CSE 160
Lecture 5

The Memory Hierarchy
False Sharing
Cache Coherence and
Consistency

Scott B. Baden

Using Bang — coming down the home stretch
* Do not use Bang’s front end for running mergeSort
Use batch, or interactive nodes, via glogin
Use the front end for editing & compiling only

Fabric

cpu | cPu PU nimet 10% penalty for
. . ' Other 18 submets using the login
Processor odes nodes improperly,
as doubles with each
3 __lap ‘g]
__.. incident!
swrage NIE
mieree Nae

sc SI HCA = InfinBand chanmel adapter in processor node
themt Orqrhlc V‘d°° TCA = IntinBand channel adapter in VO node
Fibre ch-mol
hub & FC
devices

©2013 Scott B. Baden / CSE 160 / Fall 2013

Announcements
 SDSC Tour on Friday 11/1

Processor node

CPUICPU R CPU
Processor node

CPUJ CPU RLD CPU Fabric

T subnet
cPUj CPU cPU HCA i Mcm HCA

Mam o HCA H ” - = /
RAID subsystem .whb Router
scsi

Processor

SCS|
SCS| Mem) ~ Al
scs| TcA P T
=

Swrge NDO
sbersten Na@

HCA . Mem o HCA

Other IB subnets
WANs
LANs
Processor modes

. .
. Storage

il _J -

\

!8

i

HFE R RS EE
ol o] ¢| ¢ o EE Times
ﬂ/ 4 l A N HCA = InfinBand chanmel adapter in processor node
SCS! gthermet Graphics Video TCA - IntinBand channel adapter In 1O node
Fibre channel
heb & FC
devices

©2013 Scott B. Baden/ CSE 160/ Fall 2013

Today’s lecture
The memory hierarchy
Cache Coherence and Consistency
Implementing synchronization

False sharing

The processor-memory gap

* The result of technological trends
 Difference in processing and memory speeds
growing exponentially over time

.. v~ uProc

1000 U 60%yr
O “Moore’s Law” ‘
>’
§ 100 | o Pricessor-Memory
E Performance Gap:
"5 (grows 50% / year)
Q: 10 .. e e
L ' ' v DRAM
n-‘ DRAM 7%/yl'.

©2013 Scott B. Baden / CSE 160 / Fall 2013

An important principle: locality

 Memory accesses exhibit two forms of locality
» Temporal locality (time)
» Spatial locality (space)

« Often involves loops

* Opportunities for reuse Smaller and faster

e Idea: construct a small &
fast memory to cache 1 0 64 KB
re-used data 256KB to 4 MB

1CP (1 word)

2-3 CP (10 to 100 B)

L2 0(10) CP (10 - 100 B)

0(100) CP
for t=0 to T-1 GB PRAM \

fori=1to N-2
ulil=(uli-1] + uli+1])/2 TB to PB Disk O(10%) CP

©2013 Scott B. Baden / CSE 160/ Fall 2013 6

The Benefits of Cache Memory

Let say that we have a small fast memory
that 1s 10 times faster (access time) than

main memory ...

If we find what we are looking for |f=

90% of the time (a hit), the access

= ERE B
alajlalal|ls &
oo |m|m ()
> o

x|x|x|9 2
wlNn = |lo<

time approaches that of fast memory

T, ..;=090x1+(1-09)x10= 1.9
Memory appears to be 5 times faster
We organize the references by blocks

We can have multiple levels of cache

Sidebar

If cache memory access time 1s 10 times
faster than main memory ...

Cache “hit time” Teache= Tmain /1()
Tmain is the cache miss penalty

And 1f we find what we are looking for f x
100% of the time (“cache hit rate”) ...

Access time = f x Teache + (1- f) x Tmain
={ x Tmam /10 + (1- f) x Tman
= (1-(91/10)) x Tmam

We are now 1/(1-(91/10)) times faster

To simplify, we use Tcache= 1 Tman = 1()

Different types of caches
Separate Instruction (I) and Data (D)
Unified (I+D)
Direct mapped / Set associative
Write Through / Write Back
Allocate on Write / No Allocate on Write
Last Level Cache (LLC)

Translation

[.ookaside Buffer [-

(TLB)

