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ABSTRACT

Given the abundance of online information available to mobile users,
particularly tourists and weekend travelers, recommender systems
that effectively filter this information and suggest interesting par-
ticipatory opportunities will become increasingly important. Previ-
ous work has explored recommending interesting locations; how-
ever, users would also benefit from recommendations for activi-
ties in which to participate at those locations along with suitable
times and days. Thus, systems that provide collaborative recom-
mendations involving multiple dimensions such as location, activ-
ities and time would enhance the overall experience of users.The
relationship among these dimensions can be modeled by higher-
order matrices called tensors which are then solved by tensor fac-
torization. However, these tensors can be extremely sparse. In this
paper, we present a system and an approach for performing multi-
dimensional collaborative recommendations for Who (User), What
(Activity), When (Time) and Where (Location), using tensor fac-
torization on sparse user-generated data. We formulate an objective
function which simultaneously factorizes coupled tensors and ma-
trices constructed from heterogeneous data sources. We evaluate
our system and approach on large-scale real world data sets con-
sisting of 588,000 Flickr photos collected from three major metro
regions in USA. We compare our approach with several state-of-
the-art baselines and demonstrate that it outperforms all of them.
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1. INTRODUCTION

Today’s smartphones come equipped with a multitude of sensors
such as GPS and increasingly-powerful computational, storage and
communication capabilities. These features have enabled smart-
phone applications to emerge across a variety of tourism-related
areas such as travel recommendations, location-based services, and
social suggestions. However, because information overload can be
a problem for mobile users, it is important that only relevant and
personalized information is presented. As a result, recommender
systems that suggest items of interest to mobile users based on con-
text and preferences have become increasingly popular.

Since the GPS embedded in smartphones can be used to accu-
rately localize a user, location has become the basis of many recom-
mender systems. These systems recommend interesting places or
landmarks for visit to mobile users, particularly tourists and week-
end travelers. However, in location recommendations, contextual
information such as time often plays an important role as certain
places are open only between fixed hours or can host certain activ-
ities at fixed times of a day or on fixed days in a week. In addition,
users who want suggestions or recommendations for places to visit
would also benefit from recommendations for activities to partici-
pate in at the location along with a suitable time of participation.
Here, activities refer to human lifestyle and recreational activities
such as shopping, dining, surfing etc. Users may even have specific
preferences for activities such as preferring outdoor rather than in-
door activities. For instance, at Pier 39 in San Francisco, a list
of all possible things that a tourist can do includes shopping, eat-
ing seafood at the various restaurants, riding the Venetian carousel,
watching the sea lions at the nearby dock or getting a view of the
Fourth of July fireworks display. However, all these activities hap-
pen at specific locations in Pier 39 and either in specific months, on
specific days or at specific hours. Thus, recommender systems that
generate collaborative recommendations involving multiple dimen-
sions such as location, time, activities, and user preferences etc.,
would enhance the overall experience of users and provide them
with the most helpful recommendations.

As a simplest formulation, recommender systems model prefer-
ences of users for items in the form of a utility matrix where rows
represent users, columns represent items and the values represent
the users’ ratings or preferences for those items on a scale of say,
1 to 5. The goal of the recommender system is then to impute
the missing values based on observed values in the matrix [26, 35]
using a standard approach such as collaborative filtering. User-
based collaborative filtering determines a subset of users most sim-
ilar to the current user and predicts the missing ratings based on a
weighted combination of the ratings provided by those other users
[26]. Likewise, item-based collaborative filtering [23] focuses on
predicting the missing ratings for items based on a weighted com-



bination of the ratings given by the current user to similar items,
where similarity between each pair of items is determined by the
similarity of the ratings of those items provided by the users who
have rated both items. Once the matrix has been completed (that
is, all missing values have been imputed) by these neighborhood-
based methods, a user can be given a recommendation list of ranked
items ordered by descending predicted ratings.

An alternative powerful methodology that has been used with
positive results in recommender systems is the latent factor model
[21], an approach that emerged from research fueled by the Netflix
prize'. Unlike neighborhood-based methods, latent factor models
assume that similarity between users and items is simultaneously
induced by some hidden lower-dimensional structure in the data.
Some of the most successful realizations of latent factor models
are based on matrix factorization, where users and items are simul-
taneously represented as unknown feature vectors (column vectors)
along k latent dimensions. These methods have become prominent
in recent years because they combine scalability with high predic-
tive accuracy. In addition, they offer more flexibility for modeling
practical scenarios where the data is very sparse.

In case of recommendations along a single dimension, the 2-
dimensional user X item matrix factorization model can be ap-
plied successfully. For instance, location recommendations can
be modeled as a user x location matrix and can be solved using
standard approaches to matrix factorization. However, to model
collaborative multi-dimensional recommendations involving loca-
tion, activity, time and other contextual information, the relation-
ship among the various dimensions is represented by higher-order
matrices called tensors. To address them, standard matrix factor-
ization approaches need to be generalized to tensor factorization.

Another major challenge in recommender systems is that, in prac-
tice, most users provide interest ratings for only a subset of the rec-
ommended items. For instance, a user will provide ratings for only
a subset of all possible locations. Moreover, as the number of di-
mensions increases, data sparsity increases and becomes a major
concern for systems that generate multi-dimensional recommenda-
tions from real-world datasets.

In this paper, we address these challenges and present a system
and an approach for performing multi-dimensional collaborative
recommendations for Who (User), What (Activity), When (Time)
and Where (Location), using tensor factorization on sparse user-
generated data. Our contributions in this paper are:

e We address n-dimensional collaborative recommendations
(where n > 4 and includes user, location, activity, time and
any other contextual information) by fusing data from multi-

ple sources such as Flickr (a photo sharing website), Foursquare

(a location based social network), Yelp (a crowd-sourced re-
views based website) and Viator (a travel website). While
our approach can be extended to any number of dimensions,
we make the work in this paper concrete by focusing on 4 di-
mensions and provide detailed discussion on how additional
dimensionality can be addressed.

e While most of the prior efforts in multi-dimensional recom-
mendations have been attempted using a single tensor, they
suffer from tensor sparsity. We present a novel solution to
this sparsity problem by formulating an objective function
that simultaneously factorizes coupled tensors and matrices
constructed from heterogeneous data sources. We then min-
imize this function using gradient descent.

e We evaluate our system and approach on large-scale real world
data sets consisting of 588,000 Flickr photos collected from
three major metro regions in the USA — the San Francisco
Bay Area, Las Vegas and Chicago. From this data, we ex-
tracted over 4900 users, 6100 locations, 120 activities, and

''http://www.netflixprize.com/
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96 time slots. The tensors constructed from these datasets
are 99.999% sparse.
e We compare our approach with several state-of-the-art base-
lines and demonstrate that it outperforms all of them.
e Our approach also demonstrates an improvement in runtime
without the need for sacrificing performance.
The rest of the paper is organized as follows: Section 2 reviews
related work in location and activity recommendations and tensor
factorizations applications to recommender systems. In Sections 3
and 4, we describe our datasets and the information inferred from
them. We explain our approach in Section 5 and present its eval-
uation and comparison with baselines in Section 6. Finally, we
conclude and outline future work in Section 7.

