Minimum Spanning Trees and Union-Find

CSE 101: Design and Analysis of Algorithms
Lecture 7

CSE 101: Design and analysis of algorithms

- Minimum spanning trees and union-find
 - Reading: Section 5.1
- Quiz 1 is today, last 40 minutes of class
- Homework 3 is due Oct 23, 11:59 PM

How to implement Kruskal's algorithm

- Sort edges by weight, go through from smallest to largest, and add if it does not create cycle with previously added edges
- How do we tell if adding an edge will create a cycle?
 - Naive: depth-first search every time
 - Need to test for every edge, m times
 - Depth-first search on a forest: only edges added to minimum spanning tree
 - As such, each depth-first search is O(n) n = |V|m = |E|
 - Total time O(nm)

Disjoint sets data structure (DSDS)

- Main complication: want to check if u is connected to v efficiently
- Tree T divides vertices into **disjoint sets** of connected components
- u is connected to v if they are in the same set
- Adding e to T merges the set containing u with the set containing v
- So we need a data structure that
 - Represents a partition of a set V into disjoint subsets
 - We will pick one element L from each subset to be the "leader" of a subset, in order to give the subsets distinct names
 - Has an operation find(u) that returns the leader of u's set
 - Has an operation union(u,v) that replaces the two sets containing u and v with their union

Kruskal's algorithm using a DSDS

```
procedure kruskal(G,w)
Input: undirected connected graph G with edge weights w
  Output: a set of edges X that defines a minimum spanning tree of G
for all v in V
  makeset(v)
X = { }
Sort the edges in E in increasing order by weight
For all edges (u,v) in E
  if find(u) ≠ find(v):
   Add edge (u,v) to X
   union(u,v)
```

Kruskal's algorithm using a DSDS

```
procedure kruskal(G,w)
Input: undirected connected graph G with edge weights w
  Output: a set of edges X that defines a minimum spanning tree of G
for all v in V
  makeset(v)
X = { }
Sort the edges in E in increasing order by weight
For all edges (u,v) in E until X is a connected graph
  if find(u) ≠ find(v):
   Add edge (u,v) to X
   union(u,v)
```

Trees

- Definition: A tree is an undirected connected graph with no cycles
- An undirected connected graph is a tree if and only if removing any edge results in two disconnected graphs
- An undirected connected graph with n vertices is a tree if and only if it has n -1 edges
- An undirected connected graph is a tree if and only if there is a unique path between nodes

Kruskal's algorithm using a DSDS

```
procedure kruskal(G,w)
Input: undirected connected graph G with edge weights w
  Output: a set of edges X that defines a minimum spanning tree of G
for all v in V
  makeset(v)
X = { }
Sort the edges in E in increasing order by weight
For all edges (u,v) in E until |X| = |V| - 1
  if find(u) ≠ find(v):
   Add edge (u,v) to X
   union(u,v)
```

Kruskal's algorithm using a DSDS

```
procedure kruskal(G,w)
Input: undirected connected graph G with edge weights w
Output: a set of edges X that defines a minimum spanning tree of G
for all v in V
makeset(v)
X = \{ \}
Sort the edges in E in increasing order by weight sort(|E|)
For all edges (u,v) in E until |X| = |V| - 1
if find(u) \neq find(v):
Add edge (u,v) to X
union(u,v) (|V| - 1) * union
```

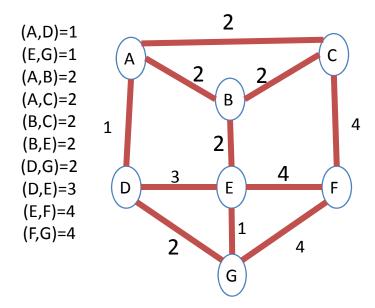
Kruskal's algorithm, DSDS subroutines

- makeset(u)
 - Creates a set with one element, u
- find(u)
 - Finds the set to which u belongs
- union(u,v)
 - Merges the sets containing u and v
- Kruskal's algorithm|V| * makeset + 2 * |E| * find + (|V| 1) * union + sort(|E|)

