Access Control

- **Access Control**: Restriction of access to information or function
 - **Access**: ability to see, use or modify

- Access control policy is part of security policy
 - In many settings access control is same as security
 - Not all security issues are naturally formulated as access
 - E.g.: availability
Access Control

❖ **Discretionary Access Control:**
Access controlled by users

- **New objects:** users (e.g. owner) decides who can access
- Security *depends on users*

❖ **Mandatory Access Control:**
Access not controlled by users

- **New objects:** system determines who can access
- Most systems conservative in assigning new object access
Examples

❖ **Discretionary Access Control:** Access controlled by users
 - Unix access control
 - SQL access control

❖ **Mandatory Access Control:** Access not controlled by users
 - Information flow tracking systems
 - AppArmor and SELinux
Non-Computer Examples

❖ Discretionary access control:
 • Physical keys (capabilities!)
 • Vampires (must be invite into home)

❖ Mandatory access control:
 • Child-proof medicine bottles
 • Infectious disease quarantine
Multilevel Security

- All objects have a security label
 - Labels form a lattice (partial order with supremum and infimum)
- Subjects limited to certain labels
 - Usually defined in terms of maximal accessible labels
Traditional Multilevel Security

- **Labels**
 - **Level:** *top secret* > *secret* > *confidential* > *unclassified*
 - **Category:** unordered set (e.g. ULTRA)
 - Other restrictions such as NOFORN (not foreign)

- Subjects cleared to certain level and category

- Subject must have all category clearance and same or higher level as object being accessed
Noninterference

- Want to stop information from leaking from higher levels
- How to formalize this? Noninterference.
- Information at higher levels can have no effect on information at lower levels
 - Prevent side-channels within system
 - Control classification of new information
 - Low-clearance information must not depend on higher-clearance information
Bell-LaPadula

- Model for protecting *secrecy* of information
- Each process (running on behalf of user) has a clearance
- No read up: can’t read data from higher level
- No write down: can’t write data to lower level
Bell-LaPadula with HWM

- Model for protecting secrecy of information
- Each process (running on behalf of user) has a maximum clearance and a current clearance
- No read up: can’t read data from higher level
- No write down: can’t write data to lower level
- High water mark principle: Process starts at lowest level and raises current clearance (up to maximum) to read data with label above current clearance
CSE 127 Lattice

- **Instructor**: can be viewed by instructor only
- **TA**: Can be viewed by TAs and instructor only
- **Student X**: Can be viewed by Student X, TAs, and instructor only
Grade of student A classified *Student A*
- Can be read by student A, TAs, instructor, administrator

Homework answer key classified *TA*
- Can be read by TAs and instructor, administrator
No write down implies:

- Student can write email for instructor’s eyes only
- I can only write to Instructor level, which you can’t read!

Need high water mark principle
Let’s say: New process when I sit down at a desk
• Short-term Memento-style amnesia

I start at Public clearance
• Can write up to any level
• Can only read Public at current level

I read student X’s homework labeled Student A
• Read raises up my current process clearance to Student A
• Can write up to Student A, TA, Instructor, but not Public
I read student A’s homework labeled Student A

I am now tainted by the knowledge of Student A info

Anything I write may be derived from knowledge of Student A level material

I can’t write anything to level Public because it might leak Student A level information to Public
Still sitting down, I read homework of student B

What is my new current process clearance?

- Must be at least as high as Student A and Student B
- Process clearance now TA
- Can only write to level TA and Instructor
What happens when TA grades homework?

- **Input:** student A’s homework at level *Student A*
- **Input:** Answer key at level *TA*
- **Output:** Grade at level … ?

