

Scott B. Baden

CSE 160
Lecture 2

Programming with Threads

Parallel Sorting

Announcements
•  Makeup on 10/7
•  Quiz #1 on Weds 10/9
•  SVN

©2013 Scott B. Baden / CSE 160 / Fall 2013 2

Today’s lecture
•  Two applications with multithreading
•  Synchronization
•  Parallel Sorting

©2013 Scott B. Baden / CSE 160 / Fall 2013 3

Recall the Threads Programming model
•  Start with a single root thread
•  Fork-join parallelism to create

concurrently executing threads
•  Threads communicate via shared

memory
•  A spawned thread executes

asynchronously until it completes
•  Threads may or may not execute on

different processors

4 ©2013 Scott B. Baden / CSE 160 / Fall 2013

P P P

stack

. . .
Stack
(private)

Heap (shared)

C++11 Threads
•  Via <thread>, C++ supports a threading interface

similar to pthreads, though a bit more user friendly
•  Async is a higher level interface suitable for certain

kinds of applications
•  New memory model
•  Atomic template

©2013 Scott B. Baden / CSE 160 / Fall 2013 5

Hello world with <Threads>
#include <thread>
void Hello(int TID) {

 cout << "Hello from thread " << TID << endl;
}

int main(int argc, char *argv[]){
 thread *thrds = new thread[NT];

// Spawn threads
for(int t=0;t<NT;t++){
 thrds[t] = thread(Hello, t);
}

// Join threads
for(int t=0;t<NT;t++)
 thrds[t].join();
}

$./hello_th 3
Hello from thread 0
Hello from thread 1
Hello from thread 2
$./hello_th 3
Hello from thread 1
Hello from thread 0
Hello from thread 2
$./hello_th 4
Running with 4 threads
Hello from thread 0
Hello from thread 3
Hello from thread Hello from
thread 21

6 ©2013 Scott B. Baden / CSE 160 / Fall 2013

$PUB/Examples//Threads/Hello-Th

PUB = /share/class/public/cse160-fa13

Steps in writing multithreaded code
•  We write a thread function that gets called each time we

spawn a new thread
•  Spawn threads by constructing objects of class Thread

(in the C++ library)
•  Each thread runs on a separate processing core

(If more threads than cores, the threads share cores)
•  Join threads so we know when they are done

7 ©2013 Scott B. Baden / CSE 160 / Fall 2013

A first application
•  Sum a list of integers

for i = 0:N-1
 sum = sum + x[i];

•  Partition x[] into intervals, assign each to a unique thread
•  Each thread sweeps over a reduced problem

8 ©2013 Scott B. Baden / CSE 160 / Fall 2013

 T0 T1 T2 T3

x

∑ ∑

∑ ∑

∑ Global ∑

First version of summing code

 int* x;
Main():
 int64_t global_sum;
 for(int t=0; t<NT; t++){
 thrds[t] = thread(sum,t,N,NT);

10 ©2013 Scott B. Baden / CSE 160 / Fall 2013

void sum(int TID, int N, int NT){
 int64_t i0 = TID*(N/NT), i1 = i0 + (N/NT);
 int64_t local_sum=0;
 for (int i=i0; i<i1; i++)
 local_sum += x[i];
 global_sum += local_sum
}

Steps in writing multithreaded code (II)
•  We write a thread function that gets called each time we

spawn a new thread
•  Spawn threads by constructing objects of class Thread

(in the C++ library)
•  Each thread runs on a separate processing core

(If more threads than cores, the threads share cores)
•  Join threads so we know when they are done
•  Threads share memory

11 ©2013 Scott B. Baden / CSE 160 / Fall 2013

Today’s lecture
•  Two applications with multithreading
•  Synchronization
•  Parallel Sorting

©2013 Scott B. Baden / CSE 160 / Fall 2013 12

Results
•  The program usually runs correctly
•  But sometimes it produces incorrect results:

Result verified to be INCORRECT, should be 549756338176
•  What happened?
•  There is a conflict when updating

global_sum: a data race

©2013 Scott B. Baden / CSE 160 / Fall 2013 13

P P P

stack

. . .

gsum

Stack
(private)

Heap (shared)

Data race
•  A date race arises when there is at least one writer on shared

data
•  There are multiple writers of global_sum

int64_t global_sum;
void sum(int TID, int N, int NT){
 int64_t i0 = TID*(N/NT), i1 = i0 + (N/NT);
 int64_t localSum=0;
 for (int i=i0; i<i1; i++)
 localSum += x[i];
 global_sum += local_sum
}

