned from doing homework is proportional to effort
 ♦ Your choice on how much effort
Nachos Project

DOCTOR FUN

"This is the planet where nachos rule."
Nachos

• Nachos is an instructional operating system
 ♦ It is a user-level operating system and a machine simulator
 » Not unlike the Java runtime environment
 » Will become more clear very soon
 ♦ Programming environment will be Java on Unix (Linux)
 ♦ The projects will require serious time commitments
 » Waiting until the last minute is not a good strategy

• You will do three+ projects using Nachos
 ♦ Concurrency and synchronization
 ♦ System calls, processes, multiprogramming
 ♦ Virtual memory

• You will work in groups of 1-3 on the projects
 ♦ Start thinking about partners
Exams

• Midterm
 ♦ Thursday November 5th (put in your calendar)
 ♦ Covers first half of class

• Final
 ♦ Tuesday December 15th (put in your calendar)
 ♦ Covers second half of class + selected material from first part
 » I will be explicit about the material covered

• Two exam periods
 ♦ 8am and 8pm (Pacific)
 ♦ Will be online for both in case there are questions

• No makeup exams
 ♦ Everyone must be able to attend these exam dates
 » Unless absolute dire circumstances
Grading

• Breakdown
 ♦ Homeworks: 6%
 ♦ Midterm: 28%
 ♦ Final: 33%
 ♦ Projects: 33%

• Course grades will be on a curve
• Do the work → Pass the class
 ♦ Academic integrity main reason students do not pass
Many Ways to Interact

- Lecture
- Discussion
 ✷ Thu 10-10:50am
- Office hours
 ✷ Mon 3-4pm & Wed 4-5pm
 ✷ All topics (lecture, project, hw, random, …)
- Lab hours
 ✷ TAs and tutors will have many lab hours
 ✷ For projects, but also anything else in the course
- Normally I’m in the labs the week projects are due
 ✷ Will have to do it online this quarter
Advice

• Watch the lectures
 ♦ Lecture material is the basis for exams and directly relates to the projects

• Do the homework
 ♦ Concepts seem straightforward…until you apply them
 ♦ Excellent practice for the exams, and some homework problems are exercises for helping with the project

• Ask questions
 ♦ Asking questions is the best way to clarify lecture material at the time it is being presented
 ♦ Piazza, lab + office hours will help with projects, homework
More Advice

• **Do not violate academic integrity**
 ♦ It is much better to get a 0 for an assignment than to fail the course for academic integrity violations
 ♦ If you are starting to panic – for any reason – contact me so that we can figure out a path forward
 » Especially given how crazy 2020 has been!

• **Start the projects early**
 ♦ They take longer than you might expect (really!)
Project 1 Scores

SCORE

START DATE

DAY.0-2 | DAY.2-4 | DAY.4-6 | DAY.6-8 | DAY.8-10 | DAY.10-12 | DAY.12-14 | DAY.14-16

mean

median
Class Web Page

http://cseweb.ucsd.edu/classes/fa20/cse120-a/

• Serves many roles…
 ♦ Course syllabus and schedule (updated over quarter)
 ♦ Lecture slides
 ♦ Homework handouts
 ♦ Project handouts

• Optional material
 ♦ Entirely for your interest only

• Supplemental readings on Unix, monitors, and threads
 ♦ e.g., seminal research paper describing the early Unix system
 ♦ Concepts in paper might seem obvious and familiar, but they were new at one time
Recordings

- We will record lectures and discussion section
- Available via canvas
- Not unlike podcasting…
Questions

• Before we start on material, any questions about the class structure, contents, etc.?
Why?

You have a question, Calvin?

Yes! What assurance do I have that this education is adequately preparing me for the 21st century?

Am I getting the skills I'll need to effectively compete in a tough, global economy? I want a high-paying job when I get out of here! I want opportunity!
Why Operating Systems?

• Why take a course in operating systems?
 - It’s not like everyone will become OS developers, after all

• Understand what you use
 - Understanding how an OS works helps you develop apps
 - System functionality, performance, efficiency, etc.

• Pervasive abstractions
 - Concurrency: Threads and synchronization are common modern programming abstractions (Java, C#, C++, Rust, etc.)

• Complex software systems
 - Many of you will go on to work on large software projects
 - OSes serve as examples of complex systems
• This course addresses classic OS concepts
 ♦ Services provided by the OS
 ♦ OS implementation on modern hardware
 ♦ Interaction of hardware and software
 ♦ Techniques for implementing software systems that are
 » Large and complex
 » Long-lived and evolving
 » Concurrent
 » Performance-critical

• System software tends to be mysterious
 ♦ Virtual memory? Wazzat?

