Vision Research 49 (2009) 1295-1306

Contents lists available at ScienceDirect

Vision Research

journal homepage: www.elsevier.com/locate/visres

Bayesian surprise attracts human attention

Laurent Itti ®*, Pierre Baldi™!

2 Computer Science Department and Neuroscience Graduate Program, University of Southern California, Hedco Neuroscience Building, 3641 Watt Way,

HNB-30A, Los Angeles, CA 90089, USA

b Computer Science Department and Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA 92697-3425, USA

ARTICLE INFO ABSTRACT

Article history:
Received 3 October 2007
Received in revised form 2 September 2008

We propose a formal Bayesian definition of surprise to capture subjective aspects of sensory information.
Surprise measures how data affects an observer, in terms of differences between posterior and prior
beliefs about the world. Only data observations which substantially affect the observer’s beliefs yield sur-

prise, irrespectively of how rare or informative in Shannon’s sense these observations are. We test the
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framework by quantifying the extent to which humans may orient attention and gaze towards surprising
events or items while watching television. To this end, we implement a simple computational model
where a low-level, sensory form of surprise is computed by simple simulated early visual neurons. Bayes-
ian surprise is a strong attractor of human attention, with 72% of all gaze shifts directed towards locations
more surprising than the average, a figure rising to 84% when focusing the analysis onto regions simul-
taneously selected by all observers. The proposed theory of surprise is applicable across different spatio-
temporal scales, modalities, and levels of abstraction.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction and background

In a world full of surprises, animals have developed an exquisite
ability to quickly detect and orient towards unexpected events
(Ranganath & Rainer, 2003). Yet, at present, our formal understand-
ing of what makes an observation surprising is limited: Indeed, our
everyday vocabulary lacks a quantitative notion of surprise, with
qualities such as “wow factors” still ill-defined and thus far intracta-
ble to quantitative analysis. Here, within the Bayesian probabilistic
framework, we develop a simple quantitative theory of surprise.
Armed with this theory, we provide direct experimental evidence
that Bayesian surprise best characterizes what attracts human gaze
in large amounts of natural video stimuli.

Our effort to formally and mathematically define surprise is
motivated by the fact that informal correlates of surprise have been
described at nearly all stages of neural processing. Thus, surprise is
an essential concept for the study of the neural basis of behavior. In
sensory neuroscience, for example, it has been suggested that only
the unexpected at one stage of processing is transmitted to the next
stage (Rao & Ballard, 1999). Hence, sensory cortex may have
evolved to adapt to, to predict, and to quiet down the expected sta-
tistical regularities of the world (Olshausen & Field, 1996; Miiller,
Metha, Krauskopf, & Lennie, 1999; Dragoi, Sharma, Miller, & Sur,
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2002; David, Vinje, & Gallant, 2004), focusing instead on events that
are unpredictable or surprising (Fairhall, Lewen, Bialek, & de Ruyter
Van Steveninck, 2001). Electrophysiological evidence for this early
sensory emphasis onto surprising stimuli exists from studies of
adaptation in visual (Maffei, Fiorentini, & Bisti, 1973; Movshon &
Lennie, 1979; Miiller et al., 1999; Fecteau & Munoz, 2003), olfactory
(Kurahashi & Menini, 1997; Bradley, Bonigk, Yau, & Frings, 2004),
and auditory cortices (Ulanovsky, Las, & Nelken, 2003), subcortical
structures like the LGN (Solomon, Peirce, Dhruv, & Lennie, 2004),
and even retinal ganglion cells (Smirnakis, Berry, Warland, Bialek,
& Meister, 1997; Brown & Masland, 2001) and cochlear hair cells
(Kennedy, Evans, Crawford, & Fettiplace, 2003): neural responses
greatly attenuate with repeated or prolonged exposure to an ini-
tially novel stimulus. At higher levels of abstraction, surprise and
novelty are also central to learning and memory formation (Rang-
anath & Rainer, 2003), to the point that surprise is believed to be
a necessary trigger for associative learning (Schultz & Dickinson,
2000; Fletcher et al., 2001), as supported by mounting evidence
for a role of the hippocampus as a novelty detector (Knight, 1996;
Stern et al., 1996; Li, Cullen, Anwyl, & Rowan, 2003). Finally, seeking
novelty is a well-identified human character trait, possibly associ-
ated with the dopamine D4 receptor gene (Ebstein et al., 1996;
Benjamin et al., 1996; Lusher, Chandler, & Ball, 2001).

