

Scott B. Baden

CSE 160
Lecture 5

The Memory Hierarchy

False Sharing
Cache Coherence and

Consistency

Using Bang – coming down the home stretch
•  Do not use Bang’s front end for running mergeSort
•  Use batch, or interactive nodes, via qlogin
•  Use the front end for editing & compiling only

©2013 Scott B. Baden / CSE 160 / Fall 2013 2

10% penalty for
using the login
nodes improperly,
doubles with each
incident!

EE Times

Announcements
•  SDSC Tour on Friday 11/1

©2013 Scott B. Baden / CSE 160 / Fall 2013 3

EE Times

Today’s lecture
•  The memory hierarchy
•  Cache Coherence and Consistency
•  Implementing synchronization
•  False sharing

©2013 Scott B. Baden / CSE 160 / Fall 2013 4

The processor-memory gap
•  The result of technological trends
•  Difference in processing and memory speeds

growing exponentially over time

©2013 Scott B. Baden / CSE 160 / Fall 2013 5

µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1000

19
80

!
19

81
!

19
83

!
19

84
!

19
85

!
19

86
!

19
87

!
19

88
!

19
89

!
19

90
!

19
91

!
19

92
!

19
93

!
19

94
!

19
95

!
19

96
!

19
97

!
19

98
!

19
99

!
20

00
!

DRAM

CPU!
19

82
!

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m

an
ce

Time

“Moore’s Law”

An important principle: locality
•  Memory accesses exhibit two forms of locality

 Temporal locality (time)
 Spatial locality (space)

•  Often involves loops
•  Opportunities for reuse
•  Idea: construct a small &

fast memory to cache
re-used data

©2013 Scott B. Baden / CSE 160 / Fall 2013 6

O(100) CP

O(10) CP (10 - 100 B)

Disk

DRAM

L2

CPU

L1 2-3 CP (10 to 100 B)

TB to PB

256KB to 4 MB

O(106) CP
GB

32 to 64 KB

1CP (1 word)

Smaller and faster

for t=0 to T-1
 for i = 1 to N-2
 u[i]=(u[i-1] + u[i+1])/2

The Benefits of Cache Memory
•  Let say that we have a small fast memory

that is 10 times faster (access time) than
main memory …

•  If we find what we are looking for
90% of the time (a hit), the access
time approaches that of fast memory

•  Taccess = 0.90 × 1 + (1-0.9) × 10 = 1.9
•  Memory appears to be 5 times faster
•  We organize the references by blocks
•  We can have multiple levels of cache
 ©2013 Scott B. Baden / CSE 160 / Fall 2013 7

Sidebar
•  If cache memory access time is 10 times

faster than main memory …
•  Cache “hit time” Tcache = Tmain / 10
•  Tmain is the cache miss penalty
•  And if we find what we are looking for f ×

100% of the time (“cache hit rate”) …
•  Access time = f × Tcache + (1- f) × Tmain

 = f × Tmain /10 + (1- f) × Tmain

 = (1-(9f/10)) × Tmain
•  We are now 1/(1-(9f/10)) times faster
•  To simplify, we use Tcache = 1, Tmain = 10
 ©2013 Scott B. Baden / CSE 160 / Fall 2013 8

Different types of caches
•  Separate Instruction (I) and Data (D)
•  Unified (I+D)
•  Direct mapped / Set associative
•  Write Through / Write Back
•  Allocate on Write / No Allocate on Write
•  Last Level Cache (LLC)
•  Translation

Lookaside Buffer
(TLB)

 ©2013 Scott B. Baden / CSE 160 / Fall 2013 9

32K L1

FSB

32K L1 32K L1 32K L1

4MB
Shared L2

4MB
Shared L2

Core2 Core2 Core2 Core2

10.66 GB/s

32K L1

FSB

32K L1 32K L1 32K L1

10.66 GB/s

4MB
Shared L2

4MB
Shared L2

Core2 Core2 Core2 Core2

Sam Williams et al.

Direct mapped cache
•  Simplest cache

©2013 Scott B. Baden / CSE 160 / Fall 2013 10

Randal E. Bryant and
David R. O

valid"

valid"

valid"

tag"

tag"

tag"

• • •"

Line 0:"

Line 1:"

Line 1 S-1:"
t bits" s bits"

0 0 0 0 1"
0"m-1"

b bits"

tag" Line index"block offset"

selected line"

cache block"

cache block"

cache block"

Accessing a Direct mapped cache

©2013 Scott B. Baden / CSE 160 / Fall 2013 11

Randal E. Bryant and
David R. O

1"

t bits" s bits"
100!i"0110"

0"m-1"

b bits"

tag" Line index"block offset"

selected line (i):"

(3) If (1) and (2) are true, "
then we have a"

cache hit;  
the block offset "

selects"
starting byte. "

=1?" (1) The valid bit must be set"

= ?"
(2) The tag bits for the cache"

line must match the"
tag bits in the address"

0110" w3"w0! w1" w2"
3"0" 1" 2" 7"4" 5" 6"

Set associative cache
•  Why use the middle bits for the index?