2. RELATED WORK

Since our work involves multi-dimensional recommendations for
location, activity and time using tensor factorization on extremely
sparse user-generated data, we have categorized the related work
into different sections. The first section covers existing literature in
location and activity recommendations while the second covers ex-
isting work in recommender systems using tensor factorization. We
differentiate our work from them and identify their shortcomings.

2.1 Location and Activity recommendations

Most of the existing literature has focused on recommendations
along one dimension (for instance, location). A few researchers
have explored collaborative location and activity recommendations.
To the best of our knowledge, none of the works have attempted
collaborative location, activity and time recommendations.

2.1.1 Photos as a data source

One of our main data sources for user locations are Flickr® pho-
tos. Many of the photos uploaded by users are geotagged, thereby
providing a wealth of geospatial data. These photos have been used
for many purposes, such as finding Point-of-Interest (POI) clusters
[36], identifying the location of photos from visual, textual, and
temporal features [9], determining when tourism is in season [12],
and creating routes that are pleasing to the user [30].

2.1.2 Location/Landmark/Venue recommendations

Previous researchers have investigated the problem of making
recommendations for geolocations that may be interesting to the
user [7, 24, 32]. Such approaches use large bodies of collected
geospatial data along with user preferences and then apply low-
dimensional recommendation algorithms.

2.1.3  Activity Recommendations

Even though users seek recommendations on what activities they
can engage in when they visit a place or at a given time, the area
of activity recommendation has not been researched extensively.
Recent research has focused on diurnal activity recognition from
smartphone sensory data [25] or from location [22]. Belotti et al.
[5] explored the idea of serendipitous activity based discovery of
venues and activities via the Magitti Mobile Leisure Guide. Duch-
eneaut et al. [11] experiment with several models such as collab-
orative filtering, preference-based, distance-based, and a weighted
combination of these to provide activity recommendations via Magitti.

2.1.4  Collaborative Location and Activity recommen-
dations

Co-occurring location and activity collaborative recommenda-
tions were proposed by Zheng et al. in [38] where they addressed
location recommendations given an activity, and activity recom-
mendations given a location. They used Collective Matrix Factor-

2 https://www.flickr.com/



Data Source Type of Data Dimensions extracted Volume of raw data extracted
Flickr Geotagged and Timestamped Photos | User, Location, Activity, Time 588,000 photos with 9 million words of text
Foursquare Location and POI database Location, Activity, Venue 274,000 locations with POI or venue information
Yelp Business and service reviews Activity 1060 service categories
Viator Things to do in tourist spots Activity 60 things to do categories

Table 1: Data fusion from heterogeneous data sources

ization (CMF) [33] to complete a sparsely populated 2-dimensional
Location X Activity matrix and evaluated their approach on 162
users with recommendations for 5 activities. CMF takes advantage
of correlations and sharing of information between data sets from
multiple sources and simultaneously factorizes coupled matrices. It
is shown to have achieved higher prediction accuracy than individ-
ual matrix factorization. Sattari et al. [31] used the same dataset
as Zheng et al. in [38] but employed Singular Value Decomposi-
tion (SVD) in place of CMF to complete the Location X Activity
matrix. Since SVD requires the matrix that needs to be decom-
posed to be fully populated, they padded it with zero values. They
demonstrated an improvement in performance over [38].

Zheng et al. [37] modeled user, location and activity data as
a 3-dimensional tensor and applied a regularized tensor and ma-
trix factorization approach for location and activity recommenda-
tions. They formulated a CANDECOMP/PARAFAC (CP) [15, 8]
decomposition style objective function and minimized it using gra-
dient descent. This decomposition factorizes a tensor into a linear
combination of component rank-one tensors. They evaluated their
approach on a dataset of 164 users, 168 locations and 5 activities.

Our work stands out from the existing literature in several ways:

e We use large user-generated datasets which involves several
thousand users and locations, and over a hundred popular
lifestyle, recreational and tourist activities.

e We incorporate dimensions of user’s context such as time in
addition to location and activities.

e As opposed to the manual approach for activity inference
from user comments that was employed in [38, 37], we pro-
pose an automated and unsupervised Natural Language Pro-
cessing (NLP) based algorithm (Section 4.2) which is more
robust and scalable to large real-world datasets.

e Moreover, a major limitation of using CP decomposition for
tensors is that it is not suitable for very sparse tensors and
demonstrates a sharp increase in error especially if more than
80% of the data is missing [2, 3]. Sparsity is a non trivial
issue for us as our multi-dimensional data is 99.999% sparse.
Hence, we propose our joint analysis and factorization based
approach to solve the problem.

2.2 Other applications of Tensor Factorization
to Recommender Systems

Symeonidis et al. [34] and Nanopoulos [28] applied Higher Or-
der Singular Value Decomposition (HOSVD) [10] to a 3rd order
tensor which represents users, items and tags in social tagging sys-
tems such as Last.fm and Bibsonomy. Karatzoglou et al. [18]
address multi-dimensional recommendations by incorporating con-
textual information to model a User-Item-Context tensor. They uti-
lize a sparse HOSVD style method that decomposes a D dimen-
sional sparse tensor into D matrices and a D dimensional tensor.
HOSVD is a generalization of the matrix SVD to a tensor. It as-
sumes a dense tensor and is not suitable for very sparsely populated
tensors. Moreover, unlike SVD, HOSVD may not provide the best
low rank approximation of a tensor [20].

Hidasi and Tikk [17] apply an Alternating Least Squares (ALS)
[19, 20] based tensor factorization approach for context-aware rec-
ommendations. ALS consists of three steps, each one being a con-
ditional update of one of the factor matrices, given the others. How-
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Region Photos | Users | Land Area (kmz)
San Francisco Bay Area | 280,045 | 7895 6053
Las Vegas 23,350 578 1818
Chicago 284,751 | 2423 1412

Table 2: Flickr.com raw dataset characteristics

ever, it suffers from several drawbacks: It has poor convergence for
sparse data [6] and is not scalable to large-scale data sets [2].

To address these limitations and perform multi-dimensional rec-
ommendations on large-scale and sparse user-generated datasets,
we formulate our recommendation model via the Coupled Matrix
and Tensor Factorization (CMTF) framework [1, 3]. CMTF is an
approach similar to CMF and proposes joint analysis of a matrix
and an N"™-order tensor with a common mode or dimension, where
the tensor is factorized using an R-component CP model and the
matrix is factorized by extracting R factors using matrix factoriza-
tion. CMTF is shown to have achieved better performance than
standard CP decomposition especially if more than 80% of the data
is missing [2, 3]. A variant of the CMTF approach [1, 2] performs
the joint analysis of the tensor and matrix by ignoring the missing
entries and fitting the tensor and/or the matrix model to the known
data entries only. This approach has been shown to easily scale to
handle very large data sets with up to 99% missing entries [2].

