CSE 127: Introduction to Security

Lecture 17: Privacy and Anonymity

Nadia Heninger and Deian Stefan

UCSD

Fall 2019
Lecture outline

- Foundations of privacy
- Historical and current “crypto wars” in the US
- Privacy-enhancing technologies
 - PGP and modern encrypted messaging
 - Tor and anonymous communication
 - Privacy-respecting browsers (Tor, Firefox, Brave)
What is privacy and why do we care?

Various definitions of privacy:
- Secrecy
- Anonymity
- Solitude

Human rights and values:
- Human dignity
- Mental health
- Intimacy/relationships

Political and democratic values:
- Liberty of action
- Moral autonomy
The “crypto wars”: a historical look

• Crypto wars 1.0
 • Late 1970s,
 • US government threatened legal sanctions on researchers who published papers about cryptography.
 • Threats to retroactively classify cryptography research.

• Crypto wars 2.0
 • 1990s
 • Main issues: Export control and key escrow
 • Several legal challenges

• Crypto wars 3.0
 • Now
 • Snowden
 • Apple v. FBI
 • …?
 • Calls for “balance”
Reminder: US export controls on cryptography

- Pre-1994: Encryption software requires individual export license as a munition.
- 1994: US State Department amends ITAR regulations to allow export of approved software to approved countries without individual licenses. 40-bit symmetric cryptography was understood to be approved.
- 1996: Bernstein v. United States; California judge rules ITAR regulations are unconstitutional because “code is speech”
- 1996: Cryptography regulation moved to Department of Commerce.
- 2000: Department of Commerce loosens regulations on mass-market and open source software.
Third-Party Service Providers

Communications/network service providers (ISPs, Google, Facebook, etc.) can generally see all traffic or communications they handle.
Legal Requests to Service Providers

Under the Stored Communications Act (1986), the US government can compel service providers to turn over customer communications. Only requires a subpoena for “storage” or communications held longer than 180 days.
Bavarian raids

4 Jul, 2018

On June 20th, in order to gather data on a Riseup user, our fiscal sponsor in the EU was raided by the Bavarian police. This extreme overreach included raids on several homes, a hackerspace, a social center, and a lawyer’s office. The police took all the computers, cell phones, disks, and records that they could. Several people were arrested and are now out and safe. However, as a consequence of these raids, the police have filed a number of unrelated charges.

What caused the police-state to raise up its ugly head? In this case, the justification was a website created to organize against a rally of an extreme right political party. It seems in Bavaria, you cannot make a website that tries to get people to come protest neo-fascists without also offending the police. The website had a riseup.net email address listed for a contact, and knowing they cannot get information from Riseup, the police looked at Riseup’s donate page and found we accept donations in Europe through a non-profit organization (“Verein”) based in Germany called Zwiebelfreunde. They decided this meant that Riseup was run by this organization (it is not), and so aggressively targeted this organization.

What does this mean for you, dear Riseup user?

First, don’t panic. All your data stored by Riseup is still secure.

Second, if you donated to Riseup via our European IBAN mechanism then there is a good chance the German police now have a record of your bank account number, name, amount you donated, and the date of the donation.

Third, please join us in supporting our friends and allies at Zwiebelfreunde0. They are amazing and need your support. In the coming weeks, information will be posted to their website detailing ways that you can help.

In solidarity,
The Riseup Birds
End-to-end encryption and service providers

If a message is end-to-end encrypted, the service provider may not have the plaintext.
End-to-end encryption and service providers

\[
\text{Enc}_k(m), \text{Enc}_{\text{pub} \text{Bob}}(k) \rightarrow \text{ATT} \\
\text{Enc}_k(m), \text{Enc}_{\text{pub} \text{Bob}}(k) \leftarrow \text{search warrant}
\]

Alice \\
\[\text{Enck}(m), \text{Enc}_\text{pubBob}(k)\] \\
Bob

Law enforcement can always serve the customer with a search warrant for the decrypted communications.
End-to-end encryption and service providers

