CSE 160
Lecture 2

Programming with Threads
Parallel Sorting

Scott B. Baden

Announcements
* Makeup on 10/7

 Quiz #1 on Weds 10/9
« SVN

Today’s lecture
* Two applications with multithreading

* Synchronization

 Parallel Sorting

Recall the Threads Programming model
e Start with a single root thread |

* Fork-join parallelism to create |
concurrently executing threads
e Threads communicate via shared .
[

memory

* A spawned thread executes
asynchronously until 1t completes

* Threads may or may not execute on
different processors

Heap (shared)

Stack
(private)

©2013 Scott B. Baden / CSE 160 / Fall 2013

C++11 Threads

Via <thread>, C++ supports a threading interface
similar to pthreads, though a bit more user friendly

Async 1s a higher level interface suitable for certain
kinds of applications

New memory model
Atomic template

Hello world with <Threads>

#include <thread> $./hello th 3
void Hello(int TID) { Hello from thread 0
cout << "Hello from thread " << TID << endl; | Hello from thread 1
} Hello from thread 2
$./hello th 3
int main(int argc, char *argv[]){ Hello from thread 1
thread *thrds = new thread[NT]; Hello from thread 0

Hello from thread 2
$./hello_th 4

_ Running with 4 threads
for(int t=0;t<NT;t++){ Hello from thread 0

thrds[t] = thread(Hello, t); Hello from thread 3
) Hello from thread Hello from

[/ Spawn threads

// Join threads thread 21
for(int t=0;t<NT;t++)
thrds[t].join(); $PUB/Examples//Threads/Hello-Th

}

PUB = /share/class/public/cse160-fal3

©2013 Scott B. Baden/ CSE 160/ Fall 2013

Steps in writing multithreaded code

We write a thread function that gets called each time we
spawn a new thread

Spawn threads by constructing objects of class Thread
(in the C++ library)

Each thread runs on a separate processing core
(If more threads than cores, the threads share cores)

Join threads so we know when they are done

A first application

* Sum a list of integers
for 1= 0:N-1
sum = sum + Xx[1];
 Partition x[] 1nto intervals, assign each to a unique thread

« Each thread sweeps over a reduced problem

TO Tl T2 T3

< 5 » Globaly

©2013 Scott B. Baden / CSE 160 / Fall 2013

First version of summing code

void sum(int TID, int N, int NTK
int64 ti0 = TID*(N/NT), i1 =10+ (N/NT);
iInt64_t local sum=0;
for (int i=i0; i<i1; i++)
local_sum += x[i];
global sum += local sum

}

int* x;
Main():
iInt64_t global _sum;
for(int t=0; t<NT; t++){
thrds[t] = thread(sum,t,N,NT);

©2013 Scott B. Baden / CSE 160/ Fall 2013 10

Steps in writing multithreaded code (l)

We write a thread function that gets called each time we
spawn a new thread

Spawn threads by constructing objects of class Thread
(in the C++ library)

Each thread runs on a separate processing core
(If more threads than cores, the threads share cores)

Join threads so we know when they are done
Threads share memory

11

Today's lecture
» Two applications with multithreading

e Synchronization

 Parallel Sorting

©2013 Scott B. Baden/ CSE 160/ Fall 2013

12

Results
The program usually runs correctly

But sometimes 1t produces incorrect results:
Result verified to be INCORRECT, should be 549756338176

What happened?

There 1s a conflict when updating
global sum: a data race

Stack
(private)

©2013 Scott B. Baden / CSE 160 / Fall 2013 13

Data race

* A date race arises when there 1s at least one writer on shared
data

e There are multiple writers of global sum

int64 _t global sum;
void sum(int TID, int N, int NT){
int64 _ti0 = TID*(N/NT), i1 =10+ (N/NT);
int64_t localSum=0;
for (int i=i0; i<i1; i++) X
localSum += x[i];

global_sum += local_sum) 3 (3

< >

©2013 Scott B. Baden / CSE 160 / Fall 2013 14

Avoiding the data race

* Perform the global summation in main()

 After a thread joins, add its contribution to
the global sum, one thread at a time

* We need to wrap ref() around ref arguments,
int64_t &, compiler needs the hint

iInt64_t global sum, local sum;

int *locSims = new Iint[NT];
for(int t=0; t<NT; t++)

thrds[t] = thread(sum,t,N,NT, ref(locSumsilt]);
for(int t=0; t<NT,; t++){

thrds[t].join();

global sum +=local_sum;

}

15

Steps in writing multithreaded code (lll)

We write a thread function that gets called each time we
spawn a new thread

Spawn threads by constructing objects of class Thread
(in the C++ library)

Each thread runs on a separate processing core
(If more threads than cores, the threads share cores)

Join threads so we know when they are done
Threads share memory
Avoid data races to ensure correctness

16

Race conditions

Consider the following thread function, where x 1s 1nitially O
void threadFn(int TID) {

X++:
}
Let run on 2 threads

What is the value of x after both threads have joined?

A race condition arises because the timing of accesses to
shared data can affect the outcome

We say we have a non-deterministic computation

Normally, if we repeat a computation using the same inputs
we expect to obtain the same results

This 1s true because we have a side effect
(global variables, I/O and random number generators)

17

Under the hood of a race condition

Assume X is initially O
X=X+1;

Generated assembly code
» 1]l < (%) @
» 1]l <— r1 + #1
» 1l = (%)

Possible interleaving with two threads

Pl P2
rl < x ri(Pl) gets 0
rl < X r2(P2) also gets 0
rl < rl+ #1 ri(Pl) set to 1
rl < rl+#1 ri(Pl)setto]
X < rl P1 writes its R1

X < rl P2 writes its R1

18

©2013 Scott B. Baden / CSE 160 / Fall 2013

Avoiding race conditions

* We need to take steps to avoid race conditions
through appropriate program synchronization
» Migrate shared updates into main
» Critical sections
» Barriers
» Atomics

19

Critical Sections
In some cases 1t 1s costly (or inconvenient) to join and
re-spawn threads to synchronize
Instead, we synchronize inside the thread function
We must allow only 1 thread at a time to write to the
shared memory location(s)
The code performing the operation is called a
critical section

We use mutual exclusion to implement a critical
section

A critical section 1s non-parallelizing computation..