-

32K L1|32K L1

4MB
re

32K L1|32K L1 32K L1|32KL1§ |32KL1|32K L1
4MB 4MB 4MB
Shared L2 Shared ared L2

_

FSB
66 GBrs

©2013 Scott B. Baden / CSE 160 / Fall 2013

A\ 4

Direct mapped cache
* Simplest cache

Line O:| |valid tag cache block
selected line > Line 1:1 Ivalid tag cache block

thits sbits) b bits _ :
00 00 1 Line 1 S-1:|valid tag cache block

m-1

tag Line index block offset °

©2013 Scott B. Baden / CSE 160/ Fall 2013 10

Accessing a Direct mapped cache

=1? (1) The valid bit must be set

A

0 1 2 3 4 5 6 7

selected line (i): | [1 0110 [wg [w, [wy [w |

(2) The tag bits for the cache "
: ?
line must match the

tag bits in the address I

(3) If (1) and (2) are true,

: t bits K s bits 4 b bits A then we ha..VG a
0110 i 100 cache hit;
™ tag Line index block offset ° the block offset

selects
starting byte.

©2013 Scott B. Baden / CSE 160 / Fall 2013 1

Set associative cache

* Why use the middle bits for the index?

1 valid T tag bits g=-2b bytes T bits s bits b bits
bit per per line per cache block
“ne r L 1 T 1 1
valid || tag 01 - |B-1 '\“‘1 U o /O
set O: 4 Y block Y
valid |[tag J[o0] 1 [---]B1 <tag> <set index> <block offset>
valid tag 0|1 - [B-1 <
set 1. e
valid tag 0|1 - |B-1
valid tag 0] 1 - [B-1
set S-1 e Q //—\/\ Q
valid tag 0] 1 - |B-1 %*:

©2013 Scott B. Baden / CSE 160 / Fall 2013

12

The 3 C’s of cache misses

* (Cold Start
» Capacity
o Conflict

Line Size = 64B (L1 and L2)

(s o
=) B

(s o

32K L1 | 32K L1 32K L1 | 32K L1 32K L1 | 32K L1 32K L1 | 32K L1
4MB 4MB 4MB 4MB
Shared L2 Shared L2 Shared L2 Shared L2
NG — 2 G i —
FSB FSB
10.66 GB/s 10.66 GB/s
Chipset (4x64b controllers) I

21.3 GB/s(read) | | | | 10.6 GB/s(write)

667MHz FBDIMMs |

©2013 Scott B. Baden / CSE 160 / Fall 2013 13

Sam Williams et al.

Bang's Memory Hlerarchy

 Intel “Clovertown” processor
 Intel Xeon E5355 (Introduced: 2006)
 Two “Woodcrest” dies (Core2)

on a multichip module

i TWO “SOCketS” techreport.com/articles.x/10021/2
» Intel 64 and IA-32 Architectures Optimization Reference Manual, Tab 2.16

Line Size = 64B (L1 and L2)

Associativit

Access latency, (. N\ 7/~ ~\ y
throughput (clocks) | [(R | |))

3, 1 32K L1 | 32K L1 32K L1 | 32K L1 32K L1 | 32K L1 32K L1 | 32K L1 8

% 4MB 4MB 4MB 4MB
1 4 5 Shared L2 Shared L2 Shared L2 Shared L2 1 6
2 _ \Q ~/
FSB FSB
10.66 GB/s 10.66 GB/s . .
* Software-visible latency I Write update policy:
. . Chipset (4x64b controllers) 1
will vary depending on Writeback

access patterns and 21.3 GBs(read) | | | | 10.6 GB/s(write)

other factors I

667MHz FBDIMMs

Sam Williams et al.

©2013 Scott B. Baden / CSE 160 / Fall 2013 14

Examining Bang’'s Memory Hierarchy

 /proc/cpuinfo summarizes the processor

» vendor 1d : Genuinelntel
» model name : Intel(R) Xeon(R) CPU E5345 @2.33GHz

» cache size : 4096 KB
» Cpu cores : 4
» processor : 0 through processor :7

4)

4MB 4MB
Shared L2 Shared L2

S
N
Sl =]
172}
S
@
N
K
N
K

©2013 Scott B. Baden / CSE 160 / Fall 2013 15

Detailed memory hierarchy information

 /sys/devices/system/cpu/cpu*/cache/index™/*
* Login to bang and view the files

4)
N B | | B e

32K L1|32K L1} [32KL1|32K L1 32K L1|32KL1§ |32KL1|32K L1
4MB 4MB 4MB 4MB
Shared L2 Shared L2 Shared L2 Shared L2

