Python Data Products

Course 1: Basics

Lecture: Extracting simple statistics from datasets




Learning objectives

In this lecture we will...

 Introduce data structures that help us to compile
statistics (like "defaultdict")

« Compute simple statistics like counts, sums, and
averages from data

Python Data Products Specialization: Course 1: Basic Data Processing...



Simple statistics from data

Let's try to compute the following from the Amazon data:

« What is the average star rating?
« What is the distribution of star ratings?
« What fraction of purchases are verified?
* Which products are the most popular (purchases)?
* Which products have the highest average ratings?

Python Data Products Specialization: Course 1: Basic Data Processin



Reading the data

First let's read the Amazon data into a list, exactly as we did in the previous lecture:

In [1]: import gzip
path = "datasets/amazon/amazon reviews us Gift Card vl B80.tsv.gz"
T = gzip.open(path, 'rt'")

In [2]: dimport csv
reader = csv.reader(f, delimiter = "\t')

In [3]: header = next(reader)

In [4]: dataset = []
for line in reader:
d = dict(zip(header, line))
for field in ['helpful votes', 'star rating', 'total votes']:
d[field] = int(d[field])
for field in ['verified purchase', 'vine']:
if d[field] == 'Y':
d[field] = True
else:
d[field] = False
dataset.append(d)

Python Data Products Specialization: Course 1: Basic Data Processing...



Code: Average rating and rating distribution

« Average rating can be computed straightforwardly with a list comprehension:

In [5]:|ratings = [d['star rating'] for d in dataset] ‘

In [ﬁ]:|sumfratings] / len(ratings) ‘

Out[6]: 4.731333018677096

 Rating distribution can be computed by using a dictionary to store counts:

In [7]: ratingCounts = {1: @, 2: 6, 3: @, 4: 6, 5:0}

In [8]: for d in dataset:
ratingCounts[d['star rating']] += 1

In [9]: ratingCounts

Out[9]: {1: 4766, 2: 1560, 3: 3147, 4: 9808, 5: 129029}

Python Data Products Specialization: Course 1: Basic Data Processing...



Code: defaultdict

« Note that we counted ratings by initializing a dictionary with all zero counts:

In [7]: ratingCounts = {1: @, 2: @, 3: 0, 4: 0, 5:0}

« The "defaultdict" structure from the "collections" library allows us to automate
this functionality, which is useful for counting different types of object
 Let's compute the rating distribution using defaultdict:

In [10]: from collections import defaultdict
In [11]: ratingCounts = defaultdict(int)

In [12]: for d in dataset:
ratingCounts[d['star rating']] +=1

In [13]: ratingCounts

Out[13]: defaultdict(int, {1: 4766, 2: 1560, 3: 3147, 4: 9808, 5: 129029})

Python Data Products Specialization: Course 1: Basic Data Processing...



Code: verified purchases

 Similarly we can use the defaultdict function to count verified vs. non-verified
purchases

In [14]: wverifiedCounts = defaultdict(int)

In [15]: for d in dataset:
verifiedCounts[d['verified purchase']] +=1

In [16]: wverifiedCounts

Dut[16]: defaultdict(int, {False: 130821, True: 135289})

Python Data Products Specialization: Course 1: Basic Data Processing...



Code: most popular products

* Again we can use defaultdict to determine product popularity (here we just want
to count which products appear most in the dataset)

In [17]: productCounts = defaultdict(int)

In [18]: for d in dataset:
productCounts[d['product id']] += 1

In [19]: counts = [(productCounts[p], p) for p in productCounts]
In [20]: counts.sort()

| In [21]: counts[-10:]

Out[21]: [(2038, 'BOO4KNWWOO'
(2173, 'BOG6BAZGD4A’
(2630, 'BTOODDCTCE’
(2643, 'BOO4LLIKYZ2'
(3407, 'BTOODDCTBK'
(3448, 'BTOOCTOUNS'
(4283, 'BOGIX1I3GH'

* Following this, we build a list
of counts followed by product
IDs, which we can sort to get
(5034, 'BTOEDDVMVQ'),
(6037, 'BOAA4BGOD4'), the most popular

(28785, 'BOO4LLIKVU')

R L
- = = - - = =

Python Data Products Specialization: Course 1: Basic Data Processing...



Code: top rated products

« Here we need to compute the average rating for each product, which requires
that we first construct the list of ratings for each product
« This can also be done using defaultdict, with the "list" subclass:

In [22]: ratingsPerProduct = defaultdict(list)

In [23]: for d in dataset:
ratingsPerProduct[d['product id']].append(d['star rating'])

In [24]: averageRatingPerProduct = {}
for p in ratingsPerProduct:
averageRatingPerProduct[p] = sum(ratingsPerProduct[p]) / len{ratingsPerProduct([p])

« We now have two data structures: one which stores the list of ratings for each
product, and one which stores the average rating for each product

Python Data Products Specialization: Course 1: Basic Data Processing...



Code: top rated products

« Now we can sort by ratings, and also filter to only include reasonably popular
products:

In [25]: topRated = [(averageRatingPerProduct[p], p) for p in averageRatingPerProduct if len(ratingsPerProduct[p]) > 50]

pal

prd

In [26]: topRated.sort()

Only products with more
In [27]: topRated[-10:] than 50 reviews

Out[27]: [(4.918918918918919, 'BOO4KNWX94'),
(4.919354838709677, 'BOOCRQ496G'),
(4.923076923076923, 'BOOPMLDNBA']),
(4.931034482758621, 'BOGCT7TEGOD'),
(4.936842105263158, 'BOO4KNWXTG'),
(4.9423076923076925, 'BOOSNMPQYC'),
(4.944444444444445, 'BOOTVEEWKK']),
(4.947368421052632, 'BOG4LLILSK'),
(4.955882352941177, 'BOOHSBNKYA']),
(4.966101694915254, 'BOOPBN49M4')]

Python Data Products Specialization: Course 1: Basic Data Processing...



Summary of concepts

» Saw how to compute simple statistics from
datasets
* Introduced the "defaultdict” structure

On your own...

Try computing other statistics, e.q.
* Who are the most active users?
What are the most commonly used

words?

What is the different in average rating
between verified versus non-verified
purchases?

Python Data Products Specialization: Course 1: Basic Data Processing...



