
CSE 105: Introduction to the Theory of Computation Fall 2015

Lecture Notes: A nonregular language
Instructor: Daniele Micciancio UCSD CSE

This lecture notes are provided as a supplement to the textbook. In the textbook you
have read about the pumping lemma for regular languages, a very useful tool to prove that
certain languages are not regular. Here we consider a different method, called “diagonaliza-
tion”, that will be very useful later on in the course. The method involves the construction of
a specific language which is not regular almost by definition. The language is not particularly
meaninful, I know of no application where you would want to design a finite automaton for
this language. The goal of this method is just to establish the existence of some languages
which are not regular. The method is interesting because of its generality: you can use this
same method to define computational problems that are unsolvable by virtually any com-
putational model! So, no matter how powerful is your computer (or model of computation),
there is always some well defined problem that is beyond its computational ability.

1 Encoding regular expressions

For concreteness, let us consider the set of regular languages over the binary alphabet {0, 1}.
We know that a language is regular if and only if it is the language of a regular expression R.
Consider the set R of all regular expressions over the set of basic symbols 0, 1. These regular
expressions can be represented as strings over the larger alphabet Σ = {0, 1,+, ◦, (,),? , ∅}.
(Notice that no special symbol is needed for the the empty string ε because it can be rep-
resented by the equivalent expression ∅?.) For example the set of all binary strings can be
represented by the binary expression E = (0 + 1)?. Since the alphabet Σ has size 8, we may
encode its symbols as triplets of bits, just like 8-bit bytes are used to represent characters on
conventional computers. The way we map the elements of Σ to bits is largely arbitrary, but
for concreteness let us consider a specific encoding φ: Σ→ {0, 1}3 as defined by the following
table:

a 0 1 + ◦ () ? ∅
φ(a) 000 001 010 011 100 101 110 111

Using this encoding, regular expressions can be also represented as binary strings, e.g.,
φ(E) = 100 000 010 001 101 110. Of course, not every binary string is the representation of
a syntactically valid regular expression, just like not every file represents a valid C program.
For example, “000 010 101” does not represents a regular expression because it encodes the
string “0+)”. Also “0110” does not encodes any string over Σ because its length is not a
multiple of 3. All we care about is that any regular expression E ∈ R is represented by
a binary string φ(E) ∈ {0, 1}∗, and that any binary string encodes at most one regular
expression. (I.e., the mapping φ:R → Σ∗ is injective.) So, we may consider languages over
{0, 1} (i.e., sets of binary strings) corresponding to specific sets of regular expressions.

Notice that each regular expression E ∈ R is represented by a binary string φ(E) ∈
{0, 1}∗, and it also represents a language L(E) ⊆ {0, 1}∗, i.e., a set of binary strings. So,
shall we think of each regular expression as a string or as (the representation of) a sets of
strings? Well, it is useful to do both. There is nothing special, or to be confused about
here. This is just the same as a computer program being represented by a string (possibly
including special “new line” characters to make the string more readable), and the same
program representing a set of strings, e.g., the set of input strings for which the program
outputs 1.

2 A nonregular language

We are now ready to formally prove that there is some language that is not regular, i.e., it
cannot be described by a regular expression.

Let L be the set of all binary strings of the form φ(E) where E ∈ R is a binary regular
expression such that φ(E) /∈ L(E). In English, you can describe this as the set of regular
expressions that do not generate their own encoding. For example, 111 is in L because it
encodes the “empty set” regular expression ∅, and clearly φ(∅) = 111 /∈ ∅ = L(∅). We claim
that this language is not regular. In fact, the proof is very simple, as the language L was
defined with the specific goal of not being regular. Here is the proof.

Theorem 1 The language L = {φ(E):E ∈ R ∧ φ(E) /∈ L(E)} is not regular.

Proof: Assume for contradiction that L is regular. Since L ⊆ {0, 1}∗ is a binary language,
there is a regular expression E ∈ R such that L(E) = L. Now consider the following question:
φ(E) ∈ L? i.e., does the string w = φ(E) belongs to the set L. We do not know the answer
to this question, but sure the answer must be either “yes” or “no”. We will show that in
either case we get a contradiction: w ∈ L if and only if w /∈ L. This is proved by a chain of
implications:

• By definition of L, we have w ∈ L if and only if w = φ(E ′) for some regular expression
E ′ ∈ R such that φ(E ′) /∈ L(E ′)

• Since the function φ is injective, and recalling that w = φ(E), the condition w = φ(E ′)
is satisfied if and only if E = E ′.

• It follows that w ∈ L if and only if the string w = φ(E) = φ(E ′) is not in L(E ′) =
L(E) = L

This proves that w ∈ L if and only if w /∈ L. This is a contradiction. So, our contradiction
hypothesis must be false and L is not regular. �

3 Why “diagonalization”

The technique used by the above construction and proof is called “diagonalization”, and it
was first discovered and used by mathematician Georg Cantor in 1873 to prove that there are
infinite sets that cannot be put in one-to-one correspondence with the infinite set of natural
numbers. You can read about Cantor’s diagonal argument in the textbook (Theorem 4.17).
Here we illustrated why it is called diagonalization in the context of our proof that there are
nonregular languages. Think building an infinite table with rows and columns indexed by
all possible binary strings and all table entries filled with 0s and 1s:

ε 0 1 00 · · · 111 · · · φ(E)
ε 1 1 1 1 · · · 1 · · · 1
0 1 1 1 1 · · · 1 · · · 1
1 1 1 1 1 · · · 1 · · · 1
00 1 1 1 1 · · · 1 · · · 1
...

...
...

...
...

. . .
...

φ(∅) 0 0 0 0 0 0 0 0
...

. . .
...

φ(E) 1 0 0 1 · · · 1 · · · 1

Each row T [r, ε], T [r, 0] . . . represents a language: the set of strings x for which T [r, x] = 1.
So, for example, the row labeled with φ(E) represents a language that contains ε, 00 and 111,
but not 0 or 1. We are interested in the rows that represent regular expressions. (All other
rows can be filled arbitrarily, but for concreteness we filled them with 1s.) For each row
φ(E) representing a regular expression E, we fill the corresponding table entries so that the
row represents the language L(E) of the regular expression. For example, the row indexed
by φ(∅) = 111 should be the all zero row because L(∅) does not contain any string. Notice
that all regular languages are listed as a row in the table, because any regular language (over
the alphabet {0, 1}) is represented by a regular expression. So, if we can come up with a
language D which is different from all rows in the table, the language D is certainly not
regular. We can come up with such a language by selecting a row which differs from the
first row in its first entry, differents from the second row in its second entry, and so on. For
each string x, we put it in x ∈ D if T [x, x] = 0, and leave it out x /∈ D if T [x, x] = 1.
In other words, the language D is obtained by taking all the diagonal entries of the table,
and flipping them. It is easy to see that this language is precisely the diagonal language
D = {φ(E):E ∈ R ∧ φ(E) /∈ L(E)} built in the previous section.

