Minimum Spanning Trees
and Union-Find

CSE 101: Design and Analysis of Algorithms
Lecture 7/

CSE 101: Design and analysis of algorithms

e Minimum spanning trees and union-find
— Reading: Section 5.1

e Quiz 1 is today, last 40 minutes of class
e Homework 3 is due Oct 23, 11:59 PM

How to implement Kruskal’s algorithm

Sort edges by weight, go through from smallest to largest,
and add if it does not create cycle with previously added
edges

How do we tell if adding an edge will create a cycle?
— Naive: depth-first search every time
* Need to test for every edge, m times

— Depth-first search on a forest: only edges added to minimum
spanning tree
e As such, each depth-first search is O(n) n=|V|
e Total time O(nm) m = [E|

Disjoint sets data structure (DSDS)

Main complication: want to check if u is connected to v efficiently
Tree T divides vertices into disjoint sets of connected components
u is connected to v if they are in the same set

Adding e to T merges the set containing u with the set containing v

So we need a data structure that

— Represents a partition of a set V into disjoint subsets

* We will pick one element L from each subset to be the “leader” of a subset, in
order to give the subsets distinct names

— Has an operation find(u) that returns the leader of u’s set

— Has an operation union(u,v) that replaces the two sets containing u
and v with their union

Kruskal’s algorithm using a DSDS

procedure kruskal(G,w)
Input: undirected connected graph G with edge weights w
Output: a set of edges X that defines a minimum spanning tree of G
forallvinV
makeset(v)
X={}
Sort the edges in E in increasing order by weight
For all edges (u,v) in E
if find(u) # find(v):
Add edge (u,v) to X
union(u,v)

Kruskal’s algorithm using a DSDS

procedure kruskal(G,w)
Input: undirected connected graph G with edge weights w
Output: a set of edges X that defines a minimum spanning tree of G
forallvinV
makeset(v)
X={}
Sort the edges in E in increasing order by weight
For all edges (u,v) in E until X is a connected graph
if find(u) # find(v):
Add edge (u,v) to X
union(u,v)

Trees

Definition: A tree is an undirected connected graph
with no cycles

An undirected connected graph is a tree if and only if
removing any edge results in two disconnected graphs

An undirected connected graph with n vertices is a tree
if and only if it has n -1 edges

An undirected connected graph is a tree if and only if
there is a unique path between nodes

CSE 101, Fall 2018 7

Kruskal’s algorithm using a DSDS

procedure kruskal(G,w)
Input: undirected connected graph G with edge weights w
Output: a set of edges X that defines a minimum spanning tree of G
forallvinV
makeset(v)
X={}
Sort the edges in E in increasing order by weight
For all edges (u,v) in E until | X| =|V]| -1
if find(u) # find(v):
Add edge (u,v) to X
union(u,v)

Kruskal’s algorithm using a DSDS

procedure kruskal(G,w)
Input: undirected connected graph G with edge weights w
Output: a set of edges X that defines a minimum spanning tree of G
forallvinV
makeset(v)
X={}
Sort the edges in E in increasing order by weight ~ sort(|E[)
For all edges (u,v) in E until |X]| = |V] -1
if find(u) # find(v):
Add edge (u,v) to X
union(u,v) (|V|-1) * union

|V] * makeset

2 * |E| * find

Kruskal’s algorithm, DSDS subroutines

e makeset(u)

— Creates a set with one element, u
e find(u)

— Finds the set to which u belongs
e union(u,v)

— Merges the sets containing u and v

e Kruskal’s algorithm
|V| * makeset +2 * |E| * find + (|V| - 1) * union + sort(|E|)

DSDS, leader version

Keep an array leader(u) indexed by element

In each array position, keep the leader of its
set

makeset(u): leader(u) = u
find(u): return leader(u)
union(u,v): set leader(x) = leader(u)

Example: DSDS, leader version

CSE 101, Fall 2018

12

Example: DSDS, leader version

4

> el £ |c
NG

€
A E |

\

%

™\

\
A [ALA

CSE 101, Fall 2018 13

DSDS, leader version

Keep an array leader(u) indexed by element

In each array position, keep the leader of its set
makeset(v): leader(u) = u, O(1)

find(u): return leader(u), O(1)

union(u,v): For each array position, if it is currently leader(v), then change
it to leader(u). O(|V|)

Kruskal’s algorithm
V| * makeset + 2 * |E| * find + (|V] - 1) * union + sort(|E|)
= [V[*0() +2x*|[E|*0() + (V] =1) *0(|V]) + sort(|E|)
=0(|V|?)

