relational algebra & calculus

Relational DB: The Origins

Frege: FO logic

Tarski: Algebra for FO

Codd: Relational databases

relational calculus

Relational Calculus (aka FO)

- Models data manipulation core of SQL Idea: specify "what" not "how"
- General form: {t | property (t)}
- property (t) is described by a language based on predicate calculus (first-order logic)

Relational Calculus Example

Display the movie table

In SQL

SELECT * **FROM** Movie

In words (making answer tuple explicit)

The answer consists of tuples m such that m is a tuple in Movie

Need to say

"tuple m is in relation R": $m \in R$

Relational Calculus Example

Find the directors and actors of currently playing movies

In SQL

SELECT m.Director, m.Actor **FROM** movie m, schedule s **WHERE** m.Title = s.Title

In words (making answer tuple explicit)

"The answer consists of tuples t s.t. there exist tuples m in movie and s in schedule for which t.Director = m.Director and t.Actor = m.Actor and m.Title = s.Title"

Need to say

"there exists a tuple x in relation R": $\exists x \in R$ Refer to the value of attribute A of tuple x: x(A) Boolean combinations

Relational Calculus Example

Find the directors and actors of currently playing movies

Need to say

```
"there exists a tuple x in relation R": \exists x \in R
Refer to the value of attribute A of tuple x: x(A)
Boolean combinations
```

In logic notation (tuple relational calculus)

```
{ t: Director, Actor | \exists m \in movie \exists s \in schedule [ t(Director) = m(Director) \land t(Actor) = m(Actor) \land m(Title) = s(Title) ] }
```

Quantifiers

 \exists m \in R: Existential quantification "there exists some tuple m in relation R"

```
Sometimes need to say:
```

"for every tuple m"

e.g., "every director is also an actor"

Need to say:

"for every tuple m in movie there exists a tuple t in movie Such that m.Director = t.Actor"

 \forall m \in movie \exists t \in movie [m(Director) = t(Actor)]

(The answer to this query is true or false)

∀ m ∈ R: Universal quantification "for every tuple m in relation R"

Tuple Relational Calculus

- In the style of SQL: language talks about tuples
- What you can say:
 - Refer to tuples: tuple variables t, s, ...
 - A tuple t belongs to a relation R: t∈R
 - Conditions on attributes of a tuple t and s:
 - $t(A) = (\neq)(\geq)$ constant
 - t(A) = s(B)
 - $t(A) \neq s(B)$
 - etc.
- Simple expressions above: atoms

Tuple Relational Calculus

Combine properties using Boolean operators

```
\wedge, \vee, \neg (abbreviation: p \rightarrow q \equiv \neg p \vee q)
```

Quantifiers

there exists: $\exists t \in R \varphi(t)$

for every: $\forall t \in R \ \phi(t)$

where $\varphi(t)$ a formula in which t not quantified (it is "free")

More on quantifiers

- Scope of quantifier: scope of ∃t ∈ R φ(t) is φ scope of ∀t ∈ R φ(t) is φ
- Free variable: not in scope of any quantifier free variables are the "parameters" of the formula
- Rule: in quantification ∃t ∈ R φ(t), ∀t ∈ R φ(t)
 t must be free in φ

Quantifier Examples

```
{ t: Director, Actor | \exists m \in movie \exists s \in schedule [ t(Director) = m(Director) \land t(Actor) = m(Actor) \land m(Title) = s(Title) ] } [ t(Director) = m(Director) \land t(Actor) = m(Actor) \land m(Title) = s(Title) ] free: t, m, s  \exists s \in schedule [ t(Director) = m(Director) \land t(Actor) = m(Actor) \land m(Title) = s(Title) ] free: t, m
```

```
\exists m \in movie \exists s \in schedule 
[t(Director) = m(Director) \land t(Actor) = m(Actor) \land m(Title) = s(Title)] 
free: t
```

Example in predicate logic

A statement about numbers:

$$\exists x \forall y \forall z [x = y * z \longrightarrow ((y = 1) \lor (z = 1))]$$

"there exists at least one prime number x"

A "query" on numbers:

$$\varphi(x)$$
: $\forall y \forall z [x = y * z \longrightarrow ((y = 1) \lor (z = 1))]$

This defines the set $\{x \mid \varphi(x)\}\$ of prime numbers. It consists of all x that make $\varphi(x)$ true.