Empirical and often ad-hoc formalizations of surprise, usually
referred to as spatial “saliency” or temporal “novelty,” are at the
core of many laboratory studies of attention and visual search:
The strongest attractors of attention are stimuli that pop-out from
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their neighbors in space or time, like a salient vertical bar embed-
ded within an array of horizontal bars (Treisman & Gelade, 1980;
Wolfe & Horowitz, 2004), or the abrupt onset of a novel bright
dot in an otherwise empty display (Theeuwes, 1995). Computa-
tionally, these notions may be summarized in terms of outliers
(Markou & Singh, 2003) and Shannon information: stimuli which
have low likelihood given a distribution of expected or learned
stimuli, over space or over time, are outliers, are more informative
in Shannon'’s sense, and capture attention (Duncan & Humphreys,
1989). We show that this line of thinking at best captures an
approximation to surprise, but can be flawed in some extreme
cases. To exacerbate the differences and to gauge their practical
impact in ecologically relevant situations, we quantitatively com-
pare Bayesian surprise to 10 existing measures of saliency and nov-
elty, in their ability to predict human gaze recordings on large
amounts of natural video data. We find that Bayesian surprise best
characterizes where people look, even more so for stimuli that are
consistently fixated by multiple observers. Our results suggest that
surprise is an important formalization for understanding neural
processing and behavior, and is the best known attractor of human
attention.

This work extends Itti and Baldi (2006), through a more com-
plete exposition of the theory and of the new proposed unit of sur-
prise (the “wow”), simple examples of how surprise may be
computed, and a broader set of experiments and comparisons with
competing theories and models.

2. Theory

In this paper, we elaborate a definition of surprise that is gen-
eral, information-theoretic, derived from first principles, and for-
malized analytically across spatio-temporal scales, sensory
modalities, and, more generally, data types and data sources.
Two elements are essential for a principled definition of surprise.
First, surprise can exist only in the presence of uncertainty. Uncer-
tainty can arise from intrinsic stochasticity, missing information, or
limited computing resources. A world that is purely deterministic
and predictable in real-time for a given observer contains no sur-
prises. Second, surprise can only be defined in a relative, subjective,
manner and is related to the expectations of the observer, be it a
single synapse, neuronal circuit, organism, or computer device.
The same data may carry different amounts of surprise for different
observers, or even for the same observer taken at different times.

2.1. Defining surprise

In probability and decision theory it can be shown that, under a
small set of axioms, the only consistent way for modeling and rea-
soning about uncertainty is provided by the Bayesian theory of prob-
ability (Cox, 1964; Savage, 1972; Jaynes, 2003). Furthermore, in the
Bayesian framework, probabilities correspond to subjective degrees
of beliefs in hypotheses (or so-called models). These beliefs are up-
dated, as data is acquired, using Bayes’ theorem as the fundamental
tool for transforming prior belief distributions into posterior belief
distributions. Therefore, within the same optimal framework, a con-
sistent definition of surprise must involve: (1) probabilistic concepts
to cope with uncertainty and (2) prior and posterior distributions to
capture subjective expectations. These two simple components are
at the basis of the proposed definition of surprise below.

The background information of an observer is captured by his/
her/its prior probability distribution {P(M)},,. , over the hypothe-
ses or models M in a model space .#. At a high level of abstraction
and for, e.g., a human observer, the ensemble .# may for instance
consist of a number of cognitive hypotheses or models of the
world, such as:

4 = {it will rain tomorrow; (1)
the cold war is over;
the USC-Trojans football team is on a winning streak;
my wallet is in my possession;
my car is in good working order;
my credit card information is secure;
nobody at work knows that today is my birthday;
etc}

At lower levels of abstraction and for less sophisticated observers,
the model space may be much simpler, corresponding to straight-
forward hypotheses over well-defined quantities, such as, for exam-
ple, the amount of light hitting a given photoreceptor:

A = {light level is low; (2)
light level is medium;
light level is high;
etc}

With each of these hypotheses or models M is associated a likeli-
hood function, P(D|M), which quantifies how likely any data obser-
vation D is under the assumption that a particular model M is
correct.