“Key escrow” or “backdoored encryption”

The US government has been asking service providers to design ways to overcome encryption for decades. Most reasonable proposals work something like this.
Pretty Good Privacy (PGP)

- Written by Phil Zimmermann in 1991
 - Response to US Senate bill requiring crypto backdoors (didn’t pass)
- Public key email encryption “for the masses”
 - Signatures, public key encryption, or sign+encrypt
- Key management
 - Public keyservers
 - Web of trust: users sign other users’ keys
- Grand jury investigated Zimmermann 1993–1996
 - No indictment issued, but was a subject for violating export controls
- Fundamental insight: Knowledge about cryptography is public. In theory citizens can circumvent government-mandated key escrow by implementing cryptography themselves.
Search results for '0xc7463639b2d7795e'

<table>
<thead>
<tr>
<th>Type</th>
<th>bits/keyID</th>
<th>cr. time</th>
<th>exp time</th>
<th>key expir</th>
</tr>
</thead>
<tbody>
<tr>
<td>pub</td>
<td>B2D7795E</td>
<td>2001-01-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sig</td>
<td>B2D7795E</td>
<td>2001-01-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sig</td>
<td>FAEBD5FC</td>
<td>2001-01-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sig</td>
<td>B2D7795E</td>
<td>2001-01-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sig</td>
<td>exp</td>
<td>2010-01-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sig</td>
<td>66A74B31</td>
<td>2001-01-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sig</td>
<td>66A74B31</td>
<td>2001-01-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sig</td>
<td>CF73EC4C</td>
<td>2001-01-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sig</td>
<td>CF73EC4C</td>
<td>2001-01-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sig</td>
<td>EEB63AB1</td>
<td>2001-01-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sig</td>
<td>F414952B</td>
<td>2001-01-07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sig</td>
<td>F414952B</td>
<td>2001-01-07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sig</td>
<td>0A791610</td>
<td>2001-01-07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sig</td>
<td>0A791610</td>
<td>2001-01-07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sig</td>
<td>4793C529</td>
<td>2001-02-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sig</td>
<td>EF881DEC</td>
<td>2001-03-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sig</td>
<td>EF881DEC</td>
<td>2001-03-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sig</td>
<td>D7C776BE</td>
<td>2001-03-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sig</td>
<td>EEB63AB1</td>
<td>2001-03-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sig</td>
<td>EEB63AB1</td>
<td>2001-03-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sig</td>
<td>BF67D2EB</td>
<td>2001-03-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sig</td>
<td>BF67D2EB</td>
<td>2001-03-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sig</td>
<td>BF67D2EB</td>
<td>2001-03-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sig</td>
<td>F491BD21</td>
<td>2001-04-13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sig</td>
<td>F491BD21</td>
<td>2001-04-13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sig</td>
<td>251F35C1</td>
<td>2001-04-20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Revocation key fingerprint: 3FC7 3204 1D23 E9EA 66DD B500 9C9D BC21 DF74 DC61

uid Philip R. Zimmermann <prz@mit.edu>

- Philip R. Zimmermann <prz@acm.org>
- Teun Niissen <teun.niissen@uvt.nl>
- Teun Niissen <teun.niissen@uvt.nl>
- Will Price <wprice@pgp.com>
- Will Price <wprice@pgp.com>
- Ron & Bes Vantreese <ron-bes@usa.net>
- Jeffrey I. Schiller <jis@gvy.net>
- Jeffrey I. Schiller <jis@gvy.net>
- Stale Schumacher Ytteborg <stale@hypnotech.com>
- Stale Schumacher Ytteborg <stale@hypnotech.com>
- Hugh Miller <hmiller@luc.edu>
- h3xx <h3x@phreaker.net>
- h3xx Secure Data
- Ron & Bes Vantreese <ron-bes@usa.net>
- Ron & Bes Vantreese <ron-bes@usa.net>
- Michael A. Haasley Jr. <mikehaasley@home.com>
- Michael A. Haasley Jr. <mikehaasley@home.com>
- Ben Paul Wise <bwise@ sito.ai.com>
- Marco Balmer <marco.balmer@calculus.ch>
“Never bring tequila to a key-signing party.”
PGP in the modern era