FSB FSB

\ 10.66 GB/s / N 10.66 GB/s /

A 2 A 2

K
N

©2013 Scott B. Baden / CSE 160 / Fall 2013

Today’s lecture
* Cache Coherence and Consistency

e Implementing synchronization

 False sharing

©2013 Scott B. Baden / CSE 160 / Fall 2013

17

Cache Coherence
* A central design 1ssue in shared memory

architectures

* Processors may read and write the same cached

memory location

 If one processor writes to the location, all others
must eventually see the write

Memory

18

Cache Coherence

Pl & P2 load X from main memory into cache
P1 stores 2 into X
T

ne memory system doesn’t have a coherent value
for X

X:=1 Memory

P2

©2013 Scott B. Baden / CSE 160/ Fall 2013 19

Cache Coherence Protocols

* Ensure that all processors eventually see the same
value
* Two policies
» Update-on-write (implies a write-through cache)
» Invalidate-on-write

Memory P>

Pl X:=

X:=

©2013 Scott B. Baden / CSE 160 / Fall 2013

20

SMP architectures

* Employ a snooping protocol to ensure

coherence

» Cache controllers listen to bus activity
updating or invalidating cache as needed

6 Bus snoop

$

]

&

Mem ‘ I/0O devices

©2013 Scott B. Baden / CSE 160/ Fall 2013

\

Cache-memory
transac tion

21

Memory consistency and correctness

Cache coherence tells us that memory will
eventually be consistent

The memory consistency policy tells us when
this will happen

Even 1f memory 1s consistent, changes don’t
propagate instantaneously

These give rise to correctness 1ssues
involving program behavior

22

Memory consistency

* A memory system 1s consistent if the
following 3 conditions hold

» Program order (you read what you wrote)

» Definition of a coherent view of memory
(“eventually”)

» Serialization of writes (a single frame of
reference)

23

Program order

 If a processor writes and then reads the same
location X, and there are no other intervening
writes by other processors to X , then the read
will always return the value previously
written.

X:=2 Memory

24

Definition of a coherent view of memory

 [faprocessor P reads from location X that
was previously written by a processor Q ,
then the read will return the value previously
written, 1f a sufficient amount of time has
elapsed between the read and the write.

X:=1 Memory

RONERC

Load X

25

Serialization of writes

 If two processors write to the same location
X, then other processors reading X will
observe the same the sequence of values in

the order written

e If 10 and then 20 1s written into X, then no
processor can read 20 and then 10

26

Memory consistency models

o
 Should it be impossible for both if statements to ;%‘
evaluate to true?

* With sequential consistency the results should
always be the same provide that

» Each processor keeps its access in the order made

» We can’t say anything about the ordering across
different processors: access are interleaved

arbitrarily
Processor 1 Processor 2
A=0 B=0
A=1 B=1
if (B==0) ... if (A==0) ...

©2013 Scott B. Baden / CSE 160/ Fall 2013 28

Undefined behavior in C++11

Global L
. &R
int x,y; , &

Thread 1 Thread 2

x =17 cout<< y <<"";

y = 37; cout << x << endl;

Compiler may rearrange statements to improve
performance

Processor may rearrange order of instructions

Memory system may rearrange order that writes are
committed

Memory might not get updated; “eventually can be
a long time” (though in practice 1t’s often not)

29

Undefined behavior in earlier versions of C++
Global

. T A
| nt X, y; ;j’ :
Thread 1 Thread 2
char c; char b;
c=1; b =I;
int X=c; int y=b;

In C++11, x=1 and y=1;
they are “separate memory locations™

But in earlier dialects you might get 1&0, 0&1, 1&1

The linker could allocate b and ¢ next to each other
in the same word of memory

Modern processors can’t write a single byte, so they
have to do read-modify-write

©2013 Scott B. Baden / CSE 160/ Fall 2013 30

Today’s lecture

e Implementing synchronization

 False sharing

©2013 Scott B. Baden / CSE 160 / Fall 2013

32

Implementing Synchronization

* We build mutex and other synchronization primitives with special

atomic operations, implemented with a single machine instruction, e.g.
CMPXCHG

* Do atomically: compare contents of memory location loc to expected;
if they are the same, modify the location with newval

CAS (*loc, expected, newval) {
if (*loc == expected) {
*loc = newval;
return O;

;

else
return 1

« We can then build mutexes with CAS

Lock(*mutex) {
while (CAS (*mutex , 1, 0)) ;

b

Unlock(*mutex) { *mutex = 1; }

©2013 Scott B. Baden / CSE 160/ Fall 2013 33

Memory fences

How are we assured that a value updated within a critical
section becomes visible to all other threads?