©2013 Scott B. Baden / CSE 160 / Fall 2013 12

Randal E. Bryant and
David R. O

B = 2b bytes
per cache block

T tag bits
per line

• • • B–1 1 0

• • • B–1 1 0

valid

valid

tag

tag
set 0: • • •

• • • B–1 1 0

• • • B–1 1 0

valid

valid

tag

 tag
set 1: • • •

• • • B–1 1 0

• • • B–1 1 0

valid

valid

tag

tag
set S-1: • • •

• • •

1 valid
bit per
line

<tag> <set index>

0 m-1

<block offset>

T bits s bits b bits

32K L1

FSB

32K L1 32K L1 32K L1

4MB
Shared L2

4MB
Shared L2

Core2 Core2 Core2 Core2

The 3 C’s of cache misses

•  Cold Start
•  Capacity
•  Conflict

©2013 Scott B. Baden / CSE 160 / Fall 2013 13

667MHz FBDIMMs

Chipset (4x64b controllers)

10.6 GB/s(write) 21.3 GB/s(read)

10.66 GB/s

32K L1

FSB

32K L1 32K L1 32K L1

10.66 GB/s

4MB
Shared L2

4MB
Shared L2

Sam Williams et al.

Core2 Core2 Core2 Core2

Line Size = 64B (L1 and L2)

32K L1

FSB

32K L1 32K L1 32K L1

4MB
Shared L2

4MB
Shared L2

Core2 Core2 Core2 Core2

Bang’s Memory Hierarchy
•  Intel “Clovertown” processor
•  Intel Xeon E5355 (Introduced: 2006)
•  Two “Woodcrest” dies (Core2)

on a multichip module
•  Two “sockets”
•  Intel 64 and IA-32 Architectures Optimization Reference Manual, Tab 2.16

©2013 Scott B. Baden / CSE 160 / Fall 2013 14

667MHz FBDIMMs

Chipset (4x64b controllers)

10.6 GB/s(write) 21.3 GB/s(read)

10.66 GB/s

32K L1

FSB

32K L1 32K L1 32K L1

10.66 GB/s

4MB
Shared L2

4MB
Shared L2

Sam Williams et al.

Core2 Core2 Core2 Core2

Associativity

 8

16

Access latency,
throughput (clocks)

 3, 1

14*,
2

Line Size = 64B (L1 and L2)

* Software-visible latency
will vary depending on
access patterns and
other factors

techreport.com/articles.x/10021/2

Write update policy:
Writeback

Examining Bang’s Memory Hierarchy
•  /proc/cpuinfo summarizes the processor

 vendor_id : GenuineIntel
 model name : Intel(R) Xeon(R) CPU E5345 @2.33GHz
  cache size : 4096 KB
  cpu cores : 4

•  processor : 0 through processor : 7

©2013 Scott B. Baden / CSE 160 / Fall 2013 15

32K L1

FSB

32K L1 32K L1 32K L1

4MB
Shared L2

4MB
Shared L2

Core2 Core2 Core2 Core2

10.66 GB/s

32K L1

FSB

32K L1 32K L1 32K L1

10.66 GB/s

4MB
Shared L2

4MB
Shared L2

Core2 Core2 Core2 Core2

Detailed memory hierarchy information
•  /sys/devices/system/cpu/cpu*/cache/index*/*
•  Login to bang and view the files

©2013 Scott B. Baden / CSE 160 / Fall 2013 16

32K L1

FSB

32K L1 32K L1 32K L1

4MB
Shared L2

4MB
Shared L2

Core2 Core2 Core2 Core2

10.66 GB/s

32K L1

FSB

32K L1 32K L1 32K L1

10.66 GB/s

4MB
Shared L2

4MB
Shared L2

Core2 Core2 Core2 Core2

Today’s lecture
•  The memory hierarchy
•  Cache Coherence and Consistency
•  Implementing synchronization
•  False sharing