- Reading answer key increased TA’s current process clearance to level *TA*

- Need way to *declassify* information
CSE 127 Bell-LaPadula

- Special user or process can declassify information

- *Strain the analogy further*: I can declassify information when I am wearing Hammer pants

 - Grade: TA to Student A
Bell-LaPadula Summary

- BLP only protects secrecy of information
 - Integrity must be handled some other way
- System must label every piece of information
 - Recall *Complete Mediation* design principle
 - Requires a closed system
- What happens when data leaves system?
Biba Model

- Model for protecting integrity of information
- Each process (running on behalf of user) has a level
- No read down: can’t read data from lower level
- No write up: can’t write data to higher level
- Low water mark: start at highest level, decrease as necessary on read operation
CSE 127 Lattice

- Lattice now describes integrity (accuracy) of information
- Instructor: highest
- Public: lowest
CSE 127 Biba: without LWM

- I will only believe what I wrote myself
- TAs will only believe what they wrote or I wrote
- Each student only believe his/her own documents, as well as documents of TAs and instructor
- So when is low water mark policy useful?
Don’t Talk About It

- **Two levels:** *Not Seen Fight Club > Seen Fight Club*
- Everyone starts at *Not Seen Fight Club*
- After seeing *Fight Club* level becomes *Seen Fight Club*
- Everything you write or say is labeled with your level
- If you have not seen *Fight Club* and read something written by someone who has, you’re **tainted**
 - I will not talk to you because what you know might spoil movie
BLP vs Biba

- Which is better?
- When should you use BLP?
- When should you use Biba?
Multilevel Security

- BLP and Biba operate on processes and files
 - This is too coarse: processes get tainted easily
- What if we label every byte of data on the system?
- “Process” is now a single instruction
 - BLP: result of operation the higher of each operand’s labels
 - Biba: result of operation the lower of each operand’s labels
Multilevel Security

❖ **Information Flow Tracking (IFT):**
 Fine-grained label tracking

❖ **Labeled sources and sinks of data**

❖ **Static:** Label variables in a program
 • Compiler verifies all statements comply with policy
 • Labels could be inferred automatically (like type inference)

❖ **Dynamic:** Track byte labels at run time
 • Tracks label of each byte of data
MLS vs IFT

<table>
<thead>
<tr>
<th>Multilevel Security</th>
<th>Information Flow Tracking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td>Operation</td>
</tr>
<tr>
<td></td>
<td>(add, sub, xor, etc.)</td>
</tr>
<tr>
<td>Label</td>
<td>Taint tag</td>
</tr>
<tr>
<td>File or input device</td>
<td>File or input device</td>
</tr>
<tr>
<td>High/low water marking</td>
<td>Bitwise OR of taint tag</td>
</tr>
</tbody>
</table>
int x, y, z;

fscanf(secretfile, "%d", &x);
fscanf(publicfile, "%d", &y);

z = x + y; // z now contains secret info

fprintf(publicfile, "%d", x); // Leaks secret to public
fprintf(publicfile, "%d", y); // Allowed: same level
fprintf(publicfile, "%d", z); // Leaks secret to public

fprintf(secretfile, "%d", x); // Allowed :same level
fprintf(secretfile, "%d", y); // Allowed: write down
fprintf(secretfile, "%d", z); // Allowed: write down
TaintDroid

- Track data labels at variable granularity by modifying Android’s Dalvik virtual machine
- Labels are 32 bits
- The label of result of every operation is bitwise-OR of labels of operands
- What do the labels represent in TaintDroid?
TaintDroid

- Track data labels at variable granularity by modifying Android’s Dalvik virtual machine
- Labels are 32 bits
- The label of result of every operation is bitwise-OR of labels of operands
- What do the labels represent in TaintDroid?
 - Source of sensitive data (e.g. GPS or microphone)
 - Data the user may not want to leave the device
TaintDroid

- Is TaintDroid trying to protect secrecy or integrity?
 - Secrecy, although mechanism can be used for both

- TaintDroid records when an app sends tainted data out
 - Can be used to prevent such data from leaving phone
IFT for Integrity

- How can you use IFT to protect integrity?
 - *High:* trusted data, *Low:* untrusted data
 - Do not execute *Low* code or use *Low* address in jump
- Protect files, directories, processes from *Low* data
- What are the limits?
IFT Achille’s Heel

What do you do when tainted data used as condition of jump?
IFT Achille’s Heel

if (b) {
 a = 1;
 x = y;
}

tainted
IFT Achille’s Heel

- Option 1: Ignore control dependencies
 - Only taint arithmetic and memory access operations
- Option 2: Taint all variables inside then and else clauses
- Neither one is ideal:
 - Option 1 leads to incomplete taint
 - Option 2 leads to over-tainting
Summary

- Multilayer security guarantees information protection
- Implementation must be correct
- Declassification must be correct
- Side-channels may still exist