relational
algebra &
calculus

Relational DB: The Origins

& - h

G » S\
S A B
RN L F
PR
i = AR %}‘.) X
e i R b RV

LS ¥ "‘ﬁl\ M

Tarski: Algebra for FO

Frege: FO logic

relational
calculus

Relational Calculus (aka FO)

* Models data manipulation core of SQL
|dea: specify “what” not “how”

 General form:
{t | property (1)}

« property (t) is described by a language based
on predicate calculus (first-order logic)

Relational Calculus Example

Display the movie table

In SQL

SELECT *
FROM Movie

In words
(making answer tuple explicit)

The answer consists of tuples m
such that m is a tuple in Movie

Need to say

“tuple misinrelation R me&R

Relational Calculus Example

Find the directors and actors of currently playing movies

In SQL

SELECT m.Director, m.Actor
FROM movie m, schedule s
WHERE m.Title = s.Title

In words (making answer tuple explicit)

“The answer consists of tuples t s.t.
there exist tuples m in movie and s in schedule for which
t.Director = m.Director and t.Actor = m.Actor and m.Title = s.Title”

Need to say

“there exists a tuple x in relation R”: dxER
Refer to the value of attribute A of tuple x: x(A)
Boolean combinations

Relational Calculus Example

Find the directors and actors of currently playing movies

Need to say

“there exists a tuple x in relation R": A x &R
Refer to the value of attribute A of tuple x: x(A)
Boolean combinations

In logic notation (tuple relational calculus)

{ t: Director, Actor | 3 m € movie 3 s € schedule
[t(Director) = m(Director) A t(Actor) = m(Actor)
A m(Title) = s(Title)] }

Quantifiers

1 m € R: Existential quantification
“there exists some tuple min relation R”

Sometimes need to say:
“for every tuple m”

e.g., ‘every director is also an actor”

Need to say:
“for every tuple m in movie there exists a tuple t in movie
Such that m.Director = t.Actor”

Y m € movie 3t € movie [m(Director) = t(Actor)]
(The answer to this query is true or false)

V m € R: Universal quantification
“for every tuple min relation R”

Tuple Relational Calculus

 |n the style of SQL: language talks about tuples

« What you can say:
- Refer to tuples: tuple variables t, s, ...

- Atuple t belongs to arelation R: teR
- Conditions on attributes of a tuple t and s:
* t(A) = (#)(=) constant
* 1(A) = s(B)
* {(A) = s(B)
* etc.
« Simple expressions above: atoms

Tuple Relational Calculus

« Combine properties using Boolean operators
A, V, -
(abbreviation. p—q = - pvQ)

* Quantifiers

there exists: dt & R o(t)

for every: Vite R ot)

where ¢(t) a formula in which t not quantified (it is “free”)

More on quantifiers

« Scope of quantifier:
scope of At ER o(t) is g

scope of VtER o(t) is @

* Free variable:
not in scope of any quantifier

free variables are the “parameters” of the formula

* Rule: in quantification dt € R ¢(t), Vt € R (t)
t must be free in @

Quantifier Examples

{ t: Director, Actor | 3 m € movie 3 s € schedule
[t(Director) = m(Director) A t(Actor) = m(Actor) A m(Title) = s(Title)] }

[t(Director) = m(Director) A t(Actor) = m(Actor) A m(Title) = s(Title)]
free: t, m, s

ds € schedule
[t(Director) = m(Director) A t(Actor) = m(Actor) A m(Title) = s(Title)]
free: t, m

d m & movie 3 s € schedule
[t(Director) = m(Director) A t(Actor) = m(Actor) A m(Title) = s(Title)]
free: t

Example in predicate logic y

A statement about numbers:
dxVyVz[x=y*z — (y=1)v(z=1))]

“there exists at least one prime number x”

A “query” on numbers:
@(x): VyVz[x=y*z——(y=1)v(z=1))]

This defines the set {x | p(x)} of prime numbers.
It consists of all x that make ¢(x) true.