©2013 Scott B. Baden / CSE 160 / Fall 2013 17

Cache Coherence
•  A central design issue in shared memory

architectures
•  Processors may read and write the same cached

memory location
•  If one processor writes to the location, all others

must eventually see the write

X:=1 Memory

18 ©2013 Scott B. Baden / CSE 160 / Fall 2013

Cache Coherence
•  P1 & P2 load X from main memory into cache
•  P1 stores 2 into X
•  The memory system doesn’t have a coherent value

for X

X:=1 Memory

P2
X:=1 P1 X:=1 X:=2

19 ©2013 Scott B. Baden / CSE 160 / Fall 2013

Cache Coherence Protocols
•  Ensure that all processors eventually see the same

value
•  Two policies

 Update-on-write (implies a write-through cache)
  Invalidate-on-write

X:=2 Memory
P2

P1

X:=2

X:=2 X:=2

20 ©2013 Scott B. Baden / CSE 160 / Fall 2013

SMP architectures
•  Employ a snooping protocol to ensure

coherence
•  Cache controllers listen to bus activity

updating or invalidating cache as needed

21 ©2013 Scott B. Baden / CSE 160 / Fall 2013

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction

Patterson & Hennessey

Memory consistency and correctness
•  Cache coherence tells us that memory will

eventually be consistent
•  The memory consistency policy tells us when

this will happen
•  Even if memory is consistent, changes don’t

propagate instantaneously
•  These give rise to correctness issues

involving program behavior

22 ©2013 Scott B. Baden / CSE 160 / Fall 2013

23

Memory consistency
•  A memory system is consistent if the

following 3 conditions hold
 Program order (you read what you wrote)
 Definition of a coherent view of memory

(“eventually”)
 Serialization of writes (a single frame of

reference)

©2013 Scott B. Baden / CSE 160 / Fall 2013

24

Program order
•  If a processor writes and then reads the same

location X, and there are no other intervening
writes by other processors to X , then the read
will always return the value previously
written.

X:=2 Memory

P

X:=2

X:=2

©2013 Scott B. Baden / CSE 160 / Fall 2013

25

Definition of a coherent view of memory
•  If a processor P reads from location X that

was previously written by a processor Q ,
then the read will return the value previously
written, if a sufficient amount of time has
elapsed between the read and the write.

X:=1 Memory

Q
X:=1 P

Load X

X:=1

©2013 Scott B. Baden / CSE 160 / Fall 2013

26

Serialization of writes

•  If two processors write to the same location
X, then other processors reading X will
observe the same the sequence of values in
the order written

•  If 10 and then 20 is written into X, then no
processor can read 20 and then 10

©2013 Scott B. Baden / CSE 160 / Fall 2013

Memory consistency models
•  Should it be impossible for both if statements to

evaluate to true?
•  With sequential consistency the results should

always be the same provide that
 Each processor keeps its access in the order made
 We can’t say anything about the ordering across

different processors: access are interleaved
arbitrarily

28 ©2013 Scott B. Baden / CSE 160 / Fall 2013

Processor 1 Processor 2
A=0
…
A=1
if (B==0) …

B=0
…
B=1
if (A==0) …

Undefined behavior in C++11
 Global
 int x, y;

 Thread 1 Thread 2
 x =17 cout << y << " ";
 y = 37; cout << x << endl;

29 ©2013 Scott B. Baden / CSE 160 / Fall 2013

•  Compiler may rearrange statements to improve
performance

•  Processor may rearrange order of instructions
•  Memory system may rearrange order that writes are

committed
•  Memory might not get updated; “eventually can be

a long time” (though in practice it’s often not)

Undefined behavior in earlier versions of C++
 Global
 int x, y;

 Thread 1 Thread 2
 char c; char b;
 c=1; b =1;

 int x=c; int y=b;

30 ©2013 Scott B. Baden / CSE 160 / Fall 2013

•  In C++11, x=1 and y=1;
they are “separate memory locations”

•  But in earlier dialects you might get 1&0, 0&1, 1&1
•  The linker could allocate b and c next to each other

in the same word of memory
•  Modern processors can’t write a single byte, so they

have to do read-modify-write

Today’s lecture
•  The memory hierarchy
•  Cache Coherence and Consistency
•  Implementing synchronization
•  False sharing

©2013 Scott B. Baden / CSE 160 / Fall 2013 32

Implementing Synchronization
•  We build mutex and other synchronization primitives with special

atomic operations, implemented with a single machine instruction, e.g.
CMPXCHG

•  Do atomically: compare contents of memory location loc to expected;
if they are the same, modify the location with newval

CAS (*loc , expected , newval) {

 if (*loc == expected) {
 *loc = newval;
 return 0;
 }
 else
 return 1

•  We can then build mutexes with CAS

 Lock(*mutex) {

 while (CAS (*mutex , 1, 0)) ;
 }

 Unlock(*mutex) { *mutex = 1; }

©2013 Scott B. Baden / CSE 160 / Fall 2013 33

Memory fences
•  How are we assured that a value updated within a critical

section becomes visible to all other threads?
•  With a fence instruction, e.g. MFENCE
•  “A serializing operation guaranteeing that every load and store

instruction that precedes, in program order, the MFENCE
instruction is globally visible before any load or store instruction
that follows the MFENCE instruction is globally visible.”
[Intel 64 & IA32 architectures software developer manual]