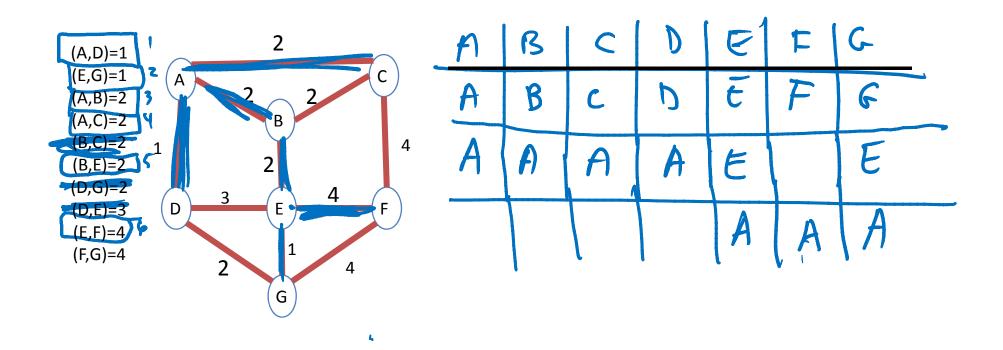
DSDS, leader version

- Keep an array leader(u) indexed by element
- In each array position, keep the leader of its set
- makeset(u): leader(u) = u
- find(u): return leader(u)
- union(u,v): set leader(x) = leader(u)

Example: DSDS, leader version



Example: DSDS, leader version



DSDS, leader version

- Keep an array leader(u) indexed by element
- In each array position, keep the leader of its set
- makeset(v): leader(u) = u, O(1)
- find(u): return leader(u), O(1)
- union(u,v): For each array position, if it is currently leader(v), then change
 it to leader(u). O(|V|)
- Kruskal's algorithm

```
|V| * makeset + 2 * |E| * find + (|V| - 1) * union + sort(|E|)
= |V| * O(1) + 2 * |E| * O(1) + (<math>|V| - 1) * O(|V|) + sort(|E|)
=O(|V|^2)
```

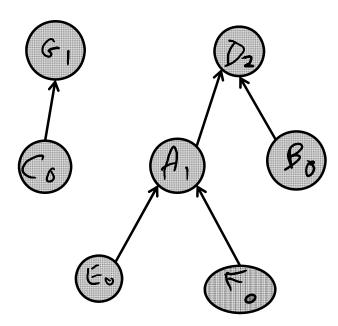
A more efficient implementation

- We want to optimize DSDS for other uses as well
- And it's fun (right?)

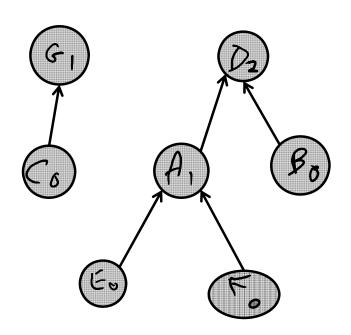
- Each set is a rooted tree, with the vertices of the tree labeled with the elements of the set and the root the leader of the set
- To find, only need to go up to leader, so just need parent pointer
- To union, point one leader to other

- Vertices of the trees are elements of a set and each vertex points to its parent that eventually points to the root
- The root points to itself
- The root is a convenient representation or name of the set containing it and all of its children
- In addition to the parent pointer of x, $\pi(x)$, each vertex also has a rank that tells you the height of the subtree hanging from that vertex

Directed trees with ranks



Directed trees with ranks



$$\pi(A) = D$$

$$\pi(B) = D$$

$$\pi(C) = G$$

$$\pi(D) = D$$

$$\pi(E) = A$$

$$\pi(F) = A$$

$$\pi(G) = G$$

procedure makeset(x)

$$\pi(x)$$
:= x

$$rank(x):=0$$

procedure find(x)