A more efficient implementation

 \We want to optimize DSDS for other uses as
well

e And it’s fun (right?)

DSDS, directed trees with ranks version

e Fach setis a rooted tree, with the vertices of
the tree labeled with the elements of the set
and the root the leader of the set

* To find, only need to go up to leader, so just
need parent pointer

 To union, point one leader to other

DSDS, directed trees with ranks version

Vertices of the trees are elements of a set and each
vertex points to its parent that eventually points to the
root

The root points to itself

The root is a convenient representation or name of the
set containing it and all of its children

In addition to the parent pointer of x, m(x), each
vertex also has a rank that tells you the height of the
subtree hanging from that vertex

Directed trees with ranks

CSE 101, Fall 2018

18

Directed trees with ranks

CSE 101, Fall 2018

rank(A)=1
rank(B)=0
rank(C)=0
rank(D)=2
rank(E)=0
rank(F)=0
rank(G)=1

233333835

SIJESSZE
RN
OEX2TDNTD

19

DSDS, directed trees with ranks version

procedure makeset(x)
m(x):=x
rank(x):=0

DSDS, directed trees with ranks version

procedure find(x)
while (x 7+ TL’(JC)) Goes up parent pointers until root is found
x:=1m(x)
return X

DSDS, directed trees with ranks version

procedure union(x,y)
rx:=find(x)
ry:=find(y)
if rx=ry then return
if rank(rx)>rank(ry) then

n(ry):=rx
else
n(rx):=ry

if rank(rx)=rank(ry) then
rank(ry):=rank(rx)+1

DSDS, directed trees with ranks version

procedure union(x,y)
rx:=find(x)
ry:=find(y)
if rx=ry then return
if rank(rx)>rank(ry) then

n(ry):=rx
else
n(rx):=ry

if rank(rx)=rank(ry) then
rank(ry):=rank(rx)+1

To save on runtime, we must keep
the heights of the trees short
As such, union of two ranks points
the smaller rank to the bigger rank,
that way, the tree will stay the same
height
If the ranks are equal, then it
increments one rank and points the
smaller to the bigger

e Thisis the only way a rank can

increase

DSDS, directed trees with ranks version

°* union

A/ KR
RS

CSE 101, Fall 2018 24

DSDS, directed trees with ranks version

procedure makeset(x) procedure union(x,y)
m(x):=x rx:=find(x)
rank(x):=0 ry:=find(y)
if rx=ry then return
procedure find(x) if rank(rx)>rank(ry) then
while (x +* n(x)) n(ry):=rx
x:=m(x) else
return x m(rx):=ry

makeset O(1)
find O(height of tree containing x)
union O(find)

if rank(rx)=rank(ry) then
rank(ry):=rank(rx)+1

Example: DSDS, directed trees with ranks version

(A,D)=1
(E,G)=1
(A,B)=2
(A,C)=2
(B,C)=2
(B,E)=2
(D,G)=2
(D,E)=3
(E,F)=4
(FG)=4

CSE 101, Fall 2018

26

Example: DSDS, directed trees with ranks version

GfG @7
@ -
e Fle R &
G |F |G R @
Golon / .

Height of tree

 Any root node of rank k has at least 2% vertices in
its tree

e Proof

— Base Case: a root of rank 0 has 1 vertex

— Suppose a root of rank k has at least 2% vertices in its
tree. Then, a root of rank k+1 can only be made by
unioning 2 roots each of rank k. So, a root of rank k+1
must have at least 2% + 2% = 2k*1yertices in its tree.

Next lecture

* Greedy algorithms

— Reading: Kleinberg and Tardos, sections 4.1, 4.2,
and 4.3