Semantics of Tuple Calculus

Active domain:

A set of values in the database, or mentioned in the query result. Tuple variables range over the active domain

Note:

A query without free variables always evaluates to true or false

e.g., "Sky is by Berto" is expressed without free variables:

 $\exists m \in movie [m(title) = "Sky" \land m(director) = "Berto"]$

This statement is true or false

Tuple Calculus Query

 $\{t: <att> | \varphi(t)\}$

where ϕ is a calculus formula with only one free variable t produces as answer a table with attributes <att> consisting of all tuples \mathbf{v} in active domain with make $\phi(\mathbf{v})$ true

Note:

 $\varphi(v)$ has no free variables so it evaluates to true or false

Find titles of currently playing movies

select Title **from** Schedule

Find the titles of all movies by "Berto"

select Title
from Movie
where Director="Berto"

Find the titles and the directors of all currently playing movies

select Movie.Title, Director
from Movie, Schedule
where Movie.Title = Schedule.Title

Find titles of currently playing movies

```
{t: title | ∃s ∈schedule [s(title) = t(title)]}
```

Find the titles of all movies by "Berto"

```
\{t: titlel \exists m \in movie [m(director) = "Berto" \land t(title) = m(title)]\}
```

Find the titles and the directors of all currently playing movies

```
{t: title, director | \existss \inschedule \existsm \in movie [s(title) = m(title) \land t(title) = m(title) \land t(director) = m(director)]}
```

Find actors playing in every movie by Berto

```
{a: actor | \exists y \in movie [a(actor) = y(actor) \land \\ \forall m \in movie [m(director) = "Berto" <math>\rightarrow \exists t \in movie (m(title) = \\ t(title) \land t(actor) = y(actor))]]}
```

```
Is the following correct?

{a: actor | ∃y ∈ movie [a(actor) = y(actor) ∧

∀m ∈ movie [m(director) = "Berto" ∧ ∃t ∈ movie (m(title) = t(title) ∧ t(actor) = y(actor))]]}

A: YES B: №
```

Find actors playing in every movie by Berto

```
{a: actor | \exists y \in \text{movie } [a(actor) = y(actor) \land \\ \forall m \in \text{movie } [m(director) = \text{``Berto''} \rightarrow \exists t \in \text{movie } (m(title) = \\ t(title) \land t(actor) = y(actor))]]}
```

Typical use of \forall :

```
\forall m \in R [ filter(m) \rightarrow property(m)]
```

Intuition: check property(**m**) for those **m** that satisfy filter(**m**) we don't care about the **m**'s that do not satisfy filter(**m**)

Find actors playing in every movie by Berto

```
{a: actor | \exists y \in movie [a(actor) = y(actor) \land \\ \forall m \in movie [m(director) = "Berto" <math>\rightarrow \exists t \in movie (m(title) = \\ t(title) \land t(actor) = y(actor))]]}
```

```
Is this correct? 
{a: actor | \exists y \in movie [a(actor) = y(actor) \land \\ \forall m \in movie \exists t \in movie [m(director) = "Berto" \rightarrow (m(title) = t(title) \land t(actor) = y(actor))]]}

A: YES B: NO
```

```
Is this correct?

{a: actor | \exists y \in movie [a(actor) = y(actor) \land \\ \forall m \in movie \exists t \in movie [m(director) = "Berto" \rightarrow (m(title) = t(title) \land t(actor) = y(actor))]]}
```