With a fence instruction, e.g. MFENCE

“A serializing operation guaranteeing that every load and store
instruction that precedes, in program order, the MFENCE
instruction 1s globally visible before any load or store instruction
that follows the MFENCE instruction 1s globally visible.”

[Intel 64 & 1A32 architectures software developer manual]

Also see www.cl.cam.ac.uk/~pes20/cpp/cppOxmappings.html
mutex mtx;

mutex.mtx.lock();
sum += local sum;
mutex.mtx.unlock();

34

Today’s lecture

 False sharing

©2013 Scott B. Baden / CSE 160 / Fall 2013

37

False sharing

* Consider two processors that write to
different locations mapping to different parts
of the same cache line

Main memory

©2013 Scott B. Baden / CSE 160 / Fall 2013 38

False sharing

PO writes a location

* Assuming we have a write-through cache,
memory 1s updated

P

©2013 Scott B. Baden/ CSE 160/ Fall 2013

39

False sharing

* P1 reads the location written by PO

 P1 then writes a different location in the same
block of memory

|

©2013 Scott B. Baden / CSE 160 / Fall 2013 40

False sharing

* P1’s write updates main memory

* Snooping protocol invalidates the
corresponding block in PO’s cache

©2013 Scott B. Baden / CSE 160/ Fall 2013

41

False sharing

Successive writes by PO and P1 cause the
processors to uselessly invalidate one
another’s cache

©2013 Scott B. Baden / CSE 160/ Fall 2013

42

Eliminating false sharing

* Cleanly separate locations updated by different
Processors

» Manually assign scalars to a pre-allocated region of
memory using pointers

» Spread out the values to coincide with a cache line
boundaries I I

43

How to avoid false sharing

e Reduce number of accesses to shared state

* False sharing occurs a small fixed number of
times

static int counts|[]; int count = 0

for (int k = 0; k<reps; k++) for (int k = 0; k<reps; k++){
for (int r = first; r <= last; ++1) for (int r = first; r <= last; ++ r)
if ((values[r] % 2) == 1) if ((values[r] % 2) = 1)
counts[TID]++; count++;

counts[TID] = count;

b

4.7s,6.3s,7.9s, 10.4 [NT=1,2,4,8] 3.4s, 1.7s, 0.83, 0.43 [NT=1,2,4,8]

©2013 Scott B. Baden / CSE 160 / Fall 2013

44

Spreading
 Put each counter in its own cache line

X131
X131
X131
X131

static int counts[]; static int counts[][LINE_SIZE];

for (int k = 0; k<reps; k++) for (int k = 0; k<reps; k++)
for (int r = first; r <= last; ++ r) for (int r = first; r <= last; ++1)
if ((values[r] % 2) == 1) if ((values[r] % 2) == 1)
counts[TID]++; counts[TID][0]++;
Unoptimized 4.7 sec 10.4
Optimized 4.7 5.3 1.2 1.3

©2013 Scott B. Baden/ CSE 160/ Fall 2013 45

Cache performance bottlenecks in
nearest neighbor computations

« Recall the image smoothing algorithm

for (i,j) in O:N-1 x O:N-1
I"eW Ti,jl = CI[i-1,5] + Wi+ 1,51+ Wi, j-11+ I[i, j+11)/4

LI+1

+1,7
\ ST

LJ-1

Original 100 iter 1000 iter

©2013 Scott B. Baden / CSE 160/ Fall 2013 46

Memory access pattern

« Some nearest neighbors 1n space are far apart in memory
« Stride = N along the vertical dimension

for (i,j) in O:N-1 x O:N-1
I"eW Ti,jl = CI[i-1,5] + Wi+ 1,51+ MWi,j-11+ i, j+11)/4

y i, j-1 i=1,) 1, i+1,] i,j+1
By [[1] | | |
Ec | | | |
Linear array space

©2013 Scott B. Baden / CSE 160 / Fall 2013

47

False sharing and conflict misses

False sharing involves internal boundaries, poor spatial locality,
cache line internally fragmented

Large memory access strides: conflict misses, poor cache locality
Even worse in 3D: large strides of N?]

Contiguous access on a single processor Cache block

47/\ straddles boundary
U

Py P Py / B3
/

eecocooe

(XXX XXX Py Ps Pg# Ph

0000000 [

eeococooe

eeococooe

eeecocooe

eeccooe Pg
Parallel
Computer
Architecture,
Culler, Singh,
& Gupta

On a single processor On multiple processors

48

