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Using Bang – coming down the home stretch 
•  Do not use Bang’s front end for running mergeSort 
•  Use batch, or interactive nodes, via qlogin 
•  Use the front end for editing & compiling only 
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10% penalty for 
using the login 
nodes improperly, 
doubles with each 
incident! 
 

EE Times 



Announcements 
•  SDSC Tour on Friday 11/1 
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EE Times 



Today’s lecture 
•  The memory hierarchy 
•  Cache Coherence and Consistency 
•  Implementing synchronization 
•  False sharing 
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The processor-memory gap 
•  The result of technological trends 
•  Difference in processing and memory speeds 

growing exponentially over time 
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µProc 
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DRAM 
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An important principle:  locality 
•  Memory accesses exhibit two forms of locality 

 Temporal locality (time) 
 Spatial locality (space) 

•  Often involves loops  
•  Opportunities for reuse 
•  Idea: construct a small & 

fast memory to cache 
re-used data 
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O(100) CP 

O(10) CP (10 - 100 B) 

Disk 

DRAM 

L2 

CPU 

L1 2-3 CP (10 to 100 B) 

TB to PB 

256KB to 4 MB 

O(106) CP 
GB 

32 to 64 KB 

1CP (1 word) 

Smaller and faster 

for t=0 to T-1 
     for i = 1 to N-2 
       u[i]=(u[i-1] +  u[i+1])/2 
 



The Benefits of Cache Memory 
•  Let say that we have a small fast memory 

that  is 10 times faster (access time) than 
main memory … 

•  If we find what we are looking for 
90% of the time (a hit), the access 
time approaches that of fast memory 

•  Taccess = 0.90 × 1 + (1-0.9) × 10 =  1.9 
•  Memory appears to be 5 times faster 
•  We organize the references by blocks 
•  We can have multiple levels of cache 
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Sidebar 
•  If cache memory access time is 10 times 

faster than main memory … 
•  Cache “hit time”    Tcache =  Tmain  / 10 
•  Tmain is the cache miss penalty 
•  And if we find what we are looking for f × 

100% of the time (“cache  hit rate”) … 
•  Access time = f × Tcache + (1- f ) × Tmain  

                = f × Tmain /10 + (1- f ) × Tmain  

            = (1-(9f/10)) × Tmain 
•  We are now 1/(1-(9f/10)) times faster 
•  To simplify, we use Tcache = 1, Tmain  =  10  
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Different types of caches 
•  Separate Instruction (I) and Data (D) 
•  Unified (I+D) 
•  Direct mapped / Set associative 
•  Write Through / Write Back 
•  Allocate on Write / No Allocate on Write 
•  Last  Level Cache (LLC) 
•  Translation 

Lookaside Buffer 
(TLB) 
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Direct mapped cache 
•  Simplest cache 
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Randal E. Bryant and 
David R. O 
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Accessing a Direct mapped cache 
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Randal E. Bryant and 
David R. O 
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Set associative cache 
•  Why use the middle bits for the index? 
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Randal E. Bryant and 
David R. O 
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The 3 C’s of cache misses 

•  Cold Start 
•  Capacity 
•  Conflict 
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Bang’s Memory Hierarchy 
•  Intel “Clovertown” processor 
•  Intel Xeon E5355 (Introduced: 2006) 
•  Two “Woodcrest” dies (Core2) 

on a multichip module 
•  Two “sockets” 
•  Intel 64 and IA-32 Architectures Optimization Reference Manual, Tab 2.16 
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Write update policy: 
Writeback  



Examining Bang’s Memory Hierarchy 
•  /proc/cpuinfo summarizes the processor 

 vendor_id     : GenuineIntel 
 model name : Intel(R) Xeon(R) CPU E5345 @2.33GHz 
  cache size      : 4096 KB 
  cpu cores       : 4 