A: ★S B: NO

Is the following correct: $\exists t \ (\phi \land \psi) = \exists t \phi \land \exists t \psi$ A: YES B: NO

Correct:

```
{a: actor | \exists y \in \text{movie } [a(\text{actor}) = y(\text{actor}) \land \\ \forall m \in \text{movie } \exists t \in \text{movie } [m(\text{director}) = \text{``Berto''} \rightarrow (m(\text{title}) = t(\text{title}) \land t(\text{actor}) = y(\text{actor}))]]}
```

```
∃t ∈ movie [m(director) = "Berto" \rightarrow (m(title) = t(title) \land t(actor) = y(actor))] = 

∃t ∈ movie [\negm(director) = "Berto" \lor (m(title) = t(title) \land t(actor) = y(actor))] = 

[∃t ∈ movie (\negm(director) = "Berto") \lor ∃t ∈ movie (m(title) = t(title) \land t(actor) = y(actor))] = 

[\negm(director) = "Berto" \lor ∃t ∈ movie (m(title) = t(title) \land t(actor) = y(actor))] = 

[m(director) = "Berto" \rightarrow ∃t ∈ movie (m(title) = t(title) \land t(actor) = y(actor))]
```

Correct:

```
{a: actor | \exists y \in \text{movie } [a(\text{actor}) = y(\text{actor}) \land \\ \forall m \in \text{movie } \exists t \in \text{movie } [m(\text{director}) = \text{``Berto''} \rightarrow (m(\text{title}) = t(\text{title}) \land t(\text{actor}) = y(\text{actor}))]]}
```

Is this also correct (can we switch \forall and \exists)?

```
{a: actor | \exists y \in movie [a(actor) = y(actor) \land \exists t \in movie \forall m \in movie [m(director) = "Berto" \rightarrow (m(title) = t(title) \land t(actor) = y(actor))]]}
```

A: YES B: XO

Tuple Calculus and SQL

Example:

"Find theaters showing movies by Bertolucci":

SQL:

```
SELECT s.theater

FROM schedule s, movie m

WHERE s.title = m.title AND m.director = "Bertolucci"
```

tuple calculus:

```
{ t: theater | \exists s \in schedule \exists m \in movie [ t(theater) = s(theater) \land s(title) = m(title) \land m(director) = Bertolucci ]}
```

Basic SQL Query

SQL

SELECT A₁, ..., A_n
 FROM R₁, ..., R_k
 WHERE cond(R₁, ..., R_k)

Tuple Calculus

- $\{t: A_1, ..., A_n \mid \exists r_1 \in R_1 ... \exists r_k \in R_k [\Lambda_j t(A_j) = r_{ij}(A_j) \land cond(r_1, ..., r_k)]\}$
- Note:
 - Basic SQL query uses only 3
 - No explicit construct for ∀

Using Tuple Calculus to Formulate SQL Queries

Example: "Find actors playing in every movie by Berto"

Tuple calculus

```
{a: actor | \exists y \in movie [a(actor) = y(actor) \land \\ \forall m \in movie [m(dir) = "Berto" <math>\rightarrow \exists t \in movie (m(title) = \\ t(title) \land t(actor) = y(actor))]]}
```

Eliminate ∀:

```
{a: actor | ∃y ∈ movie [a(actor) = y(actor) ∧
¬∃m ∈ movie [m(dir) = "Berto" ∧ ¬∃t ∈ movie (m(title) =
t(title) ∧ t(actor) = y(actor))]]}
```

• Rule: $\forall x \in R \ \varphi(x) = \neg \exists x \in R \ \neg \varphi(x)$

"every x in R satisfies $\phi(x)$ iff there is no x in R that violates $\phi(x)$ "