Given the prior distribution of beliefs before the next observa-
tion of data, the fundamental effect of a new data observation D
on the observer is to change the prior distribution {P(M)},,_ , into
the posterior distribution {P(M|D)},.., via Bayes’ theorem,
whereby

P(MID) =}y 5 POM) 3)

YM € 4,

In this framework, the new data observation D carries no sur-
prise if it leaves the observer’s beliefs unaffected, that is, if the pos-
terior distribution over the ensemble .# is identical to the prior.
Conversely, D is surprising if the posterior distribution after
observing D significantly differs from the prior distribution. There-
fore we formally measure surprise by quantifying the distance (or
dissimilarity) between the posterior and prior distributions. Com-
puting such distance between two probability distributions is best
done using the relative entropy or Kullback-Leibler (KL) divergence
(Kullback, 1959). Thus, surprise is defined by the average of the
log-odd ratio:

P(M|D)
P(M)

taken with respect to the posterior distribution over the model
space .#. For example, using the premises of Eq. (1), if the data
observation D consisted of patting your pocket and realizing that
it feels unusually empty, that would create surprise as your poster-
ior beliefs in the hypotheses “my wallet is in my possession” and
“my credit card information is secure” would be dramatically lower
than the prior beliefs in these hypotheses, resulting in a large KL dis-
tance between posterior and prior over all hypotheses, and in large
surprise.

Note that KL is not symmetric but has well-known theoretical
advantages, including invariance with respect to reparameteriza-
tions. A unit of surprise - a “wow” - may then be defined for a sin-
gle model M as the amount of surprise corresponding to a two-fold
variation between P(M|D) and P(M), i.e., as log P(M|D)/P(M) (with
log taken in base 2). The total number of wows experienced when
simultaneously considering all models is obtained through the
integration in Eq. (4). In the following section, we provide a simple
description of how surprise may be computed, and of how it fun-
damentally differs from Shannon’s notion of information (notably,
Shannon’s entropy requires integration over the space 2 of all pos-

S(D,..#) = KL(P(M|D),P(M)) = | P(M|D)log dm (4)
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sible data observations, while surprise requires integration over
the space .# of all models of the observer). Surprise can always
be computed numerically, but also analytically in many practical
cases, in particular those involving probability distributions in
the exponential family (Brown, 1986) with conjugate or other pri-
ors (see below).

The Kullback-Leibler divergence (KL) has been used extensively,
at least since Shannon with the mutual information between two
random variables X and Y defined as KL(P(X,Y), P(X)P(Y)). In partic-
ular, there is a rich history of using KL in machine learning, Boltz-
mann machines, and neural networks, especially in the context of
computing the gradient of the KL, and using gradient descent on
the KL for learning (Ackley, Hinton, & Sejnowski, 1985). It is impor-
tant to note that here, however, we use it in a different way. In neu-
ral networks, for instance, training is often done to maximize the
likelihood P(D|M) = P(D|w), or, when there is a prior on the weight
vector w, to maximize the posterior P(w|D) (Note that the data vec-
tor D may include target values in the case of supervised learning).
The KL often then appears in the expression of the error function,
usually the negative log likelihood. In a typical multinomial classi-
fication problem, learning is done by gradient descent on the neg-
ative log likelihood associated with the KL between the data
distribution P(D) and the distribution produced by the network
P(D|w). That is, one tries to minimize the mismatch between
P(D) and P(D|w) by adjusting w. Clearly this is different from the
KL between the posterior P(w|D) and the prior P(w), which is sur-
prise: surprise requires integration over the model space (or
weights w) while previous methods integrate over the space of
data D.