Semantics of Tuple Calculus

Active domain:

A set of values in the database, or mentioned in the query result.
Tuple variables range over the active domain

Note:
A query without free variables always evaluates to true or false

e.g., “Sky is by Berto” is expressed without free variables:
dm € movie [m(title) = “Sky” A m(director) = “Berto”]
This statement is true or false

Tuple Calculus Query

{t: <att> | o(t)}
where ¢ is a calculus formula with only one free variable t

produces as answer a table with attributes <att> consisting
of all tuples Vv in active domain with make (V) true

Note:
¢(Vv) has no free variables so it evaluates to true or false

Movie Examples Revisited

Find titles of currently playing movies

select Title
from Schedule

Find the titles of all movies by “Berto”

select Title
from Movie
where Director=“Berto”

Find the titles and the directors of all currently playing movies

select Movie.Title, Director
from Movie, Schedule
where Movie.Title = Schedule.Title

Movie Examples Revisited

Find titles of currently playing movies
{t: title | 3s &schedule [s(title) = t(title)]}

Find the titles of all movies by “Berto”

{t: titlel 3m € movie [m(director) = “Berto” a t(title) = m(title)]}

Find the titles and the directors of all currently playing movies

{t: title, director | 3s Eschedule 3m € movie
[s(title) = m(title) A t(title) = m(title) A t(director) = m(director)]}

Movie Examples Revisited

* Find actors playing in every movie by Berto

{a: actor | dy € movie [a(actor) = y(actor) A
Vm € movie [m(director) = “Berto” — Jt € movie (m(title) =
t(title) A t(actor) = y(actor))]]}

Is the following correct?

{a: actor | dy € movie [a(actor) = y(actor) A

VYm € movie [m(director) = “Berto” A 3t € movie (m(title) =
t(title) A t(actor) = y(actor))]]}

A: YES B: NG

Movie Examples Revisited

* Find actors playing in every movie by Berto

{a: actor | dy € movie [a(actor) = y(actor) A
Vm € movie [m(director) = “Berto” — Jt € movie (m(title) =
t(title) A t(actor) = y(actor))]]}

Typical use of V.
Y m €R [filter(m) — property(m)]

Intuition: check property(m) for those m that satisfy filter(m)
we don’t care about the m’s that do not satisfy filter(m)

Movie Examples Revisited

* Find actors playing in every movie by Berto

{a: actor | dy € movie [a(actor) = y(actor) A
Vm € movie [m(director) = “Berto” — Jt € movie (m(title) =
t(title) A t(actor) = y(actor))]]}

Is this correct?
{a: actor | dy € movie [a(actor) = y(actor) A
VY m € movie 3t € movie [m(director) = “Berto” — (m(title) =

t(title) A t(actor) = y(actor))]]}

A:YES B:NO

Movie Examples Revisited

Is this correct?
{a: actor | dy € movie [a(actor) = y(actor) A
Y m € movie 4t € movie [m(director) = “Berto” — (m(title) =

t(title) A t(actor) = y(actor))]]}

A:¥€S B:NO

at (pvy) =3dtevIty
dt ¢ =@ if tdoes not occurin @

Is the following correct:
dt (pay) =3teadty

A:YES B:NO

Movie Examples Revisited

Correct:
{a: actor | dy € movie [a(actor) = y(actor) A
VY m € movie dt € movie [m(director) = “Berto” — (m(title) =
t(title) A t(actor) = y(actor))]]}

dt (pvy) =dtevIty
dt ¢ = ¢ if t does not occurin @

dt € movie [m(director) = “Berto” — (m(title) =

t(title) A t(actor) = y(actor))] =

dt € movie [=m(director) = “Berto” v (m(title) =

t(title) A t(actor) = y(actor))] =

[t € movie (—m(director) = “Berto”) v dt € movie (m(title) =
t(title) A t(actor) = y(actor))] =

[-m(director) = “Berto” v dt € movie (m(title) =

t(title) A t(actor) = y(actor))] =

[m(director) = “Berto” — dt € movie (m(title) =
t(title) A t(actor) = y(actor))]

Movie Examples Revisited

Correct:
{a: actor | dy € movie [a(actor) = y(actor) A
Vm € movie 3t € movie [m(director) = “Berto” — (m(title) =

u t(title) A t(actor) = y(actor))]]}

Is this also correct (can we switch ¥ and 3)?
{a: actor | dy € movie [a(actor) = y(actor) A
dt € movie Ym € movie [m(director) = “Berto” — (m(title) =

t(title) A t(actor) = y(actor))]]}

A: YES B: MO

Tuple Calculus and SQL

 Example:
“Find theaters showing movies by Bertolucci’:

