
CSE 255, Fall 2015: Homework 1

Instructions

Please submit your solution at the beginning of the week 3 lecture (October 12) or outside of CSE
4102 beforehand. Please complete homework individually.

You will need the following files:

50,000 beer reviews : http://jmcauley.ucsd.edu/cse255/data/beer/beer_50000.json.

Book descriptions : http://jmcauley.ucsd.edu/cse255/data/amazon/book_descriptions_50000.json

Code examples : http://jmcauley.ucsd.edu/cse190/code/week1.py (regression) and http://jmcauley.

ucsd.edu/cse190/code/week2.py (classification)

Executing the code requires a working install of Python 2.7 with the scipy packages installed.

Tasks — Regression (week 1):

1. Using ordinary linear regression, train a predictor that uses the ABV (‘beer/ABV’) to predict the taste
rating (‘review/taste’), i.e.,

review/taste ' θ0 + θ1 × beer/ABV.

You may use Python libraries to do so. What are the fitted values of θ0 and θ1 (1 mark)?

2. The above regressor may not be very realistic—it assumes that beers get monotonically better or mono-
tonically worse as ABV increases. Perhaps we can do better with a polynomial function, i.e.,

review/taste ' θ0 + θ1 × beer/ABV + θ2 × beer/ABV2 + θ3 × beer/ABV3 . . .

Write down the fitted values for all polynomials up to degree 5, and their Mean Squared Errors (1 mark).

3. If we kept fitting higher and higher degree polynomials, the model will have lower and lower error. But
will it generalize well to new data? To test this, split the data into 50% train and 50% test sets as follows:

train = data[:25000]

test = data[25000:]

Now, fit the model only on the training data, and report the MSE on both the training and test sets.
Do this for all polynomial degrees until the performance no longer improves on the test set. Write down
the polynomial equation corresponding to the best model, and its performance on the test set (1 mark).

Classification (week 2):

1. Download the book descriptions data. For this and the next question we will consider identifying “Chil-
dren’s Books” based on words in their descriptions. In class we had trouble when there was ‘imbalance’
between positive and negative labels. To address this, select all children’s books and the same number of
non-children’s books as follows:

D_child = [d for d in data if "Children’s Books" in d[’categories’]]

D_notchild =\

[d for d in data if not("Children’s Books" in d[’categories’])][:len(D_child)]

data = D_child + D_notchild

random.seed(0)

random.shuffle(data)

Split the data so that the first half is used for training and the second half is used for testing as above.
First, let’s use the following feature vector to train an SVM:

1

http://jmcauley.ucsd.edu/cse255/data/beer/beer_50000.json
http://jmcauley.ucsd.edu/cse255/data/amazon/book_descriptions_50000.json
http://jmcauley.ucsd.edu/cse190/code/week1.py
http://jmcauley.ucsd.edu/cse190/code/week2.py
http://jmcauley.ucsd.edu/cse190/code/week2.py


X = [[1, "child" in s[’description’],

"magic" in s[’description’],

"funny" in s[’description’]] for s in data]

Using this feature vector, run an SVM classifier (see the code provided in class) – remember to train on
the first half and test on the second half. What is the accuracy of the predictor on the train and test
data (1 mark)?

2. Can you come up with a better predictor (on the test set)? Write down a feature vector with at most 10
dimensions that has better performance than the one above, and write down its test error (1 mark).

3. Next we’ll try and get better performance with the predictor above by using a validation set. Split your
data into training, validation, and test sets as follows:

X_train = X[:len(X)/2]

X_valid = X[len(X)/2:3*len(X)/4]

X_test = X[3*len(X)/4:]

The paramater C used to train the SVM controls the regularization level. Run the SVM for all values
of C ∈ {0.001, 0.01, 0.1, 1, 10, 100, 1000}, and report their training, validation, and test errors. Which of
these test errors best reflects the model’s ability to generalize to new data (1 mark)?

4. Finally, let’s fit a model using logistic regression. A code stub has been provided to perform logistic
regression using the above model on http://jmcauley.ucsd.edu/cse255/code/homework1.py Code
for the log-likelihood has been provided in the code stub (f) but code for the derivative is incomplete
(fprime)

• Complete the code stub for the derivative (fprime) and provide your solution (1 mark).

• What is the log-likelihood of after convergence, and what is the accuracy (on the test set) of the
resulting model (1 mark)?

2

http://jmcauley.ucsd.edu/cse255/code/homework1.py