2.2. Surprise, shannon information, and the white snow paradox

To illustrate how surprise arises when data is observed, con-
sider a human observer who just turned a television set on, not
knowing which channel it is tuned to. The observer has a number
of co-existing hypotheses or models about which channel may be
on, for example, MTV, CNN, FOX, BBC, etc. (Fig. 1). Over the course
of viewing the first few video frames of the unknown channel
(here, CNN), the observer’s beliefs in each hypothesis adjust, pro-
gressively favoring one channel over the others (leading to a higher
prior probability for CNN in left panel). Consider next what hap-
pens if yet another video frame of the same program is observed
(Fig. 1, top right), intuitively an unsurprising event. Through Bayes-
ian update, the new frame only minimally alters the observer’s be-
liefs, with the posterior distribution of beliefs over models showing
a slightly reinforced belief into the correct channel at the expense
of the others. In contrast, if a frame of snow was suddenly observed
(Fig. 1, middle right), intuitively this should be a very surprising
event, as it may signal storm, earthquake, toddler’s curiosity, elec-
tronic malfunction, or a military putsch. Through Bayesian update,
this observation would yield a large shift between the prior and
posterior distributions of beliefs, with the posterior now strongly
favoring a snow model (and possible associated earthquake, mal-
function, etc. hypotheses), correspondingly reducing belief in all
other television channels. In sum, unsurprising data yields little
difference between posterior and prior distributions of beliefs over
models, while surprising data yields a large shift: in mathematical
terms, an event is surprising when the distance between posterior
and prior distributions of beliefs over all models is large (see Eq.
(4)).

While at onset snow is surprising (Fig. 1, middle right), after
sustained viewing it quickly becomes boring to most humans. In-
deed, no more surprise arises after the observer’s beliefs have sta-
bilized towards strongly favoring the snow model over all others
(Fig. 1, bottom right). Thus surprise resolves the classical paradox
that random snow, although in the long term the most boring of

all television programs, carries the largest amount of Shannon
information. This paradox arises from the fact that there are many
more possible random images than there exists natural images.
Thus, the entropy of snow is higher than that of natural scenes
(Field, 2005). Even when the observer knows to expect snow, every
individual frame of snow carries a large amount of Shannon infor-
mation. Indeed, in a sample recording of 20,000 video frames from
typical television programs, presumably of interest to millions of
watchers, we measured approximately 20 times less Shannon
information per second than in matched random snow clips, after
compression to constant-quality MPEG4 to adaptively eliminate
redundancy in both cases (Table 1). The situation was reversed
when we measured that snow clips carried about 17 times less sur-
prise per second than the television clips, evaluated using the aver-
age, over space and time, of the output of the surprise metric
presented with our human experiments. Note that a clip where
all frames are black would practically carry no Shannon informa-
tion and yield no surprise. Thus, more informative data may not al-
ways be more important, interesting, worthy of attention, or
surprising; in fact, the most interesting or surprising data may of-
ten carry intermediate amounts of Shannon information, between
fully predictable data (black frames) and completely unpredictable
data (snow frames).

2.3. Simple example of surprise computation

One class of examples where surprise can be computed ex-
actly consists of contingency tables of any size. Consider for in-
stance a parent who has two competing internal models or
hypotheses about a new television channel, the first, M, accord-
ing to which that new channel is appropriate for children, and
the second, M, according to which it is not. Assume that initially
our observer is undecided and equally split across both models,
that is, P(M)=P(M) = 1/2. Next consider two possible data
observations, Dy, a TV program that contains some nudity, and
D,, one that does not, with, for instance, P(D;) = (D) = 1/2. Final-
ly, assume that the observer initially believes that observing
nudity is three times more likely on a channel that is inappropri-
ate for children.

The initial beliefs of our observer may thus be tabulated as
follows:

D] DZ
M a=1/8 c=3/8
M b=3/8 d=1/8

where the table verifies the above specifications, in that
P(Dy)=a+b=1/2, PD;)=c+d=1/2, PM)=a+c=1/2,
P(M)=b+d=1/2, and P(D;,M)=b =3 x P(D;,M) =3 x a. As-
sume that D; is observed (a program with some nudity). Since
P(Dy) = 1/2, this observation carries — log P(D;) = 1 bit of Shannon
information (remember that the logarithm should be taken in base
2 for all numerical applications). The posterior probabilities of M
and M are