To this end, we model our multi-dimensional recommendation
problem as a joint analysis of a sparsely populated tensor with sev-
eral matrices which share one or more common modes with the ten-
sor. These tensors and matrices are constructed by fusing data for
the various dimensions (users, locations, activities and time) from
multiple data sources. This is a challenging task since data sets are
often incomplete and heterogeneous. We then factorize these ten-
sors and matrices simultaneously using a gradient descent-based
algorithm. As we show later in Section 6.5, our approach outper-
forms standard CP decomposition, HOSVD and ALS.

3. DATA

Table 1 summarizes the data sources, types of data, extracted
dimensions and the volume of raw data from each source. Our
primary dataset consists of 588,000 geotagged and timestamped
publicly-available photos from Flickr.com, a popular photo-sharing
website hosted in the USA. To obtain the data set, we searched
specifically for photos taken with smartphones so that we could get
the most accurate geospatial traces. Further, these photos spanned
the time period of September 1, 2009, to September 1, 2013 and
were taken from three major metro regions in the USA — the San
Francisco Bay Area, Las Vegas and Chicago. Table 2 shows the
characteristics of this dataset, while Figure 1 shows the geograph-
ical distribution of the photographs over the three regions. To im-
prove legibility of the figure so that individual photo locations can
be discerned, we sampled the number of photos down.

We extracted photos and their meta-content in JSON format us-
ing Flickr’s public REST based API. Each photograph is marked
with the user ID of the user who took it, geo-location in latitude
and longitude format representing where it was taken, and an epoch
timestamp representing when it was taken. We also extracted about
9 million words of user-generated text (including title, description,
tags or comments) for these photos. Note that less than 50% of the
photos are marked with any text. In addition, we also obtain POI or
Venue information for 274,000 locations in the three geographical



(b) Las Vegas

(c) Chicago
Figure 1: Geographical distribution of photos from San Francisco
Bay Area, Las Vegas and Chicago core regions. Map image tiles
were provided by Google, and waypoint placement was performed
using http://www.gpsvisualizer.com/.

regions from Foursquare®. Finally, we obtained information about
popular activities from Yelp* and things to do in tourist spots from
Viator’. We explain the inference and extraction of the various di-
mensions from the collected data in Sections 4 and 5.

4. INFERRING VARIOUS DIMENSIONS OF

INFORMATION FROM FLICKR PHOTOS

As mentioned earlier, photos on Flickr have meta-data that in-
cludes a user ID, timestamp, location and text. We now infer the
dimensions of user, location, activity and time from this meta-data.

4.1 Location Hashing

Our system relies on unique and discrete locations, but the Flickr
geotags are stated as continuous floating-point latitude and longi-
tude geocoordinate pairs. To discretize these values, we applied
Cartographic Sparse Hashing, our O(1) algorithm (shown in Algo-
rithm 1) that hashes a latitude and longitude pair into one of many
virtual rectangular grid bins formed throughout the geocoordinate
space. This algorithm takes as input (i) latitude and longitude as
64-bit floats and (ii) a bin resolution size r in meters as an integer.
It then outputs a 64-bit integer key representing the final virtual bin.
The algorithm leverages the fact that the latitude and longitude are
expressed in decimal degrees, with the fifth decimal place corre-
sponding roughly to 1 meter. Since this precision was acceptable
to us, we truncated each value to five decimal places. The func-
tion then produces the resulting integer key with the longitude and
latitude ending up in the high and low bits, respectively. This key

4
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Algorithm 1: Cartographic Sparse Hashing (CASH) algorithm

Input: latitude as 64-bit float, longitude as 64-bit float, grid
resolution 7 in meters

Output: Hash value hash Result as 64-bit integer

Trim latitude digits past Sth decimal position;

sigFig « 10°;

latitudeInt < (int)(latitude x sigFig);

Round down latitudelInt to be divisible by 7;

Repeat with longitude to produce longitudelnt;

hashResult < shiftHigh(longitudeInt) + latitudelnt,

return hashResult

Personal Life

> Reading_

Figure 2: Partial view of the Activity Hierarchy showing all depth
1 nodes and a few depth 2 nodes

Conversation
Recreation @

I

identifies a virtual bin approximately r meters per side, although
the bin will be elongated north-to-south for regions further away
from the equator due to the Earth’s curvature.

We experimented with 4 different location grid sizes - 300m,
500m, 700m and 1000m. These were determined based on the
venue density in each grid as well as human walking distance (as
people may often prefer to walk or use public transport). If the grid
size is too large, recommendations beyond a certain walking dis-
tance will not be helpful to the user. On the other hand, if the grid
size is too small, there may not be any venue or place to recom-
mend in the grid. We explain the selection of the appropriate size
based on performance in Section 6.3.

4.2 Activity Inference

Previous research in activity recognition [22, 25] focused on rec-
ognizing daily activities such as ‘walking’, ‘driving’, ‘biking’ etc.
from smartphone sensors such as the accelerometer and GPS. How-
ever, a real world recommender system should be capable of rec-
ommending a diverse set of activities to users in addition to such
diurnal activities. To address this, we employ an activity hierarchy
which consists of lifestyle, recreational and tourist activities for ac-
tivity recommendations.

Figure 2 shows a partial view of our Activity Hierarchy. We gen-
erated it by manually combining popular activities from the Yelp
category list, Viator things to do list, and the FourSquare venue
category hierarchy. Our hierarchy has a tree structure of depth 4
and contains 120 activity nodes including the root node ‘Personal
Life’. There are 4 high-level (depth 1) activities which branch out
into 15 coarse-grained activities (depth 2). All the high-level and
some of the coarse-grained activities that they include are shown
in Figure 2. Some of the coarse-grained activities at depth 2 are
further categorized into 28 fine-grained activities (depth 3) which
are further categorized into 128 leaf node activities. For instance,
the root node ‘Personal Life’ branches out into coarse-grained ac-
tivities including ‘Leisure’ which is further categorized into fine-
grained activities such as ‘Entertainment’ and Recreation’ etc. ‘En-
tertainment’ is further categorized into leaf node activities such as
‘Music’, ‘Movies’ and ‘Dance’. It is possible that a user is engaged
in an activity which is not present in our hierarchy. To address this,
we have a generic category ‘Other’ at each depth.

