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Hubs and Authorities; PageRank



Trust in networks

We already know that thereõs 

considerable variation in the connectivity 

structure of nodes in networks

So how can we find nodes that are in some sense òimportantó 

or òauthoritativeó?

Å In links?

ÅOut links?

ÅQuality of content?

ÅQuality of linking pages?

Åetc.



Trust in networks

What makes Erdos a great mathematician?

ÅLots of papers? Lots of co-authors?

(picture by Ron Graham)



Trust in networks

Erdos is a great mathematician because he wrote lots of 

papers with other great mathematicians

Trust/authority are self-reinforcing concepts

(picture by Ron Graham)



Trust in networks

1. The òHITSó algorithm

Two important notions:

Hubs:

We might consider a node to be of òhigh qualityó if it links to 

many high-quality nodes. E.g. a high-quality page might be a 

òhubó for good content

(e.g. Wikipedia lists)

Authorities:

We might consider a node to be of high quality if many high -

quality nodes link to it

(e.g. the homepage of a popular newspaper)



Trust in networks

This òself-reinforcingó notion is the idea 

behind the HITS algorithm

ÅEach node i has a òhubó score h_i

ÅEach node i has an òauthorityó score a_i

ÅThe hub score of a page is the sum of the authority scores 

of pages it links to

ÅThe authority score of a page is the sum of hub scores of 

pages that link to it



Trust in networks

This òself-reinforcingó notion is the idea 

behind the HITS algorithm

Algorithm:

iterate until convergence:

pages that link to i

pages that i links to

normalize:



Trust in networks

This òself-reinforcingó notion is the idea 

behind the HITS algorithm

This can be re-written in terms of the adjacency matrix (A)

iterate until convergence:

normalize:

skipping 

a step:



Trust in networks

This òself-reinforcingó notion is the idea 

behind the HITS algorithm

So at convergence we seek stationary points such that

(constants donõt matter since weõre normalizing)

ÅThis can only be true if the authority/hub scores are 

eigenvectors of A^TA and AA^T

Å In fact this will converge to the eigenvector with the 

largest eigenvalue (see: Perron-Frobenius theorem)



Trust in networks

The idea behind PageRank is very similar: 

ÅEvery page gets to òvoteó on other pages

ÅEach pageõs votes are proportional to that pageõs 

importance

Å If a page of importance x has n outgoing links, then each of 

its votes is worth x/n

ÅSimilar to the previous algorithm, but with only a single a 

term to be updated (the rank r_i of a page i)

rank of linking pages

# of links from linking pages



Trust in networks

The idea behind PageRank is very similar: 

Matrix formulation:

each column describes the out-links of one page, e.g.:

column-stochastic matrix (columns add to 1)

pages

pages

this out -link gets 1/3 

votes since this page 

has three out-links



Trust in networks

The idea behind PageRank is very similar: 

Then the update equations become:

And as before the stationary point is given by the eigenvector 

of M with the highest eigenvalue



Trust in networks

Summary

The level of òauthoritativenessó of a node in a network should 

somehow be defined in terms of the pages that link to (it or 

the pages it links from), and their level of authoritativeness

ÅBoth the HITS algorithm and PageRank are based on this 

type of òself-reinforcingó notion

ÅWe can then measure the centrality of nodes by some 

iterative update scheme which converges to a stationary 

point of this recursive definition

Å In both cases, a solution was found by taking the principal 

eigenvector of some matrix encoding the link structure



Trust in networks

This (really last) week

ÅWeõve seen how to characterize networks by their degree 

distribution (degree distributions in many real -world 

networks follow power laws)

ÅWeõre seen some random graph models that try to mimic the 

degree distributions of real networks

ÅWeõve discussed the notion of òtie strengthó in networks, and 

shown that edges are likely to form in òopenó triads

ÅWeõve seen that real-world networks often have small 

diameter, and exhibit òsmall-worldó phenomena

ÅWeõve seen (very quickly) two algorithms for measuring the 

òtrustworthinessó or òauthoritativenessó of nodes in networks



Questions?

Further reading:
Å Easley & Kleinberg, Chapter 14

Å The òHITSó algorithm (aka òHubs and Authoritiesó)

òHubs, authorities, and communitiesó (Kleinberg, 

1999)
http:// cs.brown.edu/memex/ACM_HypertextTestbed/papers/10.html

http://cs.brown.edu/memex/ACM_HypertextTestbed/papers/10.html
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Algorithms for advertising



Classification

Will I click on

this ad?

Predicting which ads people click on might be a classification 

problem



Recommendation

my (userõs)

òpreferencesó
HPõs (item) 

òpropertiesó
preference

Toward

òactionó

preference toward

òspecial effectsó

is the movie 

action-

heavy?

are the special effects good?

Compatibility

Orê predicting which ads people click on might be a 

recommendation problem



Advertising

So, we already have good algorithms for 

predicting whether a person would click 

on an ad, and generally for 

recommending items that people will 

enjoy.

So whatõs different about ad 

recommendation?



Advertising

1. We canõt recommend everybody the 

same thing (even if they all want it!)

ÅAdvertisers have a limited budget ðthey wouldnõt be able to 

afford having their content recommended to everyone

ÅAdvertisers place bids ðwe must take their bid into account 

(as well as the userõs preferences ðor not)

Å In other words, we need to consider both what the user and 

the advertiser want (this is in contrast to recommender 

systems, where the content didnõt get a say about whether it 

was recommended!)