• Our goal is to explain those mysteries
```
# Top output

Top - 20:48:08 up 275 days,  1 user,  load average:  0.06,  0.07,  0.05
Tasks: 171 total,   1 running,  19 stopped,   0 zombie
Cpu(s):  0.1%us,  0.1%sy,  0.0%ni,  0.0%id,  0.0%wa,  0.0%hi,  0.0%si,  0.0%st
Mem: 16467276k total, 1415960k used, 230k free
Swap:  0k total,   0k used,  884340k cached

PID USER PR NI VIRT RES SHMR S %CPU %MEM TIME+ COMMAND
14677 voelker  20  0  55548 3232  2364 R  0:00:07 top
24637 voelker  20  0  86300 6364 1024 S  32:06.70 mosh-server
  1 root  20  0  57812 1636  584 S  1:26.73 init
  2 root  20  0      0      0 0 0 0:03.13 kthreadd
  3 root RT  0      0      0      0 0 0:04.38 migration/0
  4 root RT  0      0      0      0 0 0:04.38 migration/1
  5 root RT  0      0      0      0 0 0:04.38 migration/1
  6 root RT  0      0      0      0 0 0:04.38 migration/1
  7 root RT  0      0      0      0 0 0:04.38 migration/1
  8 root RT  0      0      0      0 0 0:04.38 migration/1
  9 root RT  0      0      0      0 0 0:04.38 migration/1
 10 root RT  0      0      0      0 0 0:04.38 migration/1
 11 root RT  0      0      0      0 0 0:04.38 migration/1
 12 root RT  0      0      0      0 0 0:04.38 migration/1
 13 root RT  0      0      0      0 0 0:04.38 migration/1
 14 root RT  0      0      0      0 0 0:04.38 migration/1
 15 root RT  0      0      0      0 0 0:04.38 migration/1
```
Fundamental OS Concepts

• Processes and threads
 ♦ What they are, why we have them, how to implement them

• How to implement correct concurrent programs
 ♦ Synchronization, locks, condition variables
 ♦ Multithreaded applications

• Virtual memory
 ♦ What it is, why we have it, how to make it work

• File systems
 ♦ How to make persistent storage friendly to users and applications

• Some advanced topics at the end
What is an Operating System?

• How would you answer?
 ♦ (Yes, I know that’s why you’re taking the course…)
 ♦ (Note: There are many answers…)
What is an Operating System?

• The operating system is the software layer between user applications and the hardware

• The OS is “all the code that you didn’t have to write” to implement your application
The OS and Hardware

- The OS *abstracts/controls/mediates* access to hardware resources
 - Computation (CPUs)
 - Volatile storage (memory) and persistent storage (disk, etc.)
 - Communication (network, modem, etc.)
 - Input/output devices (keyboard, display, printer, camera, etc.)

- The OS defines a set of logical resources (*objects*) and a set of well-defined operations on those objects (*interfaces*)
 - Physical resources (CPU and memory)
 - Logical resources (files, programs, names)
 - Sounds like OO…
The OS and Hardware (2)

- Benefits to applications
 - Simpler (no tweaking device registers)
 - Device independent (all network cards look the same)
 - Portable (across Win95/98/ME/NT/2000/XP/Vista/7/8/10/…)
 - Transportable (same program across different OSes (Javascript))
The OS and Applications

• The OS defines a logical, well-defined environment…
 ♦ Virtual machine (each program thinks it owns the computer)
• …for users and programs to safely coexist, cooperate, share resources
 ♦ Concurrent execution of multiple programs (timeslicing)
 ♦ Communication among multiple programs (pipes, cut & paste)
 ♦ Shared implementations of common facilities
 » No need to implement the file system more than once
 ♦ Mechanisms and policies to manage/share/protect resources
 » File permissions (mechanism) and groups (policies)
More Questions to Ponder

• What is part of an OS? What is not?
 ♦ Is the windowing system part of an OS?
 ♦ Is the Web browser part of an OS?
More Questions to Ponder

• What is part of an OS? What is not?
 ♦ Is the windowing system part of an OS?
 ♦ Is the Web browser part of an OS?

• Popular OSes today are Windows, Linux, and OS X
 ♦ How different/similar do you think these OSes are?
 ♦ How would you go about answering that question?
More Questions to Ponder

- What is part of an OS? What is not?
 - Is the windowing system part of an OS?
 - Is the Web browser part of an OS?

- Popular OSes today are Windows, Linux, and OS X
 - How different/similar do you think these OSes are?
 - How would you go about answering that question?

- OSes change all of the time
 - Consider the series of releases of Windows, Linux, OS X…
 - What are the drivers of OS change?
 - What are the most compelling issues facing OSes today?
Pondering Cont’d

• How many lines of code in an OS?
 ♦ Win7 (2009): 40M
 ♦ OS X (2006): 86M
 ♦ Linux (2011): 15M
 ♦ What is largest kernel component?

• What does this mean (for you)?
 ♦ OSes are useful for learning about software complexity
 ♦ OS is just one example of many complex software systems
 » Chrome (2015): 17M
 » Hadoop (2018): 3.9M
 » JDK (2015): 6M
 » Unreal Engine 4: 2.3M
 ♦ As a software developer, you will face complexity
For next class...

• Browse the course web
 https://cseweb.ucsd.edu/classes/fa20/cse120-a/
• Sign up on Piazza!
• Read Chapters 1 and 2
• Start thinking about partners for project groups
• I will stay on zoom to answer questions
 ♦ And will disable the recording…