Inferring users’ activities from our data set is non-trivial and
challenging. Unlike previous research, we do not have labeled sen-
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Figure 3: Monthly, Weekly and Hourly distribution of photographs in the San Francisco Bay Area dataset

Algorithm 2: Activity inference from user-generated text

Input: Photo content items such as name, description, tag and
comments and Activity Hierarchy
Output: Inferred Activities
Remove stop words from each photo content item;
Concatenate the content items to generate a search query;
Perform a web search using the search query and retrieve the
text content of the top-most web search result;
Extract features such as named entities and types, document
categories and social tags from the text content;
foreach Activity in the Activity Hierarchy do
Compute SR scores between the features and the Activity;
MaxSRScore for each activity <— arg max (SR Score
between any of the features and the activity);
if MaxSRScore < SRihreshola then
‘ MaxSRScore < 0.0;
end
MAXMaxSRScore <— arg max (MaxSRScore);
if MAXMaxSRScore # 0 then
\ MaxActivities <— Activities with MAXMaxSRScore;
if MaxActivities = () then
MaxActivities +— Propagated photo labels based on
distance and time;
return MaxActivities;

sory data from users’ phones. Though all the photos in our dataset
are geotagged, a user could be engaged in several probable activi-
ties at a location. Also, less than 50% of the photographs are anno-
tated with user-generated photo content such as a detailed name or
a description, and even fewer photographs have tags or comments
which can provide some indication of the activity occurring when
the photograph was taken. In addition, crowd-sourcing the labeling
of activities (as done in [38, 37]) is not feasible for 588,000 photos.
To address these challenges, we propose an automated and un-
supervised NLP based algorithm (Algorithm 2) to infer a user’s ac-
tivity from user-generated text such as the photo content items. As
shown, we first remove all stop words from each photo content item
and concatenate the items. We then perform a web search query to
elucidate the meaning of the concatenated items and retrieve the
content of the top-most web search result. From this content, we
extract features such as named entities, document categories and
tags. These features are extracted using three NLP techniques:

e Named Entity Recognition - a subtask of information extrac-
tion that identifies names of persons, organizations etc. in a
given text or sentence

e Document Categorization - a task that classifies the subject
or topic of the text, and

e Social Tagging - the practice of generating tags or keywords
by users rather than experts to describe online content.
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For this feature extraction, we employ a tool called OpenCalais®
which can recognize up to 39 entities from the text. It also cate-
gorizes the text into one or more 18 document categories such as
Finance, Entertainment etc. In addition, it associates one or more
social tags with it. The use of these techniques ensures that a large
amount of world knowledge is exploited for feature extraction.

We then compute the Semantic Relatedness (SR) scores between
each activity and each feature extracted from the web content. SR
[14] is a metric for determining the similarity of two documents
or phrases based on their semantic meaning. It is normalized to
a value between 0 (little to no relatedness) and 1 (extremely high
relatedness). While there are several techniques and systems avail-
able for computing SR, we employ the Semantic Textual Similarity
(STS) system [13] for computing SR scores. STS is based on La-
tent Semantic Analysis (LSA) along with WordNet knowledge and
is trained on the LDC Gigawords and Stanford Webbase corpora.

For each activity, we store the maximum SR score (MaxSRScore)
between any of the features and the activity. If the MaxSRScore
for an activity is less than a threshold, we set it to 0.0, thereby re-
ducing noise and false positives. Since SR is a cosine similarity
measure, a threshold of 0.293 (1 - cos 45 °) is generally considered
an appropriate threshold, and we use that in our current implemen-
tation. Finally, we iterate over all the activities and select those
with the highest MaxSR scores. If a photo has no labeled activities,
we apply a simple label propagation technique to label it based on
its nearest neighbors (with respect to location and time). This ap-
proach is intuitive because if two consecutive photos are close in
time and location, it is highly probable that the user was perform-
ing the same activity in both.

To illustrate Algorithm 2 better, consider a photo which has been
tagged as ‘Brazen Wildcat Half’ by the user. This phrase by itself
does not convey any meaningful information about the user’s activ-
ity, but a web search for it reveals content such as ‘Brazen Wildcat
Half Marathon Racing.... From the web content text, we get fea-
tures such as ‘Trail Run’, ‘Athletics’ and ‘Recreation’ etc. Algo-
rithm 2 then maps these features to the activities: Sports, Running
and Recreation. From this, we can infer that the user was engaged
in these activities when the photo was taken.

4.3 Time hashing

Since each photo has a unique timestamp, the number of times-
tamps in our dataset is huge. To address this, we perform feature
hashing to hash the value of each timestamp to a timeslot. In order
to determine the granularity of timeslots, we analyzed the monthly,
weekly, daily and hourly distribution of photographs.

Figure 3(a) shows the distribution of photographs in the San
Francisco Bay Area dataset for months in a year (1= January until
12 = December). As evident, the number of photos varies with each
month. Clearly, July and December have the highest photo counts
as these months have the typical vacations of July 4th and Christ-
mas. We also analyzed the differences in weekdays and weekends.

® http://www.opencalais.com/



Grid Size r (m) # of unique hashed locations
San Francisco | Las Vegas | Chicago
300 7869 2747 5082
500 5565 1932 3665
700 4222 1475 2855
1000 2999 1058 2070

Table 3: Number of unique hashed locations in our 3 datasets

As shown in Figure 3(b), weekdays have a higher photo count.
We further considered the distribution of photographs at different
hours in a day. To this end, we divided a day into 4 hourly slots:
e Morning - hours between 6 am and 12 pm
e Afternoon - hours between 12 pm and 6 pm
e Evening - hours between 6 pm and 12 am
e Night - hours between 12 am and 6 am
As seen in Figure 3(c), the highest count of photographs is taken
in the afternoo.n Intuitively, the least number (5834) were taken at
night. Based on this analysis, we generated buckets of hashed time
slots. Since there are 12 months in a year, 2 types of days in a week
- weekday and weekend, and each day has 4 hourly slots, the total
number of hashed timeslots is 96. For each photo, we first convert
its epoch timestamp to a standard date time format which is then
hashed to a timeslot. For instance, a photo taken on August 19,
2013 at 2 pm will be hashed to “WeekDay_8_Afternoon’.

S. OUR JOINT ANALYSIS AND FACTOR-
IZATION BASED APPROACH

5.1 Data Modeling of various dimensions

After inferring the user, location, activity and time information
from the Flickr photos, the data in each dataset needs to be mod-
eled along the various dimensions of our multi-dimensional tensor.
These dimensions are:

e [ocation dimension - We first apply data filtering to reduce
noise. We retain only those unique hashed locations that have
been visited by at least u; users (where u; = 5), Thus, for
each unique hashed location present in our 3 datasets, we de-
termine the number of unique users from that dataset who
visited that location. We remove all locations that have < 5
unique users. We perform this thresholding mainly to elimi-
nate locations that can be residences of users or random spots
such as roads. Table 3 shows the final count of locations in
our datasets. The number of locations for each dataset varies
with the hashed grid size, where we note that we discern at
least 6127 locations in all with the largest grid size (1000m).
These correspond to the Location dimension of our tensor.

e User dimension - Once the final set of locations for each
dataset has been obtained, we use only those photographs
which have been taken at these locations. The corresponding
user IDs for these photographs represent the User dimension
of our tensor. Our final set of users consists of 2498 unique
users in the San Francisco Bay Area, 573 unique users in Las
Vegas and 1850 unique users in Chicago.

e Activity dimension - The 120 activities in our activity hierar-
chy represent the Activity dimension of our tensor.

e Time dimension - The 96 hashed time slots represent the
Time dimension of our tensor.