Advertising

2.  We need to be timely

ÅWe want to make a personalized recommendations 

immediately (e.g. the moment a user clicks on an ad) ðthis 

means that we canõt train complicated algorithms (like what 

we saw with recommender systems) in order to make 

recommendations later

ÅWe also want to update usersõ models immediately in 

response to their actions

Å (Also true for some recommender systems)



Advertising

3.  We need to take context into account

Å Is the page a user is currently visiting particularly relevant to 

a particular type of content?

ÅEven if we have a good model of the user, recommending 

them the same type of thing over and over again is unlikely 

to succeed ðnor does it teach us anything new about the 

user

ÅIn other words, thereõs an explore -exploit tradeoff ðwe want 

to recommend things a user will enjoy (exploit), but also to 

discover new interests that the user may have (explore)



Advertising

So, ultimately we need
1) Algorithms to match users and ads, given budget 

constraints

users advertisers

(each advertiser 

gets one user)

.92
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.24

.67

.97

.59

.58

bid / quality of the 

recommendation



Advertising

So, ultimately we need
2) Algorithms that work in real -time and donõt depend on 

monolithic optimization problems

users advertisers

(each advertiser 

gets one user)

.92

users arrive one at 

a time (but we still 

only get one ad 

per advertiser) ð

how to generate a 

good solution?



Advertising

So, ultimately we need
3) Algorithms that adapt to users and capture the notion of an 

exploit/explore tradeoff
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Matching problems



Letõs start withê

1. We canõt recommend everybody the 

same thing (even if they all want it!)

ÅAdvertisers have a limited budget ðthey wouldnõt be able to 

afford having their content recommended to everyone

ÅAdvertisers place bids ðwe must take their bid into account 

(as well as the userõs preferences ðor not)

Å In other words, we need to consider both what the user and 

the advertiser want (this is in contrast to recommender 

systems, where the content didnõt get a say about whether it 

was recommended!)



Bipartite matching

Letõs start with a simple version of the 

problem we ultimately want to solve:

1) Every advertiser wants to show one ad

2)Every user gets to see one ad

3)We have some pre-existing model that 

assigns a score to user-item pairs



Bipartite matching

Suppose weõre given some scoring function:

Could be:

ÅHow much the owner of a is willing to pay to show their ad to u

ÅHow much we expect the user u to spend if they click the ad a

ÅProbability that user u will click the ad a

Output of a regressor / logistic regressor!



Bipartite matching

Then, weõd like to show each user one ad, and weõd like each 

add to be shown exactly once so as to maximize this score 

(bids, expected profit, probability of clicking etc.)

s.t.

each advertiser gets to show one ad



Bipartite matching

Then, weõd like to show each user one ad, and weõd like each 

add to be shown exactly once so as to maximize this score 

(bids, expected profit, probability of clicking etc.)

s.t.

each advertiser gets to show one ad



Bipartite matching

users ads

(each advertiser 

gets one user)

We can set this up as a bipartite matching problem

ÅConstruct a complete bipartite graph between users and ads, 

where each edge is weighted according to f(u,a)

ÅChoose edges such that each node is connected to exactly 

one edge

.75

.24

.67

.97

.59

.92

.58



Bipartite matching

men women

(each user of an 

online dating 

platform gets 

shown exactly one 

result)

This is similar to the problem solved by (e.g.) online dating sites 

to match men to women

For this reason it is called a marriage problem

.75

.24

.67

.97

.59

.92

.58



Bipartite matching

This is similar to the problem solved by (e.g.) online dating sites 

to match men to women

For this reason it is called a marriage problem

ÅA group of men should marry an (equally sized) group of 

women such that happiness is maximized, where òhappinessó 

is measured by f(m,w)

ÅMarriages are monogamous, heterosexual, and everyone gets 

married

(see also the original formulation, in which men have a preference function over 

women, and women have a different preference function over men)

compatibility between male m and female w



Bipartite matching

Weõll see one solution to this problem, 

known as stable marriage

ÅMaximizing happiness turns out to be quite hard

ÅBut, a solution is òunstableó if:

m wõ

w

mõ
Å A man m is matched to a woman wõbut 

would prefer w (i.e., f(m,wõ) < f(m,w))

and

Å The feeling is mutual ðw prefers m to 

her partner (i.e., f(w,mõ) < f(m,w))

Å In other words, m and w would both 

want to òcheató with each other



Bipartite matching

Weõll see one solution to this problem, 

known as stable marriage

ÅA solution is said to be stable if this is never satisfied for any 

pair (m,w)

m wõ

w

mõ
Å Some people may covet another 

partner,

but

Å The feeling is never reciprocated by the 

other person

Å So no pair of people would mutually

want to cheat



Bipartite matching

The algorithm works as follows:
(due to Lloyd Shapley & Alvin Roth)

ÅMen propose to women (this algorithm is from 1962!)

ÅWhile there is a man m who is not engaged

ÅHe selects his most compatible partner,                              

(to whom he has not already proposed)

Å If she is not engaged, they become engaged

Å If she is engaged (to mõ), but prefers m, she breaks things 

off with mõand becomes engaged to m instead



Bipartite matching

The algorithm works as follows:
(due to Lloyd Shapley & Alvin Roth)

All men and all women are initially ófreeô (i.e., not engaged)

while there is a free man m, and a woman he has not proposed to

w = max_w f( m,w)

if (w is free):

( m,w) become engaged (and are no longer free)

else (w is engaged to mô):

if w prefers m to mô (i.e., f(m,w) > f( mô,w)):

( m,w) become engaged

mô becomes free



Bipartite matching

The algorithm works as follows:
(due to Lloyd Shapley & Alvin Roth)

ÅThe algorithm terminates



Bipartite matching

The algorithm works as follows:
(due to Lloyd Shapley & Alvin Roth)

ÅThe solution is stable