•  processor  : 0 through  processor       : 7 
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Detailed memory hierarchy information 
•  /sys/devices/system/cpu/cpu*/cache/index*/* 
•  Login to bang and view the files 
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Today’s lecture 
•  The memory hierarchy 
•  Cache Coherence and Consistency 
•  Implementing synchronization 
•  False sharing 
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Cache Coherence 
•  A central design issue in shared memory 

architectures 
•  Processors may read and write the same  cached 

memory location 
•  If one processor writes to the location, all others 

must eventually see the write 

X:=1 Memory 
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Cache Coherence 
•  P1 & P2 load X from main memory into cache 
•  P1 stores 2 into X 
•  The memory system doesn’t have a coherent value 

for X 

X:=1 Memory 

P2 
X:=1 P1 X:=1 X:=2 
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Cache Coherence Protocols 
•  Ensure that all processors eventually see the same 

value 
•  Two policies  

 Update-on-write (implies a write-through cache) 
  Invalidate-on-write 

X:=2 Memory 
P2 

P1 

X:=2 

X:=2 X:=2 
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SMP architectures 
•  Employ a snooping protocol to ensure 

coherence 
•  Cache controllers listen to bus activity 

updating or invalidating cache as needed 
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Memory consistency and correctness 
•  Cache coherence tells us that memory will 

eventually be consistent 
•  The memory consistency policy tells us when 

this will happen 
•  Even if memory is consistent, changes don’t 

propagate instantaneously 
•  These give rise to correctness issues 

involving program behavior  
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Memory consistency 
•  A memory system is consistent if the 

following 3 conditions hold 
 Program order (you read what you wrote) 
 Definition of a coherent view of memory 

(“eventually”) 
 Serialization of writes (a single frame of 

reference) 
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Program order 
•  If a processor writes and then reads the same 

location X, and there are no other intervening 
writes by other processors to X , then the read 
will always return the value previously 
written. 

X:=2 Memory 

P 

X:=2 

X:=2 
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Definition of a coherent view of memory 
•  If a processor P reads from location X that 

was previously written by a processor Q , 
then the read will return the value previously 
written, if a sufficient amount of time has 
elapsed between the read and the write. 

X:=1 Memory 

Q 
X:=1 P 

Load X 

X:=1 
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Serialization of writes 

•  If two processors write to the same location 
X, then other processors reading X will 
observe the same the sequence of values in 
the order written 

•  If 10 and then 20 is written into X, then no  
processor can read 20 and then 10  
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Memory consistency models 
•  Should it be impossible for both if statements to 

evaluate to true? 
•  With sequential consistency the results should 

always be the same provide that 
 Each processor keeps its access in the order made 
 We can’t say anything about the ordering across 

different processors: access are interleaved 
arbitrarily 
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Processor 1 Processor 2 
A=0 
… 
A=1 
if (B==0) … 

B=0 
… 
B=1 
if (A==0) … 



Undefined behavior in C++11 
          Global 
                           int  x, y; 

 Thread 1                 Thread 2 
 x =17   cout <<  y  << " "; 
 y = 37;              cout <<  x << endl; 
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•  Compiler may rearrange statements to improve 
performance 

•  Processor may rearrange order of instructions 
•  Memory system may rearrange order that writes are 

committed 
•  Memory might not get updated; “eventually can be 

a long time” (though in practice it’s often not) 



Undefined behavior in earlier versions of C++ 
          Global 
                           int  x, y; 

 Thread 1                 Thread 2 
 char c;   char b; 
 c=1;               b =1; 

          int x=c;   int y=b; 
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•  In C++11,  x=1 and y=1;  
they are “separate memory locations” 

•  But in earlier dialects you might get 1&0, 0&1, 1&1 
•  The linker could allocate b and c next to each other 

in the same word of memory 
•  Modern processors can’t write a single byte, so they 

have to do read-modify-write 



Today’s lecture 
•  The memory hierarchy 
•  Cache Coherence and Consistency 
•  Implementing synchronization 
•  False sharing 
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Implementing Synchronization 
•  We build mutex and other synchronization primitives with special 

atomic operations, implemented with a single machine instruction, e.g. 
CMPXCHG 

•  Do atomically: compare contents of memory location loc to expected; 
if they are the same, modify the location with newval 
 
CAS (*loc ,  expected ,  newval  ) { 

          if (*loc ==  expected ) { 
              *loc =  newval; 
               return 0;  
          }    
          else 
             return 1 
 