~ PpMD) a1
PMIDY) = 53Dy + PiDy) atb-a 2 ()
. P(MD) b 3
P(MIDY) = D))+ VDY) a+b 4 ()

That is, observing D; (a program with some nudity) shifted the ob-
server’s initial indecision between M and M, now favoring M (the
new TV channel is inappropriate for children) over M (it is appropri-
ate) by a factor 3. The amount of surprise resulting from this shift,



1298 L. Itti, P. Baldi/ Vision Research 49 (2009) 1295-1306

Fig. 1. Simple description of how surprise may be computed at a high level of abstraction, for an observer who has beliefs about possible television channels that she or he

may be watching. Section 3 for further details.

Table 1

Could you guess how interesting a video clip is before you watch it, by just looking at
how many megabytes of Shannon information it contains? Here we find that a clip of
snow would be about 20 times a larger file than a clip of typical television. Surprise
resolves this so-called “white snow paradox”.

D, D,
M a=1/16 c=3/16
M b'=7/16 d =5/16

vV Snow TV: Snow ratio

0.25+0.16
50.83+0.43

4.90 +0.01 1:20
2.99+0.02 17:1

Shannon information (Mbyte/s)
Surprise (wWows/s)

first considering only model M, is S(Dy,M) = log”57t) = —1.00
wow. Similarly, with respect to M, the surprise is

S(D1, M) = log% = 0.58 wows. After averaging over the model

family .# = {M,M} weighted by the posterior (Eq. 2), the total sur-
prise experienced by the observer is
S(Dy,.#) = P(M|D;)S(D1, M) + P(M|D;)S(Dy, M) (7)
a a b b
“a50 ®arharo tars Carnprag  ©
~ 0.19wows. (9)

+

The new beliefs of the observer may hence be tabulated as fol-
lows, using the posterior resulting from our above observation as
new prior:

Consider next what happens if D; is observed once more. We
intuitively expect this second observation to carry less surprise
than the previous one, since our observer now already fairly
strongly believes that the new TV channel is inappropriate, and
observing nudity once again should only incrementally consolidate
that belief. Indeed, proceeding as above, the total surprise now
experienced by the observer is S(D,.#) = 0.07 wows, nearly three
times less than on the previous observation.

2.4. Analytical computations of surprise with N data points

Exponential Family. Consider a family of models .# parameter-
ized by w with likelihood P(D|M) = P(D|w). By definition, the con-
jugate prior P(M) = P(w) has the same functional form as the
likelihood. In this case, by Bayes’ theorem, the posterior also has
the same functional form. While surprise can be computed with
any prior, conjugate priors are useful for their mathematical sim-
plicity and ease of implementation during Bayesian learning,
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where the posterior at one iteration becomes the prior of the fol-
lowing iteration.

A likelihood is in the exponential family with parameter vector
w if it can be expressed in the form, for a single datum d

w) exp (i: Oi(W)tt(d)) (10)
i=1

With N independent data points (D = dy,...,dy),

P(DIw) = LHh } exp (’2 ef(w>Tf(D>> ()

letting T;(D) = ZjN:‘l ti(d;) be the sufficient statistics. Most common
distributions belong to the exponential family. The conjugate prior
has a similar exponential form

P(w;a;) = Cexp (i oc,-(),-(w)> (12)

i=1

Pdjw) =

parameterized by the o;’s. Using Bayes’ theorem, the posterior has
the same exponential form with normalizing constant C and
o = o + T;(D). Calculation of surprise yields

S(D, ) log Z Ti(D)E[0;(w (13)
where E[6;(w)] is the expectation of 6;(w) with respect to the poster-
ior. Surprise can be rewritten as:

S(D, 4 = N(log c(w)+ < logh(d) > — < logP(d) >

- 2’: < ti(d) > E[()i(w)]> (14)

i=1

where <> denotes averages over the data points. Thus in general,
for large N, surprise grows linearly with the number of data points.
Below is an application.