while
$$(x \neq \pi(x))$$

Goes up parent pointers until root is found

$$x := \pi(x)$$

return x

```
procedure union(x,y)

rx:=find(x)

ry:=find(y)

if rx=ry then return

if rank(rx)>rank(ry) then

\pi(ry):=rx

else

\pi(rx):=ry

if rank(rx)=rank(ry) then

rank(ry):=rank(ry)
```

```
procedure union(x,y)

rx:=find(x)

ry:=find(y)

if rx=ry then return

if rank(rx)>rank(ry) then

\pi(ry):=rx

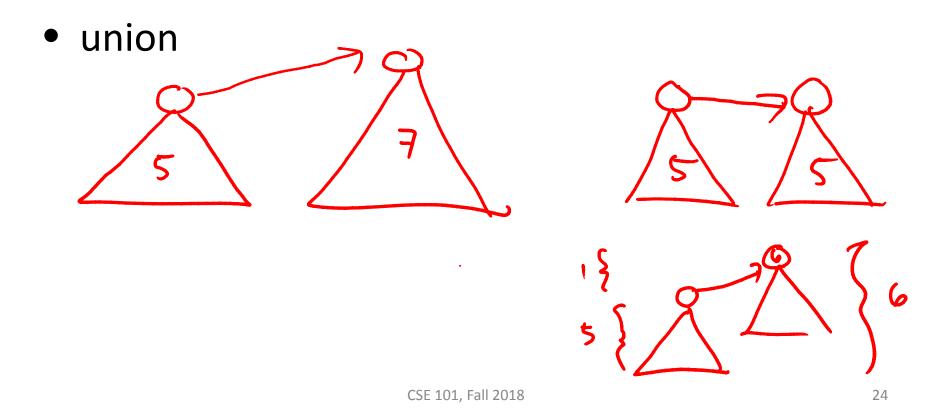
else

\pi(rx):=ry

if rank(rx)=rank(ry) then

rank(ry):=rank(ry)
```

- To save on runtime, we must keep the heights of the trees short
- As such, union of two ranks points the smaller rank to the bigger rank, that way, the tree will stay the same height
- If the ranks are equal, then it increments one rank and points the smaller to the bigger
 - This is the only way a rank can increase



```
procedure makeset(x) \pi(x) := x \operatorname{rank}(x) := 0 \operatorname{procedure find}(x) \operatorname{while} \left( x \neq \pi(x) \right) x := \pi(x) \operatorname{return} x \max \left( \text{Makeset O(1)} \right) \operatorname{find O(height of tree containing x)} \operatorname{union O(find)}
```

```
procedure union(x,y)

rx:=find(x)

ry:=find(y)

if rx=ry then return

if rank(rx)>rank(ry) then

\pi(ry):=rx

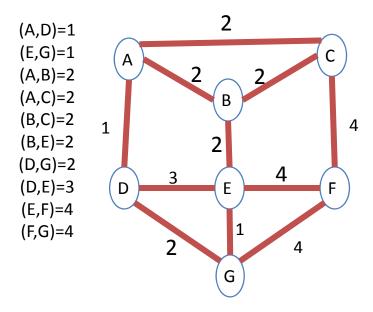
else

\pi(rx):=ry

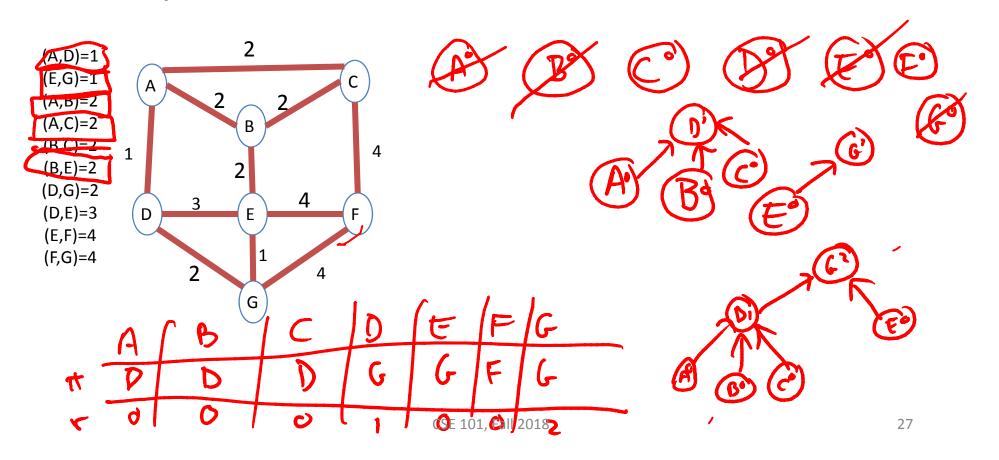
if rank(rx)=rank(ry) then

rank(ry):=rank(ry) then
```

Example: DSDS, directed trees with ranks version



Example: DSDS, directed trees with ranks version



Height of tree

- Any root node of rank k has at least 2^k vertices in its tree
- Proof
 - Base Case: a root of rank 0 has 1 vertex
 - Suppose a root of rank k has at least 2^k vertices in its tree. Then, a root of rank k+1 can only be made by unioning 2 roots each of rank k. So, a root of rank k+1 must have at least $2^k + 2^k = 2^{k+1}$ vertices in its tree.

Next lecture

- Greedy algorithms
 - Reading: Kleinberg and Tardos, sections 4.1, 4.2,
 and 4.3