- PGP was built before modern cryptographic protocol design was properly understood.
- Numerous vulnerabilities
 - Outdated cipher choices
 - Doesn’t authenticate encryption with a MAC or authenticated encryption mode
- Commercialized in the 90s, most recently developed by Symantec
- GnuPGP and libgcrypt open source and quite widely used
 - Most experts unable to use PGP properly
If you want to be extra safe, check that there’s a big block of jumbled characters at the bottom.
Message Encryption since PGP

• For messaging, Signal, WhatsApp, or iMessage offer modern end-to-end encryption.

• Modern protocols typically:
 • Use Diffie-Hellman to negotiate ephemeral keys
 • Use long-term authentication keys with out-of-band fingerprint verification
 • Offer “forward secrecy”:
 • In theory, protects against key compromise at time t revealing plaintext of previous messages
 • If sender or recipient store plaintext, this is more likely point of compromise
 • Offer “deniability”:
 • Message recipient can verify message integrity without a third party being able to “cryptographically prove” that sender sent the message.
 • Cryptographically interesting, but likely legally irrelevant.
Crypto Wars 2.0

In the current debates about government-mandated weakening of cryptography, there are two scenarios of interest:

- **Message encryption.**
 - This is what we’ve talked about so far in lecture.

- **Storage encryption.**
 - For example, unlocking iPhones.
 - This is what the Apple v. FBI case was about.

In Apple v. FBI, the question was whether the government could compel Apple to break their own encryption mechanism with the All Writs Act. The government backed down and reportedly used a specialty consulting firm to unlock the phone.
1. Pursuant to a warrant of this Court, Apple shall provide reasonable technical assistance to assist law enforcement agents in obtaining access to the data on the SUBJECT DEVICE.

2. Apple's reasonable technical assistance shall accomplish the following three important functions: (1) it will bypass or disable the auto-erase function whether or not it has been enabled; (2) it will enable the FBI to submit passcodes to the SUBJECT DEVICE for testing electronically via the physical device port, Bluetooth, Wi-Fi, or other protocol available on the SUBJECT DEVICE; and (3) it will ensure that when the FBI submits passcodes to the SUBJECT DEVICE, software running on the device will not purposefully introduce any additional delay between passcode attempts beyond what is incurred by Apple hardware.

3. Apple's reasonable technical assistance may include, but is not limited to: providing the FBI with a signed iPhone Software file, recovery bundle, or other Software Image File ("SIF") that can be loaded onto the SUBJECT DEVICE. The SIF will load and run from Random Access Memory ("RAM") and will not modify the iOS on the actual phone, the user data partition or system partition on the device's flash memory. The SIF will be coded by Apple with a unique identifier of the phone so that the SIF would only load and execute on the SUBJECT DEVICE. The SIF will be loaded via Device Firmware Upgrade ("DFU") mode, recovery mode, or other applicable mode available to the FBI.
Anonymity

Michael Hayden, former NSA director: “We kill people based on metadata.”

- Long history of anonymous communication in US democracy
- e.g. Revolutionary war anonymous political pamphlets

Technical question: Is anonymous communication still feasible on the internet?
“Anonymity” via tunneling or proxies

A proxy can rewrite metadata. Examples:
- Early “anonymous remailers” forwarded email.
- VPN services allow users to tunnel traffic
"Anonymity" via tunneling or proxies

One-hop proxies have a single point of failure, must see both sides of communication.
Attempt to fix: Anonymous bulletin boards
Post message encrypted to recipient in public; recipient tries to decrypt all messages.

Bulletin board host still has metadata from visitors.
Tor: Anonymous communication for TCP sessions

Desired properties:

- Network attacker watching client traffic can’t see destination.
- Destination server does not see client IP address.
- Network nodes can’t link client and server.
- Fast enough to support TCP streams and network applications.