•  We can then build mutexes with CAS 

 
    Lock( *mutex ) { 

              while (CAS ( *mutex , 1, 0)) ; 
          } 
 
          Unlock( *mutex ) { *mutex =  1; } 
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Memory fences 
•  How are we assured that a value updated within a critical 

section becomes visible to all other threads? 
•  With a fence instruction, e.g. MFENCE 
•  “A serializing operation guaranteeing that every load and store 

instruction that precedes, in program order, the MFENCE 
instruction is globally visible before any load or store instruction 
that follows the MFENCE instruction is globally visible.” 
[Intel 64 & IA32 architectures software developer manual] 

•  Also see www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 
  
mutex mtx; 
… 
mutex.mtx.lock();  
sum += local sum; 
mutex.mtx.unlock(); 
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Today’s lecture 
•  The memory hierarchy 
•  Cache Coherence and Consistency 
•  Implementing synchronization 
•  False sharing 
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False sharing 

•  Consider two processors that write to 
different locations mapping to different parts 
of the same cache line 

Main memory 

P1 P0 
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False sharing 

•  P0 writes a location 
•  Assuming we have a write-through cache, 

memory is updated 

P0 
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False sharing 

•  P1 reads the location written by P0 
•  P1 then writes a different location in the same 

block of memory 

P0 P1 
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False sharing 

•  P1’s write updates main memory 
•  Snooping protocol invalidates the 

corresponding block in P0’s cache 

P0 P1 
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False sharing 

Successive writes by P0 and P1 cause the 
processors to uselessly invalidate one 
another’s cache 

P0 P1 
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Eliminating false sharing 

•  Cleanly separate locations updated by different 
processors 
 Manually assign scalars to a pre-allocated region of 

memory using pointers 
 Spread out the values to coincide with a cache line 

boundaries 
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How to avoid false sharing 
•  Reduce number of accesses to shared state 
•  False sharing occurs a small fixed number of 

times 
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static int counts[]; 
for (int k = 0; k<reps; k++) 
      for (int r = first; r <= last; ++ r) 
             if ((values[r] % 2) == 1) 
                     counts[TID]++; 
 

int _count = 0; 
for (int k = 0; k<reps; k++){ 
     for (int r = first; r <= last; ++ r) 
             if ((values[r] % 2) == 1) 
                   _count++; 
     counts[TID] = _count; 
} 
 

4.7s, 6.3s, 7.9s, 10.4 [NT=1,2,4,8]  3.4s, 1.7s, 0.83, 0.43 [NT=1,2,4,8]  



Spreading 
•  Put each counter in its own cache line 
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static int counts[]; 
for (int k = 0; k<reps; k++) 
        for (int r = first; r <= last; ++ r) 
                if ((values[r] % 2) == 1) 
                       counts[TID]++; 
 

static int counts[][LINE_SIZE]; 
for (int k = 0; k<reps; k++) 
     for (int r = first; r <= last; ++ r) 
             if ((values[r] % 2) == 1) 
             counts[TID][0]++;  
 

0 1 2 3 4 5 6 7 31 
0 1 2 3 4 5 6 7 31 
0 1 2 3 4 5 6 7 31 
0 1 2 3 4 5 6 7 31 

NT=1 NT=2 NT=4 NT=8 
Unoptimized 4.7 sec 6.3 7.9 10.4 
Optimized 4.7 5.3 1.2 1.3 
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Cache performance bottlenecks in 
nearest neighbor computations 

•  Recall the image smoothing algorithm 
 
for (i,j) in 0:N-1 x 0:N-1  

    Inew [i,j] =  ( I[i-1,j] + I[i+1,j]+ I[i,j-1]+ I[i, j+1])/4 
   

Original  100 iter   1000 iter 
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Memory access pattern  
•  Some nearest neighbors in space are far apart in memory 
•  Stride = N along the vertical dimension 

 
for (i,j) in 0:N-1 x 0:N-1  

    Inew [i,j] =  ( I[i-1,j] + I[i+1,j]+ I[i,j-1]+ I[i, j+1])/4 
   



False sharing and conflict misses 
•  False sharing involves internal boundaries, poor spatial locality, 

cache line internally fragmented 
•  Large memory access strides: conflict misses, poor cache locality 
•  Even worse in 3D:  large strides of N2 

•  Contiguous access on a single processor 

P 2 P 3 

P 5 P 6 P 7 P 4 

P 8 

P 0 P 1 

Parallel 
Computer 
Architecture, 
Culler, Singh, 
& Gupta 

On a single processor           On multiple processors 
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Cache block 
straddles boundary 