Convert to SQL query

Basic rule: one level of nesting for each "¬∃"

```
{a: actor | \existsy \in movie [a(actor) = y(actor) \land

\neg \existsm \in movie [m(dir) = "Berto" \land \neg \existst \in movie (m(title) = t(title)

\land t(actor) = y(actor))]]}
```

```
SELECT y.actor FROM movie y
WHERE NOT EXISTS

(SELECT * FROM movie m
WHERE m.dir = 'Berto' AND
NOT EXISTS

(SELECT *
FROM movie t
WHERE m.title = t.title AND t.actor = y.actor ))
```

Another possibility (with similar nesting structure)

```
SELECT actor FROM movie
WHERE actor NOT IN

(SELECT s.actor
FROM movie s, movie m
WHERE m.dir = 'Berto'
AND s.actor NOT IN

(SELECT t.actor
FROM movie t
WHERE m.title = t.title ))
```

 Note: Calculus is more flexible than SQL because of the ability to mix ∃ and ∀ quantifiers

relational algebra

Query Processing

3 steps:

- Parsing & Translation
- Optimization
- Evaluation

Simple set of algebraic operations on relations

- We use set semantics (no duplicates) and no nulls
- There are extensions with bag semantics and nulls

Projection

Eliminate some columns

 $\pi_X(R)$

Display only attributes X of relation R

where R: table name & $X \subseteq attributes(R)$

Example:

Find titles of current movies

 $\pi_{TITLE}(SCHEDULE)$

Projection

Eliminate some columns

$$\pi_X(R)$$

Display only attributes X of relation R

where R: table name & $X \subseteq attributes(R)$

Example:

$$\pi_{A}(R) = \begin{bmatrix} A & \pi_{AB}(R) = \begin{bmatrix} A & B \\ 0 & 1 \\ 0 & 2 \\ 1 & 3 \end{bmatrix}$$

No repetitions of tuples!

Selection

Compute set union

$$\sigma_{cond}(R)$$

Select tuples of R satisfying condition cond

where cond: condition involving only attributes of R (e.g., attr = value, attr ≠ value, attr1 = attr2, attr1 ≠ attr2, etc.)

Example:

$$\sigma_{A=0}(R) = \begin{bmatrix} A & B & C \\ 0 & 1 & 2 \\ 0 & 2 & 2 \\ 0 & 1 & 3 \end{bmatrix}$$

$$\sigma_{B=C}(R) = \begin{array}{c|ccc} A & B & C \\ \hline 0 & 2 & 2 \end{array}$$

Selection

Compute set union

$$\sigma_{cond}(R)$$

Select tuples of R satisfying condition cond

where cond: condition involving only attributes of R (e.g., attr = value, attr ≠ value, attr1 = attr2, attr1 ≠ attr2, etc.)

Example:

R	Α	В	С
	0	1	2
	0	2	2
	1	3	1
	0	1	3

Union

Compute set union

RUS

Union of sets of tuples in R and S

where R, S: tables with same attributes

Example:

Relational Algebra Difference

Compute set difference

R-S

Difference of sets of tuples in R and S

where R, S: tables with same attributes

Example:

$$R - S = \begin{bmatrix} A & B \\ \alpha & 1 \\ \beta & 1 \end{bmatrix}$$

Join

Compute join

RMS

Natural Join of R, S

where R, S: tables

Example:

$$R \bowtie S = A B C$$

Note: More than one common attributes allowed!

Join

Compute join

RMS

Natural Join of R, S

where R, S: tables

Example:

R	Α	В
	0	1
	0	2
	5	3

Definition of Join

Let r and s be relations on schemas R and S respectively. Then, $r\bowtie s$ is a relation with attributes $att(R) \cup att(S)$ obtained as follows:

Consider each pair of tuples t_r from r and t_s from s.

If t_r and t_s have the same value on each of the attributes in att(R) \cap att(S), add a tuple t to the result, where

- t has the same value as t_r on r
- t has the same value as t_s on s

Note: if $R \cap S$ is empty, the join consists of all combinations of tuples from R and S, i.e. their cross-product

Attribute Renaming

Rename attributes

$$\delta_{A1\rightarrow A2}(R)$$

Change name of attribute A1 in rel. R to A2

where R: relation and A1: attribute in R

Example:

Contents remain unchanged!