•  Also see www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html

mutex mtx;
…
mutex.mtx.lock();
sum += local sum;
mutex.mtx.unlock();

©2013 Scott B. Baden / CSE 160 / Fall 2013 34

Today’s lecture
•  The memory hierarchy
•  Cache Coherence and Consistency
•  Implementing synchronization
•  False sharing

©2013 Scott B. Baden / CSE 160 / Fall 2013 37

False sharing

•  Consider two processors that write to
different locations mapping to different parts
of the same cache line

Main memory

P1 P0

38 ©2013 Scott B. Baden / CSE 160 / Fall 2013

False sharing

•  P0 writes a location
•  Assuming we have a write-through cache,

memory is updated

P0

39 ©2013 Scott B. Baden / CSE 160 / Fall 2013

False sharing

•  P1 reads the location written by P0
•  P1 then writes a different location in the same

block of memory

P0 P1

40 ©2013 Scott B. Baden / CSE 160 / Fall 2013

False sharing

•  P1’s write updates main memory
•  Snooping protocol invalidates the

corresponding block in P0’s cache

P0 P1

41 ©2013 Scott B. Baden / CSE 160 / Fall 2013

False sharing

Successive writes by P0 and P1 cause the
processors to uselessly invalidate one
another’s cache

P0 P1

42 ©2013 Scott B. Baden / CSE 160 / Fall 2013

Eliminating false sharing

•  Cleanly separate locations updated by different
processors
 Manually assign scalars to a pre-allocated region of

memory using pointers
 Spread out the values to coincide with a cache line

boundaries

43 ©2013 Scott B. Baden / CSE 160 / Fall 2013

How to avoid false sharing
•  Reduce number of accesses to shared state
•  False sharing occurs a small fixed number of

times

©2013 Scott B. Baden / CSE 160 / Fall 2013 44

static int counts[];
for (int k = 0; k<reps; k++)
 for (int r = first; r <= last; ++ r)
 if ((values[r] % 2) == 1)
 counts[TID]++;

int _count = 0;
for (int k = 0; k<reps; k++){
 for (int r = first; r <= last; ++ r)
 if ((values[r] % 2) == 1)
 _count++;
 counts[TID] = _count;
}

4.7s, 6.3s, 7.9s, 10.4 [NT=1,2,4,8] 3.4s, 1.7s, 0.83, 0.43 [NT=1,2,4,8]

Spreading
•  Put each counter in its own cache line

©2013 Scott B. Baden / CSE 160 / Fall 2013 45

static int counts[];
for (int k = 0; k<reps; k++)
 for (int r = first; r <= last; ++ r)
 if ((values[r] % 2) == 1)
 counts[TID]++;

static int counts[][LINE_SIZE];
for (int k = 0; k<reps; k++)
 for (int r = first; r <= last; ++ r)
 if ((values[r] % 2) == 1)
 counts[TID][0]++;

0 1 2 3 4 5 6 7 31
0 1 2 3 4 5 6 7 31
0 1 2 3 4 5 6 7 31
0 1 2 3 4 5 6 7 31

NT=1 NT=2 NT=4 NT=8
Unoptimized 4.7 sec 6.3 7.9 10.4
Optimized 4.7 5.3 1.2 1.3

©2013 Scott B. Baden / CSE 160 / Fall 2013 46

Cache performance bottlenecks in
nearest neighbor computations

•  Recall the image smoothing algorithm

for (i,j) in 0:N-1 x 0:N-1

 Inew [i,j] = (I[i-1,j] + I[i+1,j]+ I[i,j-1]+ I[i, j+1])/4

Original 100 iter 1000 iter

©2013 Scott B. Baden / CSE 160 / Fall 2013 47

Memory access pattern
•  Some nearest neighbors in space are far apart in memory
•  Stride = N along the vertical dimension

for (i,j) in 0:N-1 x 0:N-1

 Inew [i,j] = (I[i-1,j] + I[i+1,j]+ I[i,j-1]+ I[i, j+1])/4

False sharing and conflict misses
•  False sharing involves internal boundaries, poor spatial locality,

cache line internally fragmented
•  Large memory access strides: conflict misses, poor cache locality
•  Even worse in 3D: large strides of N2

•  Contiguous access on a single processor

P 2 P 3

P 5 P 6 P 7 P 4

P 8

P 0 P 1

Parallel
Computer
Architecture,
Culler, Singh,
& Gupta

On a single processor On multiple processors

©2013 Scott B. Baden / CSE 160 / Fall 2013 48

Cache block
straddles boundary