Current state: A nonprofit organization, active academic research, deployed around the world.

Not perfect, but a building block.
(U) What is TOR?

- (U) “The Onion Router”
- (U) Enables anonymous internet activity
 - General privacy
 - Non-attribution
 - Circumvention of nation state internet policies
- (U) Hundreds of thousands of users
 - Dissidents (Iran, China, etc)
 - (S//SI//REL) **Terrorists!**
 - (S//SI//REL) Other targets too!
(U) What is TOR?
(U) What is TOR?
(U) What is TOR?

- (U) TOR Browser Bundle
 - Portable Firefox 10 ESR (tbb-firefox.exe)
 - Vidalia
 - Polipo
 - TorButton
 - TOR
 - “Idiot-proof”
Tor also allows “anonymous” servers

Step 1: Bob picks some introduction points and builds circuits to them.
Tor also allows “anonymous” servers

Step 2: Bob advertises his service -- XYZ.onion -- at the database.
Tor also allows “anonymous” servers
Tor also allows “anonymous” servers

Onion Services: Step 4

Step 4: Alice writes a message to Bob (encrypted to PK) listing the rendezvous point and a one-time secret, and asks an introduction point to deliver it to Bob.
Tor also allows “anonymous” servers

Step 5: Bob connects to the Alice’s rendezvous point and provides her one-time secret.
Tor also allows “anonymous” servers

Step 6: Bob and Alice proceed to use their Tor circuits like normal.
Tor also allows “anonymous” servers

In practice, prominent “hidden services” deanonymized through real-world metadata, browser 0days, misconfigured servers.
Stinks (U)

CT SIGDEV

JUN 2012
Tor Stinks... (U)

- We will never be able to de-anonymize all Tor users all the time.
- With manual analysis we can de-anonymize a very small fraction of Tor users, however, no success de-anonymizing a user in response to a TOPI request/on demand.
b. On March 1, 2012, at approximately 5:03 p.m. CST, HAMMOND was seen leaving the CHICAGO RESIDENCE. Almost immediately after, CW-1 (in New York) contacted me to report that the defendant was offline. Pen/Trap data also reflected that TOR network activity and Internet activity from the CHICAGO RESIDENCE stopped at approximately the same time.

c. Later, also on March 1, 2012, at approximately 6:23 p.m. CST, HAMMOND was observed returning to the CHICAGO RESIDENCE. TOR network traffic resumed from the CHICAGO RESIDENCE approximately a minute or so later. Moreover, CW-1 reported to me that the defendant, using the online alias "yohoho," was back online at approximately the same time as physical surveillance in Chicago showed HAMMOND had returned to the CHICAGO RESIDENCE. New York FBI, through a program that remotely monitors the Internet activity of the buddy list on CW-1's jabber program, including when a "buddy" signs on and off, corroborated CW-1's report that the defendant, using "yohoho," was back online. Pen/Trap data reflected extensive TOR-related activity through the night.
8. In the course of this investigation, I have learned that the person who sent the e-mail messages described above took steps to disguise his identity. Specifically, Harvard received the e-mail messages from a service called Guerrilla Mail, an Internet application that creates temporary and anonymous e-mail addresses available free of charge. Further investigation yielded information that the person who sent the e-mail messages accessed Guerrilla Mail by using a product called TOR, which is also available free of charge on the Internet and which automatically assigns an anonymous Internet Protocol (“IP”) address that can be used for a limited period of time. Every computer attached to the Internet uses an IP address, which is a unique numerical identifier, to identify itself to other computers on the Internet and direct the orderly flow of electronic information between them. IP addresses typically consist of four numbers between 0 and 255 separated by periods (e.g., 216.239.51.99). Both TOR and Guerilla Mail are commonly used by Internet users seeking to communicate anonymously and in a manner that makes it difficult to trace the IP address of the computer being used.