Note: Can rename several attributes at once

Basic set of operations:

$$\pi$$
, σ , \cup , -, \bowtie , δ

- Back to movie example queries:
 - 1. Titles of currently playing movies: $\pi_{TITLE}(schedule)$
 - 2. Titles of movies by Berto: $\pi_{TITIF}(\sigma_{DIR=BFRTO}(movie))$
 - 3. Titles and directors of currently playing movies: $\pi_{\text{TITLE, DIR}}$ (movie \bowtie schedule)

4. Find the pairs of actors acting together in some movie

$$\pi_{\text{actor1, actor2}}$$
 ($\delta_{\text{actor}} \rightarrow_{\text{actor1}}$ (movie) $\bowtie \delta_{\text{actor}} \rightarrow_{\text{actor2}}$ (movie))

5. Find the actors playing in every movie by Berto

In this case (not in general): Same as cartesian product

Cartesian Product

Compute cartesian product

R×S

Cartesian Product of R, S

where R, S: tables

Example:

R	Α	В
	0	1
	0	2

Α	В	С	D
0	1	1	2
0	1	1	3
0	2	1	2
0	2	1	3

Same as R⋈S, when R and S have no common attributes

Cartesian Product

Compute cartesian product

R×S

Cartesian Product of R, S

where R, S: tables

Example:

R	Α	В
	0	1
	0	2

S	Α	С
	1	2
	1	3

R.A	В	S.A	С
0	1	1	2
0	1	1	3
0	2	1	2
0	2	1	3

If 2 attributes in R, S have the same name A, they are renamed to R.A and S.A in the output

Other useful operations

- Intersection R ∩ S
- Division (Quotient) R ÷ S

 $R \div S$: {a | <a, b> $\in R$ for <u>every</u> b $\in S$ }

Example:

Α	В
0	α
0	β
1	α
1	β
1	Υ
2	α

$$R \div S = \begin{bmatrix} A \\ 0 \\ 1 \end{bmatrix}$$

Another Division Example

Find the actors playing in every movie by Berto

$$\pi_{\text{TITLE, ACTOR}}(\text{movie}) \div \pi_{\text{TITLE}}(\sigma_{\text{DIR=BERTO}}(\text{movie}))$$

Division by multiple attributes

Relations *r, s*:

r	Α	В	С	D	E
	α	а	α	а	1
	α	а	γ	а	1
	α	а	γ	b	1
	eta	а	γ	а	1
	$egin{array}{c} lpha \ lpha \ eta \ eta \ eta \ \gamma \end{array}$	a	γ	b	3
	γ	a	γ	а	1
	γ	a	γ	b	1
	γ	а	β	b	1

s	D	Ε
	a	1
	b	

r ÷ *s*:

Α	В	С
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	a a	γ

- Note:
 - π is like \exists "there exists"...
 - ÷ is like ∀ "for all"...
- Expressing ÷ using other operators:

$$R \div S = \pi_A(R) - \pi_A((\pi_A(R) \bowtie S) - R)$$

Similar to: $\forall x \varphi(x) \equiv \neg \exists x \neg \varphi(x)$

Calculus Vs. Algebra

- Theorem: Calculus and Algebra are equivalent
- Basic Correspondence:

Example

- "Find theaters showing movies by Bertolucci": SQL:
 - SELECT s.theater
 FROM schedule s, movie m
 WHERE s.title = m.title AND m.director = 'Berto' tuple calculus:
 - { t: theater | ∃ s ∈ schedule ∃ m ∈ movie [t(theater) = s(theater) ∧ s(title) = m(title) ∧ m(director) = Berto] }

```
relational algebra:
```

```
\pi_{\text{theater}} (schedule \bowtie \sigma_{\text{dir} = \text{Berto}} (movie))
```

Note: number of items in FROM clause = (number of joins + 1)