SQL:

SELECT s.theater
FROM schedule s, movie m
WHERE s.title = m.titte AND m.director = “Bertolucci”

tuple calculus:

{ t: theater | 3 s € schedule 3 m € movie [t(theater) =
s(theater) A s(title) = m(title) A m(director) = Bertolucci

Basic SQL Query

SQL

. SELECTA,, ..., A
FROMR,, ..., R,
WHERE cond(R,, ..., R,)

Tuple Calculus
« {tA, .. A I ERy A ER A HA) =1i(A) A cond(ry, ..., r)l}

* Note:
- Basic SQL query uses only 4

- No explicit construct for V

Using Tuple Calculus to
Formulate SQL Queries

Example: “Find actors playing in every movie by Berto”

 Tuple calculus
{a: actor | Ay € movie [a(actor) = y(actor) a
Vm & movie [m(dir) = “Berto” — dt € movie (m(title) =
t(title) A t(actor) = y(actor))]]}

 Eliminate V:
{a: actor | Ay € movie [a(actor) = y(actor) a
-3dm € movie [m(dir) = “Berto” A -3t € movie (m(title) =
t(title) A t(actor) = y(actor))]]}

* Rule: VxeRgpX)=-3IxeR -¢(x)

“every x in R satisfies o(x) iff
there is no x in R that violates ¢(x)”

Convert to SQL query

« Basic rule: one level of nesting for each “-3”

{a: actor | Ay € movie [a(actor) = y(actor) a
-3dm & movie [m(dir) = “Berto” A =3t € movie (m(title) = t(title)
A t(actor) = y(actor))]]}

SELECT y.actor FROM movie y
WHERE NOT EXISTS
(SELECT * FROM movie m
WHERE m.dir = ‘Berto’ AND
NOT EXISTS
(SELECT *
FROM movie t
WHERE m.title = t.titte AND t.actor = y.actor))

Another possibility
(with similar nesting structure)

SELECT actor FROM movie
WHERE actor NOT IN
(SELECT s.actor
FROM movie s, movie m
WHERE m.dir = ‘Berto’
AND s.actor NOT IN
(SELECT t.actor
FROM movie t
WHERE m.title = t.title))

 Note: Calculus is more flexible than SQL because of
the ability to mix 3 and V quantifiers

relational
algebra

Query Processing

3 steps:
« Parsing & Translation
* Optimization

* Evaluation
uerv | parser and relational algebra
b/ translator expression

query
output

execution plan

Relational Algebra

« Simple set of algebraic operations on relations

Journey of a query

SQL select ... from...where
l |

v v

Relational algebra m5(PXQ) X ...

| |

Query rewriting 7,,(PXS) XM QX R

* We use set semantics (no duplicates) and no nulls
* There are extensions with bag semantics and nulls

Relational Algebra

Projection

Eliminate some columns

4 N

nx(R) Display only attributes X of relation R

L where R: table name & X C attributes(R))

Example:
Find titles of current movies

7t e(SCHEDULE)

Relational Algebra

Projection

Eliminate some columns

/

ty(R)

Display only attributes X of relation R

_

where R: table name & X C attributes(R)

Example:

MaA(R) = [A | map(R) = No repetitions

of tuples!

o
~|lo|lo(»

w|N|=|m

Relational Algebra

Selection

Compute set union

-

Gcond(R)

Select tuples of R satisfying condition cond

where cond: condition involving only attributes of R
(e.q., attr = value, attr # value, attr1 = attr2, attr1 # attr2, etc.)

Example:

Relational Algebra

Selection

Compute set union

-

Gcond(R) Select tuples of R satisfying condition cond

where cond: condition involving only attributes of R
(e.q., attr = value, attr # value, attr1 = attr2, attr1 # attr2, etc.)

Example:

Relational Algebra

Union

Compute set union

4 N

RUS Union of sets of tuples in R and S

L where R, S: tables with same attributes)

Example:

A |B RUS =

B
1
2
1

Relational Algebra

Difference

Compute set difference

P
R-S Difference of sets of tuples in R and S

L where R, S: tables with same attributes)

Example:

B
1
2
1

Relational Algebra
Join

Compute join
4)

RXS Natural Join of R, S

where R, S: tables
N Y,

Example:
R NE

Note: More than one common attributes allowed!

s FEE RXS = |A/B|cC

Relational Algebra
Join

Compute join
(™

RXS Natural Join of R, S

where R, S: tables
\ Y

Example:

Definition of Join

Let r and s be relations on schemas R and S respectively.