5.2 Constructing the tensors and matrices
We now construct a 4 dimensional tensor from these dimensions.

5.2.1 User x Location x Activity x Time tensor

The four dimensional (User, Location, Activity and Time) data
modeled from each of the Flickr datasets can be represented as a
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sparse tensor X € R**!Xa** where u is # of users, [ is # of loca-

tions, a is # of activities and ¢ is # of time slots. The ratings placed
into this tensor should represent the user’s interest for performing
a certain activity at a certain location at a certain time. However, in
our data set, users do not provide any explicit ratings. Hence, we
derive an implicit feedback [29] value normalized over [0.0, 1.0].
Each cell value of the tensor represents the frequency of the current
user being at the current location performing the current activity at
the current time. The counts are further normalized based on the
total number of data points (photographs) for each user.

Moreover, each user typically visits a small subset of the possible
locations at only a few of all the possible times and performs a frac-
tion of all the activities possible. Hence, our tensor is very sparse
and any given fiber will have only a few non-empty entries. After
this construction, the tensors from the 3 datasets have a density of
the order of 10~3%. Thus, the tensors are 99.999% sparse.

To supplement the sparse 4 dimensional tensor, we further con-
struct various 2-dimensional matrices which are coupled with the
tensor i.e. they involve one or more of these dimensions and thus,
share at least one mode in common with the tensor. We construct
them using data obtained from various other data sources.

5.2.2  Location x Activity Matrix

Knowing what activities occur in a given location can enable
inference of the activity a user is engaged in when he is at the lo-
cation. As mentioned earlier, even though all the photographs have
a geolocation, more than 50% of the photographs do not have any
photo content to indicate what activity the user could be engaged
in. Hence, this location-activity information can enable inference
of the most likely activity a user could be engaged in at a location.

To obtain this relationship for each activity in our hierarchy, we
query the Foursquare location database to find all the locations, in
each of our datasets, where that particular activity can occur. Thus,
for each location 1; in a dataset, we get an n-dimensional frequency
vector ¢; = [c1, C2 ... ¢p] for n activities (where n = 120). Each

. . C;i 4 . . .
¢;,; is normalized as ——Z—. From this information, we construct
_El Cij
=

a Location x Activity matrix Y € R"*® which contains normalized
counts for the activities that occur in each location.

5.2.3 Location x Venue Matrix

Activities typically occur at a venue or a POI such as a restaurant,
shopping mall, etc. For instance, a user would ‘Eat’ at a ‘Restau-
rant’ or ‘Shop’ at a ‘Shopping Mall’ in a location. Hence, the
knowledge of venues that are present in a location can be leveraged
to enable the inference of the user’s activity.

For each location in each of our datasets, we also obtain the
counts of different venues (from the Foursquare location database)
that are present in it. The venues belong to the Foursquare venue
hierarchy that includes 470 different types of venues such as restau-
rants, movie theaters etc. Thus, for each location I; in a dataset,
we get an m-dimensional frequency vector v; = [vy ... V] for m
venues (m = 470). Each v; ; is normalized as —4—. From this

22 Vij
i=

information, we construct a Location X Venue matrix J € R**?
which contains normalized counts for venues in each location.

5.2.4  Location x Location Similarity Matrix

The locations that have similar type and count of venues will host
similar activities. Hence, we employ the Location x Venue matrix
to compute the location similarity information. For each pair of
locations 1; and 1; in each dataset, we calculate the cosine simi-
larity between the venues vectors as sim(l;,l;) = Uil where

Moz llTvl
0 <sim(l;,l;) < 1. Using the location similarity information, we

construct a symmetric Location x Location matrix Z € R'*!,



5.2.5 Activity x Activity Correlation Matrix

Users may often have preferences for activities that are similar
and correlated. For instance, a user who likes sports might engage
in several different types of outdoor sports such as basketball, ten-
nis, etc. Hence, this knowledge of correlation between activities
can be exploited easily to further boost the information about the
kinds of activities a user could be interested in.

We use the SR metric (from Section 4.2) to compute correlation
between all the activities present in our hierarchy. For each pair
of activities a; and a; in our Activity hierarchy, we calculate the
SR score between their descriptions to get sim(a;,a;). For instance,
SR score between ‘Sailing” and ‘Surfing’ is 0.63, indicating that
they are correlated. This is intuitive as both are water sports. From
this correlation information, we construct a symmetric Activity x
Activity matrix S € R**?,

5.3 Objective function formulation

We now perform joint analysis of the constructed tensor and ma-
trices. We formulate an objective function that simultaneously fac-
torizes the main 4-dimensional tensor and the four 2-dimensional
coupled matrices that contain additional information. The tensor
is factorized using a CP model while the matrices are factorized
using matrix factorization. As discussed earlier, such an approach
achieves better performance than standard CP decomposition for
extremely sparse tensors. The objective function for our multi-
dimensional recommendation problem is:

F=Wx(X-UoLoAoT)|>+2L|Y —LAT|* +
NS — AATIP + 3 Z — LLT|* + 3 ITR|” +
S (U + LI + LA + |17)2)

Thus, the objective function comprises six summands and can
be written in the form F = F; + Fo + F3 + F4 + F5 + Fg. The six
summands and the terms and symbols that they include are:

e F; - The weighted least squares error term for the decompo-
sition of the 4 dimensional tensor X into the factor matrices
UeR“¥* LeR", AeR” and T € R*** where k is
the number of factors. W is a weight tensor € R**!¥@** and
indicates the missing entries in X such that:

w _ { 1 ifxu,,a,c is known

what = 0 if zy,,q, is missing
This term tries to minimize the loss in only the known entries
of the tensor.

e F5 - The least squares error term for the decomposition of the
2-dimensional matrix Y (containing the Location - Activity
information) into factor matrices L € R'** and A € R***.

e F3 - The least squares error term for the decomposition of the
2-dimensional symmetric matrix S (containing the Activity -
Activity correlation information) into the factor matrices A
€ R*** and its transpose AT € RF*¢,

e F,- The least squares error term for the decomposition of the
2-dimensional symmetric matrix Z (containing the Location
- Location correlation information) into the factor matrices L
€ RY™* and its transpose LT € RF*!,

e Fs - Regularization term for temporal smoothing. It lever-
ages the fact that human behavior in successive time periods
will be similar and will have a gradual variation. Hence, it
tries to reduce the error between consecutive time slots. R
is a bi-diagonal matrix € R*** with 1 on the main diagonal
and -1 on the diagonal above it.