Binary Data Modeled as a Series of Independent and Identical Coin
Tosses (Binomial Model). The family .# of models is parameterized
by the probability 0 < w < 1 of observing “heads” on a coin toss,
thus encompasses models of biased coins (small and large w val-
ues) and of fair coins (w = 0.5). The conjugate prior is the Beta
prior P(w;a, B) = Cw* ' (1 —w)f™' with C=T(o+ B)/[T(c)T(B)]
and parameters o, . With a number n of heads observed after toss-
ing a coin N times, the posterior is also a Beta distribution with
o =a+nand B = B+ (N — n). Integrating over models, surprise is

S(D, 4 = log% —n[¥(a+p+N)—¥(o+n)
—(N=n)[P(x+p+N)—¥(+N-n) (15)
4 posterior
(o'=15, B'=5)
o)
3
S
x| (o
0 05 w 1
more . more
tails fair heads

Fig. 2. Simple example of surprise computation for series of coin tosses. Here the
prior and posterior distributions of beliefs about how fair the coin may be are
formalized as Beta distributions.

where W is the digamma function. For example, assume an observer
who initially believes most coins are fair, i.e., whose prior is concen-
trated around w = 0.5 (e.g., & = f = 5; Fig. 2). Assume that N=10
tosses of a coin are observed and happen to yield exactly n=10
heads. This observation is surprising and shifts the observer’s be-
liefs towards favoring the models of coins that yield more heads
(o =15, B = 5; Fig. 2), resulting in 2.26 wows of surprise. An out-
come of five heads and five tails would elicit only 0.15 wows from
slight sharpening of the prior around w = 0.5 (o = 10, ' = 10).

3. Methods

To test the surprise hypothesis — that Bayesian surprise attracts
human attention in dynamic natural scenes — we recorded eye
movements from eight naive observers. Each watched a subset
(about half) from 50 videoclips totaling over 25 min of playtime.
Clips comprised outdoors daytime and nighttime scenes of
crowded environments, video games, and television broadcast
including news, sports, and commercials.

To characterize image regions selected by participants, we pro-
cess videoclips through computational metrics that output a topo-
graphic dynamic master response map, assigning in real-time a
response value to every input location. A good master map would
highlight, more than expected by chance, locations gazed to by
observers. To score each metric we hence sample, at onset of every
human saccade, master map activity around the saccade’s future
endpoint, and around a uniformly random endpoint (random sam-
pling was repeated 100 times to evaluate variability). We quantify
differences between histograms of master map samples collected
from human and random saccades using again the Kullback-Lei-
bler (KL) distance: metrics which better predict human scanpaths
exhibit higher distances from random. This scoring presents sev-
eral advantages over simpler scoring schemes (Reinagel & Zador,
1999, Parkhurst, Law, & Niebur, 2002), including agnosticity to
putative mechanisms for generating saccades and the fact that
applying any continuous nonlinearity to master map values would
not affect scoring.

3.1. Subjects and stimuli

Subjects were USC students and staff, three females and five
males, ages 23-32, normal or corrected-to-normal vision. Informed
consent was obtained from all subjects prior to the experiments.
Each subject watched a subset of the collection of videoclips, so
that eye movement traces from four distinct subjects were ob-
tained for each clip. Videoclips were presented on a 22” CRT mon-
itor (LaCie, Inc.; 640 x 480, 60.27 Hz double-scan, mean screen
luminance 30 cd/m?, room 4 cd/m?, viewing distance 80 cm, field
of view 28° x 21°). The clips comprised between 164 to 2814
frames or 5.5-93.9 s, totaling 46,489 frames or 25:42.7 playback
time. Frames were presented on a Linux computer under SCHED_-
FIFO scheduling which ensured microsecond-accurate timing (Fin-
ney, 2001).

Right-eye position was tracked at 240 Hz using a video-based
device (ISCAN RK-464), which robustly estimates gaze from com-
parative real-time measurements of both the center of the pupil
and the reflection of an infrared light source onto the cornea. Sac-
cades were defined by a velocity threshold of 20°/s and amplitude
threshold of 2°.

