Python Data Products

Course 2: Design thinking and predictive pipelines

Lecture: gradient descent in Python




Learning objectives

In this lecture we will...

« Show how gradient descent can be implemented in
Python

* Introduce the relationship between
equations/mathematical objectives (theory) and their
implementation (practice)

Python Data Products Specialization: Course 1: Basic Data Processing...



Goal: Regression objective

arg ming Zz (CCZ -0 — yi)z

89k Z 2sz(X 0 — yz)

Let's look at implementing this on the
same PM2.5 dataset from our previous
lecture on regression

Python Data Products Specialization: Course 1: Basic Data Processing...



Code: Reading the data

Reading the data from CSV, and discarding missing entries:

In [1]: path = "datasets/PRSA data 2010.1.1-2014.12.31.csv"
f = open(path, 'r')

In [2]: dataset = []
header = f.readline().strip().split("',")
for line in f:
line = line.split(',")
dataset.append(line)

In [3]: header.index('pm2.5"')

Out[3]: 5

In [4]: dataset = [d for d in dataset if d[5] != "NA']

Python Data Products Specialization: Course 1: Basic Data Processing...



Code: Extracting features from the data

Extract features from the dataset:

In [5]: def feature(datum):
feat = [1, float(datum[7])}] # Temperature

return feat \\\\

In [6]: X = [feature(d) for d in dataset] ~ Offsetand temperature
y = [float(d[5]) for d in dataset]
In [7]: X[@]

out[7]: [1, -4.0]

In [8]: K = len(X[@])
K
Out[8]: 2

\ K = number of feature dimensions

Python Data Products Specialization: Course 1: Basic Data Processing...



Code: Initialization

Initialize parameters (and include some utility functions)

In [9]: theta = [0.0]*K
In [10]: theta[@] = sum(y) / len(y)

In [11]: def inner(x,y):
return sum([a*b for (a,b) in zip(x,y)])

In [12]: def norm(x):
return sum{[a*a for a in x]) # equivalently, inner(x,x)

* Initializing theta_0 (the offset parameter) to the mean value will help the model

to converge faster
« Generally speaking, initializing gradient descent algorithms with a "good guess"”

can help them to converge more quickly

Python Data Products Specialization: Course 1: Basic Data Processing...



Code: Derivative

Compute partial derivatives for each dimension:

In [13]: def derivative(X, y, theta):
dtheta = [0.0]*1len(theta)
K = len(theta)

N = len(X)
MSE = B
for i in range(N): ) ]
error = inner(X[i],theta) - y[il] Denva“ve:
e Etﬁntr?ﬁeim 2+X[1] [K]*error/N of
eta = i error _ _ . A
MSE += error*error/N 00, — ZZ 2X’Lk: (X'L 0 yz)

return dtheta, MSE

\ Also compute MSE, just for utility

Python Data Products Specialization: Course 1: Basic Data Processing...



Code: Derivative

Compute partial derivatives for each dimension:
In [14]: learningRate = 0.003

In [15]: while (True):
dtheta,MSE = derivative(X, y, theta)
m = norm{dtheta)

print("norm(dtheta) = " + str(m) + " MSE = " + str(MSE)) Update in direction
for k in range(K): / £ deri .
theta[k] -= learningRate * dthetalk] of derivative
if m < 0.01: break < Stopping condition
norm(dtheta) = 0.0811085715419421865 MSE = 8403.627794070962 -
norm({dtheta) = 0.011020632851413479 MSE = 8403.627760862651
norm(dtheta) = 0.81895593237337664 MSE = 8403.627727849314
norm(dtheta) = 0.0810891611742123273 MSE = 8403.627695029725
norm({dtheta) = 0.010827668727610302 MSE = 8403.627662403022
norm(dtheta) = 0.0810764101112955294 MSE = 8403.627629967714
norm(dtheta) = 0.01070090669415397 MSE = 8403.627597722905
norm(dtheta) = 0.01063808328031018 MSE = B8403.627565667332
norm(dtheta) = 0.010575628693268708 MSE = 8403.6275337999083
norm(dtheta) = 0.08108513540767733419 MSE = 8403.627502119632
norm(dtheta) = 0.810451817351068865 MSE = 8403.627470625426
norm({dtheta) = 0.010390456303283141 MSE = 8403.627439316158
norm(dtheta) = 0.010329455497002886 MSE = 8403.627408190638
. ) ‘ % .-.. .-.. " 0 0 ] = A i ETATITTTNATON

Python Data Products Specialization: Course 1: Basic Data Processing...



Code: Derivative

Read output

In [15]:|theta

Out[16]: [107.P0031826701057, -0.6803048266097109]

* (Almost) identical to the result we got when using the regression library in the
previous lecture

Python Data Products Specialization: Course 1: Basic Data Processing...



sSummary

Although a crude (and fairly slow) implementation,
this type of approach can be extended to handle
quite general and complex objectives. However it

has several difficult issues to deal with:

* How to initialize?

* How to set parameters like the learning
rate and convergence criteria?

« Manually computing derivatives is time-
consuming — and difficult to debug

Python Data Products Specialization: Course 1: Basic Data Processing...



Summary of concepts

 Briefly introduced a crude implementation of

gradient descent in Python
 Later, we'll see how the same operations can be

supported via libraries

Python Data Products Specialization: Course 1: Basic Data Processing...