e Fg - Regularization term to avoid overfitting.

e \; - \5 are model parameters.

e ||||? denotes the Frobenius norm, o denotes the outer product

In general, there is no closed form solution for F, so we use nu-
merical methods, such as gradient descent, to solve this problem.
By using the representations in [19], we take the first order deriva-
tives of F with respect to each of the factors to get the following:
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Algorithm 3: Gradient descent based algorithm

Input: Sparse tensor X& R**!X%Xt 2 D matrices Y € R'*® |
Z e R S € R*? | k and convergence criteria
Output: Complete tensor M € R¥*!xax?
for n = I:size(X) do
| Initialize U, L, A, T;

end
Initialize F, VyF, VLF, V4F and V7 F;
Seti=0;

while not converged do
Compute step length «;;
Compute the gradients VyF;, VL F;, VaF;, V1F;;
Uit1=U; - a;VuF;, Lit1 =Li - aVLFi, Aip1 = A -
OAVAFi, Ti+1 = Ti - aVTFZ-;
Compute F;y1;
end
M+ UoL
return M;

oAoT;

VoF= (WO - XOYT x A% L)+ AsU

ViF= (WP - XOYT % AxU)+ A (LAT -Y)A+ As(-Z-Z"
+2LLT)L + AsL

VAF= (W - XOYT «LxU)+ A(LAT - Y) 'L + X\o(- S -
ST +2AATA + \sA

VorF= (WY - XWYA %L+ U) + ATR + A5T

where W“) and X denotes the mode-i tensor unfolding or ma-
tricization 7 of W and X such that WP and XV ¢ Ru*!et w(2)
and X® ¢ R4t W3 and X&) e R**“* and W® and X
€ R*“¢ and « denotes the Khatri-Rao product.

5.4 Minimizing the objective function

We employ Algorithm 3, which uses gradient descent, to mini-
mize F and its gradient G. We implemented it in MATLAB using
the Tensor Toolbox [4]. As input, the algorithm takes the incom-
plete sparse tensor (X), the low dimensional matrices (Y, Z, and S),
the number of factors (k) as well as the stopping or convergence cri-
teria. The individual components (U, L, A, T) are initialized using
the n-mode singular vectors of X which span the subspace of the
mode-n fibers i.e. the left singular vectors of the n-mode matriciza-
tion of X. In each iteration, we first compute the step length using
the More-Thuente line-search method [27]. We then compute the
values of the gradients for the objective function and the compo-
nents, and update the objective function value by taking a step in
the direction of the gradient. The convergence criteria are set as:
F““l fi < 10710

G1+1 Gy —10
- <10

e Relative change in Function Value i.e.
e Relative change in Gradient Value i.e.

e Number of iterations i < 10°
Finally, when the algorithm converges, we obtain the complete
tensor M € R*“*!X@** by taking the outer product of the individual
components U, L, A and T.

5.5 Extending to N > 4 Dimensions

We note that while we have focused on N=4 dimensions for con-
creteness, we can extend the model to accommodate additional di-
mensions, without loss of generality, by performing data engineer-
ing and modifying the objective function. For instance, if we add
another contextual dimension such as users’ purchases, we can sup-
plement the sparse tensors and matrices with User x Purchases or
Location x Purchases matrix obtained from another data source.

7 Matricization is generation of the matrix representation of a ten-
sor in which all column or row matrices are stacked one after
another.
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Figure 4: Variation of RMSE for different values of A1 - A5 on the validation sets

We can then modify the objective function to include the purchases
dimension and employ Algorithm 3 to minimize it.

6. EVALUATION
6.1 Methodology

To evaluate the recommendations produced by our system, we
used the following methodology: we randomly split each of the
three datasets (from San Francisco Bay Area, Las Vegas and Chicago)
into training and testing sets with a 7:3 ratio, where we use the
training set for training and tuning the model parameters. We use
the held-out test set for computing the performance metrics over
the predicted and ground truth values. More formally, we define P
to be a test dataset containing n values. For each held out value €
P, y; denotes ground truth value and y; denotes predicted value.

6.2 Metrics

We use three standard performance metrics [16] for evaluating
the performance of our approach on a test set P:
e Root Mean Squared Error (RMSE) - RMSE is computed as

i (G —vi)?
i=1
n
errors and often places more emphasis on them. Hence, we
compute Mean Absolute Error (MAE) as well to evaluate the
performance of our approach.

. However, RMSE can be susceptible to large

> il
Mean Absolute Error (MAE) - MAE is computed as %
However, both RMSE and MAE may be less appropriate for
tasks where a ranked result is returned to the user, who then
only views items at the top of the ranking. For this, we com-
pute Normalized Discounted Cumulative Gain (nDCG).
Normalized Discounted Cumulative Gain (nDCG) - nDCG is
commonly used in information retrieval to measure a search
engine’s performance. A higher nDCG value for a list of
search results indicates that more relevant items were ranked
higher in the list. In particular, nDCG @p measures the rele-
vance of top p results and is defined as:

DCG@p

P
nDCG@p = 5zca> where DCG@p = rely + 3 mg:%’
i=2 5

iDCG@p is the DCG@p value of ideal ranking list and rel;
is a relevance value. nDCG ranges from O to 1. The higher
the nDCG value is, the better a ranking result list is.

6.3 Parameter Tuning

We performed parameter tuning via parameter-sweeping experi-
ments on the different training sets. We randomly split each train-
ing set into training and validation sets with a 4:1 ratio. We held out
the validation set and constructed the model using the training set
with different values for the model parameters, \; - A5, # of factors
(k) and location grid size ». We computed RMSE on the held out
validation sets and picked the parameter values that minimized it.
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A RMSE
Grid Size r (m) San Francisco | Las Vegas | Chicago
300 0.0217 0.0378 0.0170
500 0.0213 0.0376 0.0162
700 0.0222 0.0392 0.0175
1000 0.0224 0.0437 0.0186

Table 4: RMSE on validation set for various location grid sizes

6.3.1 Impact of model parameters

For tuning each individual parameter, we set the remaining pa-
rameters as 0.00001 in order to reduce their impact on the model
performance. We then ran the parameter-sweeping experiments 5
times for each parameter value and averaged the RMSE. Figure
4 shows the variation of RMSE for different values of the model
parameters for the 3 validation sets. As evident, the RMSE first
increases and later decreases as value of each parameter ( A1 - As)
increases. This is because when a parameter value is too small, the
model cannot fully utilize the information from the corresponding
matrix. On the other hand, if it is too large, then the information
from the matrix will dominate the objective function. After this
tuning, we set A1 = 1.0, A2 = 1.5, A3 = 0.5, Ay = 1.0 and A5 = 0.02.

