CSE 105: Automata and Computability Theory Fall 2015

Homework #5

Due: Saturday, November 21th, 2015, 11:59 PM

Problem 1: Modeling Computation

A Circular-DFA (CDFA) is defined similarly to a DFA, but with the following changes:

e When the DFA tries to move past the right end of the input, it goes back to the beginning
of the input. (In other words, the input string keeps repeating indefinitely.)

e Similarly to a TM, a DFA terminates by entering one of two special states, g, (accept) and
qr (reject). When the CDFA enters ¢, or g,, the computation terminates immediately.

e The empty string is always rejected.

Formally, a CDFA is a 6-tuple (Q, X, 6, ¢s, a, gr) Where
e () is a finite set of states
e Y is a finite input alphabet

® (s,qa,qr € Q are the start, accept and reject states. (You may assume these states are always
distinct.)

e §: () XX — (@ is the transition function.

This defines the syntax of a CDFA. Your task is to formally specify the behavior/computations
of the CDFA by defining a transition system, similarly to what we have done in class for DFAs,
FSTs, and TMs. (See Lecture Notes 2, 9, 10 and 11 on the course webpage as a reference on how
to define configuration transition systems for DFAs and FSTs.)

Submit a pdf file HW561.pdf containing a brief mathematical description of the transition system
(Cwry Ing, Ryr, Hyg, Opg), and a haskell implementaton based on the starter file HW51.hs. (See
Lecture Notes 11 for additional information and guidance on the haskell implementation.)

Problem 2: Equivalence between models

The problem section of chapter 1 in the textbookE] informally defines a simple FST model T =
(Q,%,I',0,s) where 0: @ x ¥ — @ x I". We will call them SFST for “simple” FST, or “Sipser
FST”. For a formal “executable” definition, see the starter file SFST.hs. SFSTs differ from the
FSTs defined in the notes in two respects:

! This is in problems 1.24-27 of the second and third editions. You can read and solve these problems for extra
practice, but it is not needed for the solution of this homework.



e The output of an SFST is specificed “on the edges” by the transision function §, rather than
a separate output function v: @ — I'*. (This corresponds to Mealy machines in JFLAP.)

e At each step, an SFST outputs a single symbol from I', while FSTs can output longer strings
v(g) €T

In this problem you are asked to prove that FSTs, as defined in class (see automata library
file FST.hs, and Lecture Notes 9,10,11) are at least as powerful as SFSTs, by showing that any
SFST can be transformed into an equivalent FST that computes the same function. Submit a
formal description of your transformation starting from file HW62.hs, together with a brief English
explanation as HW52. pdf.

It should be the case that for any SFST ¢ and input string w,

evalFST (convertFST t) w == evalSFST t w.

Problem 3: Turing Machines

Give a Turing machine for the language L = {a"b"a™ | n > 0}.

Submit a pdf file HW53.pdf with an informal description of your machine, and a jflap file
HW53. jff with your Turing machine implementation. You can make use of any extension/feature
provided by JFLAP when implementing your Turing machine, but you are required to test your
implementation in JFLAP on a few input strings to make sure your TM diagram works as in-
tended. (We are too close to the end of the quarter to accept regrade request based on JFLAP
“misinterpreting” your drawings.)