14 ©2013 Scott B. Baden / CSE 160 / Fall 2013

x

∑ ∑

∑ ∑

∑

Avoiding the data race

 int64_t global_sum, local_sum;
 …
 int *locSims = new int[NT];
 for(int t=0; t<NT; t++)
 thrds[t] = thread(sum,t,N,NT,ref(locSums[t]);
 for(int t=0; t<NT; t++){
 thrds[t].join();
 global_sum += local_sum;
}

15 ©2013 Scott B. Baden / CSE 160 / Fall 2013

•  Perform the global summation in main()
•  After a thread joins, add its contribution to

the global sum, one thread at a time
•  We need to wrap ref() around ref arguments,

int64_t &, compiler needs the hint

Steps in writing multithreaded code (III)
•  We write a thread function that gets called each time we

spawn a new thread
•  Spawn threads by constructing objects of class Thread

(in the C++ library)
•  Each thread runs on a separate processing core

(If more threads than cores, the threads share cores)
•  Join threads so we know when they are done
•  Threads share memory
•  Avoid data races to ensure correctness

16 ©2013 Scott B. Baden / CSE 160 / Fall 2013

Race conditions
•  Consider the following thread function, where x is initially 0

void threadFn(int TID) {
 x++;
 }

•  Let run on 2 threads
•  What is the value of x after both threads have joined?
•  A race condition arises because the timing of accesses to

shared data can affect the outcome
•  We say we have a non-deterministic computation
•  Normally, if we repeat a computation using the same inputs

we expect to obtain the same results
•  This is true because we have a side effect

(global variables, I/O and random number generators)

17 ©2013 Scott B. Baden / CSE 160 / Fall 2013

Under the hood of a race condition
•  Assume x is initially 0
 x=x+1; 
#

#

•  Generated assembly code
  r1 ← (x)
  r1 ← r1 + #1
  r1 → (x)

•  Possible interleaving with two threads

 P1 P2
 r1 ← x r1(P1) gets 0
 r1 ← x r2(P2) also gets 0
 r1 ← r1+ #1 r1(P1) set to 1
 r1 ← r1+#1 r1(P1) set to 1
 x ← r1 P1 writes its R1
 x ← r1 P2 writes its R1

x=x+1;# x=x+1;#

18 ©2013 Scott B. Baden / CSE 160 / Fall 2013

Avoiding race conditions
•  We need to take steps to avoid race conditions

through appropriate program synchronization
 Migrate shared updates into main
 Critical sections
 Barriers
 Atomics

19 ©2013 Scott B. Baden / CSE 160 / Fall 2013

Critical Sections
•  In some cases it is costly (or inconvenient) to join and

re-spawn threads to synchronize
•  Instead, we synchronize inside the thread function
•  We must allow only 1 thread at a time to write to the

shared memory location(s)
•  The code performing the operation is called a

critical section
•  We use mutual exclusion to implement a critical

section
•  A critical section is non-parallelizing computation..

sensible guidelines? Begin Critical Section#
 x++; #
 End Critical Section

20 ©2013 Scott B. Baden / CSE 160 / Fall 2013

Using mutexes in C++

int* x;
 mutex mutex_sum;
 int64_t global_sum;
Main():
// Spawn threads

21 ©2013 Scott B. Baden / CSE 160 / Fall 2013

void sum(int TID, int N, int NT){
 …
 for (int i=i0; i<i1; i++)
 localSum += x[i];
// Critical section
 mutex_sum.lock();
 global_sum += localSum;
 mutex_sum.unlock();
}

•  The <mutex> library provides a mutex class
•  A mutex (AKA a “lock”) may be CLEAR or SET#

 Lock() waits if the lock is set, else sets the lock
 Unlock() clears the lock if set

•  Mutexes are global variables. Why?