6.3.2 Impact of number of factors

We varied the number of latent factors (k) from 10 to 50. How-
ever, we observed that the RMSE did not exhibit significant varia-
tion which implies that changing the number of factors did not have
a significant impact on performance, as also reported by Zheng et
al. [37, 38]. For our experiments, we set k = 30.

6.3.3 Impact of location grid size
Table 4 shows the RMSE for the 3 validation datasets for dif-
ferent location grid sizes. The grid size of 500m has the lowest
RMSE for all the validation sets and hence we use that for our ex-
periments. This is also intuitive because recommended locations
within a distance of 500m can be easily reached on foot.
Henceforth, all experiments will use the tuned parameter values.

6.4 Comparison with Baselines
We compare our approach with 7 state-of-the-art baselines.

6.4.1 Collaborative Filtering baselines

These baselines exploit similarity on each of the individual di-
mensions to complete the tensor. They take only the 4 dimensional
tensor as input. We implemented 4 CF baselines:

e User-User Collaborative Filtering baseline (UCF) - This base-
line exploits the user-user similarity information to fill in the
missing entries of the sparse tensor X. In particular, for UCF,
we consider CF on each user X location matrix with respect
to each activity and each time slot, on each user x activity
matrix with respect to each location and each time slot, and
on each user X time matrix with respect to each location and



each activity independently. To this end, we matricize X in
Mode 1 to generate matrix X*) € R**!*, We then use Pear-
son correlation coefficient between the vectors in the matrix
to compute pairwise user similarity information. For each
user, we compute the weighted average of the top N similar
users to predict the missing values.

e [ocation-Location Collaborative Filtering baseline (LCF) -
Similarly, the LCF baseline exploits the location-location sim-
ilarity information to fill in the missing entries of X. We ma-
tricize X in Mode 2 to generate matrix X2 € R/*% We
use Pearson correlation coefficient between the vectors in the
matrix to compute pairwise location similarity information.
For each location, we then compute the weighted average of
the top N similar locations to predict the missing values.

o Activity-Activity Collaborative Filtering baseline (ACF) - The
ACF baseline exploits the activity-activity similarity infor-
mation to fill in the missing entries of X. We matricize X in
Mode 3 to generate matrix X*) € R4*“!_ We use Pearson
correlation coefficient between the vectors in the matrix to
compute pairwise activity similarity information. For each
activity, we then compute the weighted average of the top N
similar activities to predict the missing values.

e Time-Time Collaborative Filtering baseline (TCF) - Finally,
the TCF baseline exploits the time- time similarity informa-
tion to fill in the missing entries of X. We matricize X in
Mode 4 to generate matrix XY € R***%, We use Pear-
son correlation coefficient between the vectors in the matrix
to compute pairwise time similarity information. For each
time slot, we then compute the weighted average of the top
N similar time slots to predict the missing values.

In these experiments, we set N = 10, since the prediction results do
not depend on N significantly as suggested by Zheng et al. [37]

6.4.2 Model based baselines

We implemented the standard CP decomposition model which,
when applied to our multi-dimensional recommendation problem,
has an objective function of the form:

F = 1| X ~UoLoAoT|*+ 25 (|U|*+|[LI>+I|A|>+I|T|?)
Thus, it takes only the 4 dimensional tensor as input and its objec-
tive function has only the tensor decomposition term along with the
regularization term. This can be obtained by setting A1 - A4 =0 in
our objective function (see Section 5.3) and replacing the weighted
least squares error term with the standard least squares error term
in summand F;. We then minimize this objective function using
the gradient descent based Algorithm 3.

6.4.3 Algorithmic baselines
The 2 algorithmic baselines that we employ are:

e Higher Order Singular Value Decomposition (HOSVD) - We
implement the HOSVD approach proposed by Lathauwer et
al. [10]. This approach also takes only the 4 dimensional
tensor as input. It first matricizes the 4 dimensional User
X Location X Activity x Time tensor X along each of the 4
modes to get the matrices X(l), X(2>, X®) and X . On each
matrix, SVD is applied to compute the low rank approxima-
tion: X =y® . g0 . V(i)Twhere 1 <i<4.

The core tensor S is then constructed as:

S=Xx1Ue,®" x2Us,®@" x3Ue,® " x4 Ue, @'
where U, ) T, Ue, @ T, Uecsy @) T, and Ue, @7 are the trans-
pose of the cq-dimensionally reduced UM, ¢y - dimension-
ally reduced U®, c3-dimensionally reduced U®), and c,-
dimensionally reduced U™ matrices respectively.

Finally, the completed matrix M is obtained as:

M =8 x1 Uy, ™ x5 Ue,® x5 Uey @ x4 Us, ™
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RMSE

Approach San Francisco | Las Vegas | Chicago
Our approach 0.0197 0.0339 0.0153
UCF 0.0324 0.0486 0.0293
LCF 0.0336 0.0430 0.0311
ACF 0.0333 0.0433 0.0317
TCF 0.0319 0.0484 0.0315
Standard CP 0.0224 0.0427 0.0178
HOSVD 0.0227 0.0405 0.0175
ALS 0.0222 0.0389 0.0173

Table 5: RMSE for our approach and baselines on the 3 test sets

Approach : MAE :

San Francisco | Las Vegas | Chicago

Our approach 0.0076 0.0179 0.0049
UCF 0.0104 0.0314 0.0062
LCF 0.0102 0.0310 0.0066
ACF 0.0105 0.0323 0.0069
TCF 0.01 0.0354 0.0065
Standard CP 0.0095 0.0228 0.0058
HOSVD 0.0098 0.0239 0.0061
ALS 0.0093 0.0218 0.0054

Table 6: MAE for our approach and baselines on the 3 test sets

where c1, c2, ¢3 and c4 are set empirically. Based on the
experiments of Nanopoulos [28], we preserve 30% of the in-
formation in each matrix.

e Alternating Least Squares (ALS) - In ALS, the objective func-
tion is a standard CP formulation and the idea is to solve for
each factor matrix, leaving all other factors fixed. We imple-
ment the ALS algorithm proposed by Kolda and Bader [19,
20] for the standard CP decomposition (see Section 6.4.2) of
our multi-dimensional recommendation problem.

6.5 Results

For testing experiments, we held out the test dataset and gener-
ated the completed tensor using the training dataset with the tuned
parameter values, number of factors k (30) and for the optimal grid
size (500m). We then computed the RMSE and MAE between the
predicted and the ground truth held out values of the test set.