Observers were instructed to follow the stimuli’s main actors
and actions, so that their gaze shifts reflected an active search for
nonspecific information of subjective interest. Two hundred cali-
brated eye movement traces (10,192 saccades) were analyzed, cor-
responding to four distinct observers for each of the 50 clips. Fig. 4a
shows sample scanpaths for one videoclip.
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Sampling of master map values around human or random sac-
cade targets used a circular aperture of diameter 5.6°, approximat-
ing the size of the fovea and parafovea. Saccade initiation latency
was accounted for by subjecting the master maps to a temporal
low-pass filter with time constant T = 500 ms. This provided an
upper bound, allowing the analysis to compensate for delays be-
tween the physical appearance of stimuli on the screen and the
start of human saccades. The random sampling process was re-
peated 100 times, yielding the (very small) error bars of the ran-
dom histograms of Fig. 5.

Note that instead of using a uniform random sampling, the ran-
dom saccade distribution could also have been derived by ran-
domly shuffling the human saccades (Tatler, Baddeley, &
Gilchrist, 2005). However, it is important to understand that using
such biased random distribution would confer particular knowl-
edge to the random sampling process: general knowledge aggre-
gated over the human dataset under study would be exploited to
decide how random samples are to be selected. Our computational
gaze prediction metrics do not have any such knowledge about the
human dataset, and do not have any built-in spatial bias, central or
otherwise (except, for some metrics, a slight bias against the ex-
treme image borders due to boundary conditions on the filters ap-
plied to the images). Hence, we here chose to retain knowledge-
free computational and random metrics, rather than to contami-
nate them with knowledge about the dataset under study.

3.2. Simulations

Dynamic master maps generated by the computational gaze
prediction metrics were 40 x 30 lattices of metric responses com-
puted over 16 x 16 image patches, given 640 x 480 stimuli. The
master maps were internally updated at a rate of 10,000 frames/s
(simulated time, actual CPU time was much longer), receiving
new input video frames every 33.185 ms. Simulations were parall-
elized across Beowulf clusters of computers, totaling in excess of
one CPU-year to evaluate all computational metrics against our
41.5 GB of raw video data and 1,542,752 eye movement samples.

3.3. Human-derived metric

With our clips and instructions, observers agreed with each
other quite often on where to look (Fig. 4b). Hence our data pre-
sents ample opportunity for characterizing in the image space
what most strongly attracted human observers. An upper-bound
KL score can be computed from a human-derived metric, whose
master map is built, at every video frame, from eye movement
positions of the three observers other than that under test
(Fig. 4c). Computational metrics are expected to yield KL scores be-
tween zero (chance level) and this wupper bound of
KL = 0.679 + 0.011 reflecting inter-observer consistency. To build
the human-derived maps, a Gaussian blob with ¢ = 3 master map
pixels (4.5°) was continuously painted at each of the eye positions
of the three observers other than that under test, with some forget-
ting provided by the master map’s temporal low-pass filter. High
metric responses were hence sampled if and only if a saccade of
the observer under test was aimed to approximately a location
where other observer(s) were currently looking. Because this met-
ric is not predictive like the others, sampling occurred when a sac-
cade ended (and other humans were expected to also be reaching
the endpoint) rather than when it started (and other humans pos-
sibly also started).

3.4. Static metrics

The simplest computational metrics tested only exploit local
and static image properties. The variance metric computes local

variance of pixel luminance within 16 x 16 image patches
(Reinagel & Zador, 1999). The Shannon entropy metric computes
the entropy of the local histogram of grey-levels in 16 x 16 image
patches (Privitera & Stark, 2000). The DCT-based (Discrete Cosine
Transform) information metric similarly computes in image
patches the number of DCT coefficients above detection threshold,
for the luminance and two chrominance channels (Itti, Koch, & Nie-
bur, 1998). The color, intensity and orientation contrast metrics are
derived from reduced versions of our previously proposed bottom-
up saliency metric (Itti & Koch, 2001). They compute local contrast
in each feature dimension using difference-of-Gaussian center-sur-
round contrast detectors operating at six different spatial scales.