Results
•  ./sum 1 1000000000

1.30 seconds
•  ./sum 2 109

0.79 seconds [speedup = 1.64]
•  ./sum 4 109

0.69 seconds [incremental speedup = 1.14]
•  ./sum 8 109

0.68 seconds [incremental speedup = 1.01]

©2013 Scott B. Baden / CSE 160 / Fall 2013 22

Using a more expensive kernel
•  for (int i=i0; i<i1; i++)

sum += sin(x[i]);
•  ./sumSine 1 108

6.50 seconds
•  ./sumSine 2 108

3.27 seconds [speedup = 1.99]
•  ./sumSine 4 108

1.63 seconds [incremental speedup = 2.0]
•  ./sumSine 8 108

0.82 seconds [incremental speedup = 1.99]

©2013 Scott B. Baden / CSE 160 / Fall 2013 24

How do we explain the results?
•  Expensive kernel gets perfect speedup

on 4 cores
•  Inexpensive kernel gets a speedup of 1.9

©2013 Scott B. Baden / CSE 160 / Fall 2013 25

10/1/13 26

2nd application: testing for primality

•  Given a list of numbers, which are prime?
primes <# threads> 2 17 31 3415501328329

•  Code in $PUB/Examples/Threads/Primes

•  3 Versions: Threads, Async (later), Pthreads

26 ©2013 Scott B. Baden / CSE 160 / Fall 2013

Other kinds of threading structures
•  We may create elaborate threading structures, for

example, divide and conquer

©2013 Scott B. Baden / CSE 160 / Fall 2013 27

+ + + + + + + +
+ + + +

+ +
+

Steve Wolfman, based on work by Dan Grossman

Today’s lecture
•  Two applications with multithreading
•  Synchronization
•  Parallel Sorting

©2013 Scott B. Baden / CSE 160 / Fall 2013 28

Parallel Sorting

•  Sorting is fundamental algorithm in data
processing
 Given an unordered set of keys x0, x1,…, xN-1
 Return the keys in sorted order

•  The keys may be character strings, floating
point numbers, integers, or any object for
which the relations >, <, and == hold

•  We’ll assume integers here
•  Will talk about other algorithms later on

©2013 Scott B. Baden / CSE 160 / Fall 2013 29

©2013 Scott B. Baden / CSE 160 / Fall 2013 30

Parallel sorting algorithms
•  We’ll consider in-memory sorting of integer

keys
 Merge Sort
 Bucket sort
 Sample sort
 Bitonic sort

•  In practice, we sort on external media,
i.e. disk
 See: http://sortbenchmark.org
 TritonSort (UCSD): 0.725 x 1012 bytes/minute

©2013 Scott B. Baden / CSE 160 / Fall 2013 31

Merge Sort algorithm

•  A divide and conquer algorithm
•  When we reach a certain size, we stop the

recursion: each thread locally sorts its data
using a fast serial algorithm like quicksort

•  Threads merge their data in odd-even pairs
•  Each thread applies a local merge sort to

extract the smallest (largest) N/P values,
discards the rest

•  What is the running time?

©2013 Scott B. Baden / CSE 160 / Fall 2013 32

Merge sort in action
N values to be sorted

Treat as four lists of
M = N/4

Sort each separately

Merge

Final sorted list

Merge

©2013 Scott B. Baden / CSE 160 / Fall 2013 33

 -1 3 7 9 11 2 4 8 12 14

 Thread 0 Thread 1
•  Merge Step
•  Left most thread does the merging

 -1 3 7 9 11 2 4 8 12 14
•  Sorts the merged list

-1 2 3 4 7 8 9 11 2 14
•  Parallelism diminishes as we move up the recursion tree
•  There is only O(log n) parallelism, but if we stop the

recursion before reaching the bottom of the tree, it’s much
smaller

Serial Merge

©2013 Scott B. Baden / CSE 160 / Fall 2013 34

•  If there are N = m+n elements, then the larger of the
recursive merges processes ¾N elements

•  Assume m ≥ n (switch arrays if necessary)

Parallel Merge

B

A
0 m-1

0 n-1
B[0:j] B[j:n-1]

Binary search Recursive
merge

Recursive
merge

m/2
A[0:m/2-1] A[m/2:m-1]

Charles Leiserson

©2013 Scott B. Baden / CSE 160 / Fall 2013 35

•  Implement parallel merge sort
•  Implement parallel merge and determine how much it helps
•  Observe speedups
•  Develop on Ieng6, benchmarking on Bang
•  Use SVN for you code development

  Starter code available via SVN
  Required to use SVN repository on Bang
  Do not use github or other repositories
  Any sharing of code is a breach of Academic Integrity
  SVN Discussion in section on Wednesday
  Be sure to respond to posting about registering your team

•  A4 will be posted by Wednesday evening

Assignment #1