Then, rXs is a relation with attributes att(R) U att(S) obtained as
follows:

Consider each pair of tuples ¢, from r and t, from s.

If t. and t, have the same value on each of the attributes in att(R) N att(S),
add a tuple t to the result, where

* thas the same value as f.on r
* thas the same value as f,on s

Note: if R N S is empty, the join consists of
all combinations of tuples from R and S,
I.e. their cross-product

Relational Algebra

Attribute Renaming

Rename attributes

\

g
Oa1_.ao(R) | Change name of attribute A1 in rel. R to A2

L where R: relation and A1: attribute in R)

Example:

Contents remain

0r.c(R)=|C |B
a |1 unchanged!
a |2
B |1

| |a|»

B
1
2
1

Note: Can rename several attributes at o

Relational Algebra

« Basic set of operations:
n, o, U, -, X, 0

 Back to movie example queries:

1. Titles of currently playing movies:
mrre(schedule)

2. Titles of movies by Berto:
rirLe(Opir=BerRTO(MOVIE))

3. Titles and directors of currently playing movies:
TrrLe, piR (MOVie X schedule)

Relational Algebra

4. Find the pairs of actors acting together in some movie

J-':actor1, actor2 (6 actor = actor1 (mOVie) X 0 actor - actor2 (mOVie))

5. Find the actors playing in every movie by Berto

Tactor (mOVie) - _ _
Tactor [(Tactor (MOViE) X Ty (Ogir =gerTO(MOVIE))) - Tactor title (movie)]

v v \Z
l actor title by Berto actor acts in title

actors for which there is almovie by Berto in which they do not act

v
In this case (not in general): Same as cartesian product

Relational Algebra

Cartesian Product

Compute cartesian product

/

RxS

Cartesian Product of R, S

_

where R, S: tables

Example:

Same as RXS, when R and S
have no common attributes

1

ol|lo|»

2

RXS =

ol|lo|o|o|»

[\)[\)__\w

____\O

w|Nv|w(Nv|o

Relational Algebra

Cartesian Product

Compute cartesian product

/

RxS

Cartesian Product of R, S

_

where R, S: tables

Example:

A

1

1

ol|lo|»

2

1

RXS =

If 2 attributes in R, S have the same

name A, they are renamed to R.A
and S.A in the output

o|lo|o|o |l

I\)l\)__\w

LN LN LN LN m
-

winviw|NvO

Other useful operations

 Intersection RN S
 Division (Quotient) R =+ S

CR I s O

R+ S:{a| <a, b> &R for every bES}

Example: @Bz B R+S=|A

Another Division Example

B Find the actors playing in every movie by Berto

T‘TlTLE,ACTOR(mOVie) + r7Le(OpR=BERTO(MOVIE))

iple attributes

ion by mult

IVIS

D

11113111

T COmCOoCcOo o

I U N N N Vo]

T ©C ©OC C© C O

T T T QAR > >

&~

rirA| B|C|D]|E

B Relations r, s:

@©

@©

&~

Br-s

Relational Algebra

 Note:
nt is like 3 “there exists”...

+ is like V “for all”...

« Expressing + using other operators:

R+ S =m,(R) - m,((rt\(R) X'S) - R)

Similar to: Vx ¢@(x) = =3dx = @(x)

Calculus Vs. Algebra

 Theorem: Calculus and Algebra are equivalent

« Basic Correspondence:

Algebra Operation Calculus Operation

T < > 3

o ¢ » t(A) comp c
U < Y

X

Example

* “Find theaters showing movies by Bertolucci’:
SQL:

« SELECT s.theater

FROM schedule s, movie m
WHERE s.title = m.titlte AND m.director = ‘Berto’

tuple calculus:

 { t: theater | 3 s € schedule 3 m € movie [t(theater) =
s(theater) a s(title) = m(title) A m(director) = Berto]}

relational algebra:
Ttheater (schedule X Odir = Berto (mOVie))

Note: number of items in FROM clause = (number of joins + 1)