Since we do not have human supplied relevance rankings, we
compute nDCG on the held-out known values. We calculated nDCG
with respect to each recommendation dimension by fixing the re-
maining dimensions and computing nDCG on the current dimen-
sion. Thus, for each of the held out values in the test set, we first
fixed user, location and activity and ranked the time slots in the
completed tensor. This ranking was used to calculate DCG (refer to
Section 6.2) for time. To compute iDCG for time, we determined
the ranking for the ground truth time values. We then calculated
nDCG@p (with p = 5) for time. Finally, we averaged the values for
all user, location and activity combinations to generate an averaged
nDCG@5 for the time dimension. Similarly, we fixed user, loca-
tion and time values and ranked activities to compute nDCG @5 for
the activity dimension and fixed user, activity and time to compute
nDCG @5 for the location dimension.

Tables 5, 6, and 7 show the results achieved by our approach
as well as the baselines on the 3 test datasets for the 3 perfor-
mance metrics: RMSE, MAE and nDCG@5. For RMSE and MAE,
a lower value signifies superiors performance while for nDCG, a
higher value signifies superior performance. For each metric, we
ran all algorithms 5 times on each test dataset and averaged the
result. Clearly, our approach outperforms these baselines.



Approach n]?CG@S for location .
San Francisco | Las Vegas | Chicago
Our approach 0.898 0.835 0.821
UCF 0.691 0.523 0.693
LCF 0.71 0.514 0.682
ACF 0.702 0.582 0.695
TCF 0.735 0.593 0.701
Standard CP 0.685 0.453 0.651
HOSVD 0.890 0.815 0.798
ALS 0.798 0.722 0.748
A h nDCG @5 for activity
pproac San Francisco | Las Vegas | Chicago
Our approach 0.869 0.827 0.798
UCF 0.452 0.465 0.467
LCF 0.457 0.477 0.485
ACF 0.440 0.458 0.412
TCF 0.391 0.34 0.401
Standard CP 0.341 0.314 0.393
HOSVD 0.829 0.817 0.714
ALS 0.770 0.737 0.692
Approach r}DCG@S for time .
San Francisco | Las Vegas | Chicago
Our approach 0.833 0.832 0.807
UCF 0.581 0.612 0.605
LCF 0.563 0.605 0.567
ACF 0.541 0.609 0.575
TCF 0.593 0.632 0.582
Standard CP 0.578 0.605 0.563
HOSVD 0.812 0.82 0.798
ALS 0.732 0.725 0.656

Table 7: nDCG (for location, activity and time) for our approach
and baselines on the 3 test sets

6.6 Discussion of Results

As evident from the results, the neighborhood-based Collabora-
tive Filtering baselines exhibit poor performance with respect to all
the 3 performance metrics. There are two possible reasons for this
result. First, these approaches employ only the User x Location x
Activity x Time tensor. Since the tensor is extremely sparse, com-
puting similarity along any dimension will be error prone as most
of the entries are missing. Hence, our approach which supplements
the sparse tensor with additional information from external sources
overcomes this hurdle. Second, each of these baselines predicts
the missing values based on similarity along one dimension only,
ignoring the other dimensions. Since our problem involves collabo-
rative recommendations along multiple dimensions, it is important
to employ all the dimensions for recommendations as we do.

The model based and algorithmic baselines such as Standard CP,
HOSVD and ALS also utilize only the sparse tensor as input. As
pointed out in Section 2, the standard CP approach demonstrates an
increase in error if the data is extremely sparse. Similarly, ALS has
poor convergence if the data is sparse and does not scale to large
datasets. Moreover, HOSVD and ALS have high space complexity.
On the other hand, our approach overcomes the sparsity of the data
by supplementing the sparse tensor with coupled matrices and also
scales to large datasets. Hence, it outperforms these baselines.

Also, we note that the nDCG values for location varies greatly
for each dataset for each algorithm while the nDCG values for ac-
tivity and time do not exhibit such a high variation. This is possibly
because the number of locations in each of the dataset varies signif-
icantly while the number of activities and time slots are constant for
each dataset. In addition, the nDCG values for location are higher
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Approach Time (in seconds)
San Francisco | Las Vegas | Chicago
Without weighting 12000 2465 10500
With weighting 9600 1180 8580

Table 8: Runtime comparison

in general for most of the algorithms and datasets, as compared to
activity and time. This indicates that location is the most important
dimension for recommendation, followed by time and activity. This
is also intuitive because in our datasets, each photo has a location
and timestamp but < 50% photos have meta data to enable activity
inference. Hence, the activity data is sparser than for location and
time. This would affect the performance of all the baselines since
they use the sparse tensor as the only input. However, in our ap-
proach, we supplement this sparse tensor with additional matrices
involving Location, Activity and Time. We also perform regular-
ized temporal smoothing. Hence, the nDCG for Activity and Time
are higher and comparable to that of Location for our approach.

6.7 Runtime Comparison

Since our data is very sparse, we performed a weighted decom-
position of the tensor which minimizes the error in only the known
entries of the tensor. We also experimented without the weighting
imposed on the tensor i.e. minimize the error in all the entries of
the tensor. In this case, our objective function is:

F=YX-UoLoAoT|*+ 2|y — LAT|> + 22||S —
AAT? + 32| Z — LLT|? + 3| TRIP + 3 (1011 + |1 LI”* +
IA]I* + 1711%)

We minimized it using Algorithm 3. Both approaches have the
same performance with respect to RMSE, MAE and nDCG@5.
However, they differ in their runtime. As shown in Table 8, the
weighted approach is faster as it minimizes the loss on only the
known entries of the tensor. All experiments were run on a 64 bit
Windows machine with core i7 processor and 16 GB RAM.

7. CONCLUSION AND FUTURE WORK

In this paper, we presented a system and an approach for per-
forming multi-dimensional collaborative recommendations for Who
(User), What (Activity), When (Time) and Where (Location), us-
ing tensor factorization on sparse user-generated data. To address
the problem of sparsity for multi-dimensional recommendations,
we modeled this problem as a joint analysis of a sparsely populated
User x Location x Activity x Time tensor along with several ma-
trices which share one or more common modes with the tensor.
These tensors and matrices were constructed by fusing data for the
various dimensions (users, locations, activities and time) from mul-
tiple heterogeneous data sources, namely Flickr, Foursquare, Yelp
and Viator. We factorized these tensors and matrices simultane-
ously using a gradient descent-based algorithm. We evaluated our
system and approach on our primary large-scale real-world data
set consisting of 588,000 Flickr photos collected from three major
metro regions in the USA — San Francisco Bay Area, Las Vegas
and Chicago. We compared our approach with several state-of-the-
art baselines and demonstrated that it outperforms all of them. Our
approach also demonstrated an improvement in runtime without the
need for sacrificing performance.

We now plan to create a Hadoop-based pipeline for performing
multi-dimensional analytics. We will also work on scaling this ap-
proach to larger and more complex real-time datasets. In addition,
we plan to analyze the space-time complexity of our algorithms
and parallelize them to run on higher-dimensional data. We will
also compare our approach more closely with other standards such
as CMF and CMTF and evaluate our system’s runtime performance
against them.
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