9. Harvard University was able to determine that, in the several hours leading up to the receipt of the e-mail messages described above, ELDO KIM accessed TOR using Harvard’s wireless network.
Privacy on the web

- Companies like Google, Facebook, Twitter, Microsoft, Amazon, Target, Walmart, ... make a lot of money from tracking users.
- For some of these companies you are the product. So tracking you is their business.
Privacy on the web

- Companies like Google, Facebook, Twitter, Microsoft, Amazon, Target, Walmart, ... make a lot of money from tracking users.

- For some of these companies you are the product. So tracking you is their business.

- How do websites track users?
Privacy on the web

- Companies like Google, Facebook, Twitter, Microsoft, Amazon, Target, Walmart, ... make a lot of money from tracking users.
- For some of these companies you are the product. So tracking you is their business.

How do websites track users?
 - Third-party cookies: recall that cookies for trackme.com are sent with any request to trackme.com, even if you're on cnn.com.
Privacy on the web

• Companies like Google, Facebook, Twitter, Microsoft, Amazon, Target, Walmart, ... make a lot of money from tracking users.

• For some of these companies you are the product. So tracking you is their business.

• How do websites track users?
 • Third-party cookies: recall that cookies for trackme.com are sent with any request to trackme.com, even if you’re on cnn.com.
 • Tracking content: Sites include tracking code into URLs (e.g., advertisements, videos, marketing emails, etc.)
Privacy on the web

- Companies like Google, Facebook, Twitter, Microsoft, Amazon, Target, Walmart, ... make a lot of money from tracking users.
- For some of these companies you are the product. So tracking you is their business.

How do websites track users?
- Third-party cookies: recall that cookies for trackme.com are sent with any request to trackme.com, even if you’re on cnn.com.
- Tracking content: Sites include tracking code into URLs (e.g., advertisements, videos, marketing emails, etc.)
- Fingerprinting: sites profile your browser, extensions, OS, hardware, screen resolution, fonts you have installed, etc.
What can you do about this?

• Can’t really avoid these platforms (e.g., Facebook profiles you even if you don’t have an account).

• Use a browser that cares about your privacy (e.g., Firefox, The Tor Browser, Brave, Safari)

• Use privacy-enhancing browser extensions
Privacy-enhanced browsing (Firefox)

- **Standard**
 Balanced for protection and performance. Pages will load normally.

- **Strict**
 Stronger protection, but may cause some sites or content to break.

- **Custom**
 Choose which trackers and scripts to block.
 - Cookies
 - All third-party cookies (may cause websites to break)
 - Cross-site and social media trackers
 - Cookies from unvisited websites
 - Tracking cookies
 - Cryptominers
 - Fingerprinters

You will need to reload your tabs to apply these changes. [Reload All Tabs]

⚠️ **Heads up!**
Blocking trackers could impact the functionality of some sites. Reload a page with trackers to load all content. [Learn how]

Send websites a “Do Not Track” signal that you don’t want to be tracked. [Learn more]
- Always
- Only when Firefox is set to block known trackers
Privacy-enhanced browsing (Tor)

Security

Security Level
Disable certain web features that can be used to attack your security and anonymity.

Learn more

- **Standard**
 All Tor Browser and website features are enabled.

- **Safer**
 Disables website features that are often dangerous, causing some sites to lose functionality.
 JavaScript is disabled on non-HTTPS sites.
 Some fonts and math symbols are disabled.
 Audio and video (HTML5 media), and WebGL are click-to-play.

- **Safest**
 Only allows website features required for static sites and basic services. These changes affect images, media, and scripts.
 JavaScript is disabled by default on all sites.
 Some fonts, icons, math symbols, and images are disabled.
 Audio and video (HTML5 media), and WebGL are click-to-play.
Privacy-enhanced browsing (Brave & Safari)
Privacy-enchanting extensions

- Privacy Badger blocks trackers; uBlock Origin blocks ads; many others
Privacy-enchanting extensions

- Privacy Badger blocks trackers; uBlock Origin blocks ads; many others