" telines?
sensible guidelines Begin Critical Section

X++;
End Critical Section

20

Using mutexes in C++

* The <mutex> library provides a mutex class

* A mutex (AKA a “lock”) may be CLEAR or SET

» Lock() waits if the lock is set, else sets the lock
» Unlock() clears the lock if set .

» Mutexes are global variables. Why? 3

void sum(int TID, int N, int NT){ int* x-

mutex mutex_sum;

for (Int i=10; i<i1; i++) int64_t global _sum;
localSum += X]i]; Main()T B |

// Critical section

Il Spawn threads
mutex_sum.lock();

global _sum += localSum,;
mutex_sum.unlock();

}

©2013 Scott B. Baden / CSE 160 / Fall 2013 21

Results

Jsum 1 1000000000
1.30 seconds

Jsum 2 10°
0.79 seconds [speedup = 1.64]

Jsum 4 10°
0.69 seconds [incremental speedup = 1.14]

Jsum 8 10°
0.68 seconds [incremental speedup = 1.01]

22

Using a more expensive kernel
for (int 1=10; 1<il; 1++)
sum += sin(x[1]);
/sumSine 1 108
6.50 seconds

/sumSine 2 108
3.27 seconds [speedup = 1.99]

/sumSine 4 108
1.63 seconds [incremental speedup = 2.0]

/sumSine 8 108
0.82 seconds [incremental speedup = 1.99]

24

How do we explain the results?
» Expensive kernel gets perfect speedup
on 4 cores

 Inexpensive kernel gets a speedup of 1.9
®3

©2013 Scott B. Baden / CSE 160 / Fall 2013 25

2"d application: testing for primality

* Given a list of numbers, which are prime?
primes <# threads> 2 17 31 3415501328329

* Code 1n $PUB/Examples/Threads/Primes
* 3 Versions: Threads, Async (later), Pthreads

10/1/13 ©2013 Scott B. Baden / CSE 160/ Fall 2013 26

Other kinds of threading structures

 We may create elaborate threading structures, for
example, divide and conquer

o SN _— -
\/+ i /+
\/+

Steve Wolfman, based on work by Dan Grossman

©2013 Scott B. Baden / CSE 160 / Fall 2013

Today's lecture
» Two applications with multithreading

* Synchronization

 Parallel Sorting

©2013 Scott B. Baden/ CSE 160/ Fall 2013

28

Parallel Sorting

Sorting 1s fundamental algorithm 1n data
processing

» Given an unordered set of keys X, Xy, .., Xn4
» Return the keys 1n sorted order

The keys may be character strings, floating
point numbers, integers, or any object for
which the relations >, <, and = hold

We’ll assume integers here
Will talk about other algorithms later on

29

Parallel sorting algorithms
* We’ll consider in-memory sorting of integer
keys
» Merge Sort

 In practice, we sort on external media,
1.e. disk

» See: http://sortbenchmark.org
» TritonSort (UCSD): 0.725 x 10'? bytes/minute

30

Merge Sort algorithm

A divide and conquer algorithm

When we reach a certain size, we stop the
recursion: each thread locally sorts its data
using a fast serial algorithm like quicksort

Threads merge their data in odd-even pairs

Each thread applies a local merge sort to
extract the smallest (largest) N/P values,
discards the rest |

: : : A R
What 1s the running time? - ‘5:

=

|

31

Merge sort in action

N values to be sorted

Treat as four lists of
M = N/4

sort sach soparately |l el ol

eree I W= RN —
eree [N === R N—
Final sorted ist |

©2013 Scott B. Baden / CSE 160 / Fall 2013 32

Serial Merge

-1 37911 24 8 12 14
U ~ J |\ ~ J
Thread 0 Thread 1
Merge Step

Left most thread does the merging
-137911248 12 14

Sorts the merged list S P 8
-123478911214 ‘&_@

Parallelism diminishes as we move up the recursion tree

There is only O(log n) parallelism, but if we stop the
recursion before reaching the bottom of the tree, i1t’s much
smaller

©2013 Scott B. Baden / CSE 160 / Fall 2013 33

Parallel Merge

e If there are N = m+n elements, then the larger of the -
recursive merges processes 74N elements :. *:
m-1

e Assume m > n (switch arrays if necessary)
0 m/2

A A[0:m/2-1] Alm/2:m-1]

/

Recursive Binary search Recursive
merge / merge
B B[O:]] Blj:n-1]
0 n-1

Charles Leiserson

©2013 Scott B. Baden / CSE 160/ Fall 2013 34

Assignment #1

Implement parallel merge sort

Implement parallel merge and determine how much 1t helps

Observe speedups
Develop on Ieng6, benchmarking on Bang

Use SVN for you code development
» Starter code available via SVN
» Required to use SVN repository on Bang
» Do not use github or other repositories
Any sharing of code is a breach of Academic Integrity

v

» SVN Discussion in section on Wednesday

» Be sure to respond to posting about registering your team

A4 will be posted by Wednesday evening

35