3.5. Dynamic and saliency metrics

The flicker and motion metrics rely on the same center-sur-
round architecture as for color, intensity, and orientation. The sal-
iency metric combines intensity contrast (six feature maps), red/
green and blue/yellow color opponencies (12 maps), four orienta-
tion contrasts (24 maps), flicker (six maps) and motion energy in
four directions (24 maps), totaling 72 feature maps. Central to
the saliency metric and each of its center-surround feature chan-
nels is neurally-inspired non-classical spatial competition for sal-
iency (Sillito, Grieve, Jones, Cudeiro, & Davis, 1995; Itti & Koch,
2001), by which distant active locations in each feature map inhibit
each other, giving rise to pop-out and attentional capture (Wolfe &
Horowitz, 2004). Thus, these metrics are not necessarily attracted
to locally information-rich image regions, as many highly informa-
tive regions will be discarded if they resemble their neighbors. For
this reason, these metrics typically yielded sparser maps than the
contrast, entropy, and DCT-based information metrics, which are
purely local. These metrics represent biologically-plausible heuris-
tics to an outlier detection metric described below.

3.6. Surprise and outlier metrics

The surprise metric retains the 72 raw feature detection mech-
anisms of the saliency metric (but without the non-classical com-
petition for saliency), and attaches local surprise detectors to each
location in each of the 72 feature maps. Surprise detectors compute
both local temporal surprise (generalizing outliers-based temporal
novelty) and spatial surprise (generalizing outliers-based spatial
saliency).

In our implementation, image patches are described by a 72D
feature vector representing the responses from the 72 low-level
feature channels (color, motion, etc. at six spatial scales). A model
of an image patch, then, is a 72D vector of 1D Poisson random vari-
ables, under the assumption that each low-level feature detector
outputs 1D trains of Poisson-distributed spikes in response to vi-
sual stimulation (Softky & Koch, 1993). We consider the model
family that comprises all possible such 72D vectors of Poisson
models, parameterized by a single 72D Poisson rate vector. For in-
stance, patches of motionless vs. trembling foliage correspond to
two different models, described by two vectors of 72 Poisson firing
rates (with, among other differences, lower rates for motion fea-
tures in the motionless foliage model). Note that with these simple
models, there is no single explicit model Mo that can capture
random snow. Rather, when snow is observed, the prior quickly be-
comes uniform, indicating that every model is believed to be
equally bad and that the observer does not have any strong belief
in favor of any one model. More complex models (Doretto, Chiuso,
Wu, & Soatto, 2003) could be used as well, without affecting the
theory.

Consider a neuron at a given location in one of the 72 fea-
ture maps, receiving Poisson spikes as inputs from low-level
feature detectors. We compute surprise independently in that
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feature map and at that location using a family of models which o =¢a+72 and f =(p+1 (18)
are all the 1D Poisson distributions for all possible firing rates
2> 0.

Using the theory of surprise outlined above, we consider conju-
gate priors, whereby the posterior belongs to the same functional
family as the prior. In such case, the posterior at one video frame
can directly serve as prior for the next frame, as is customary in
Bayesian learning. Thus, we use for P(M) a functional form such
that P(M|D) has the same functional form when D is Poisson-dis-
tributed. It is easy _tp show _that P(M) satisfying this property is Se(D, .4) = KL(y(%: o, ), p(%; 01, B)
the Gamma probability density: § )

e =—o+ oclog% + logr(a,) + ﬁﬁ + (o — )P (') (19)
—— (16)

['(o)
with ¥(.) the digamma function. Spatial surprise Ss is computed
similarly. At every visual location, a Gamma neighborhood prior is
computed as the weighted combination of priors from local models,
over a large neighborhood with 2D Difference-of-Gaussians profile
(0. =20 and o_ = 3 feature map pixels, i.e., 29° and 4.5° resp.).
o =o+7 and B =p+1 (17) As new data arrives, spatial surprise is the KL between the posterior
neighborhood distribution after update by local samples from the
neighborhood’s center, and the prior. Temporal and spatial surprise

¢ preserves the prior's mean o/f but increases its variance o/,
embodying relaxation of belief in the prior’s precision; our simula-
tions use ¢ = 0.7, based on a reproduction of neural recordings from
Miiller et al. (1999). Local temporal surprise Sy resulting from the
update is computed exactly using the KL divergence to quantify
the differences between posterior and prior distributions over
models:

T'(a) o

P(M(2)) = y(4 0, p) =

with shape o > 0, inverse scale > 0, and I'(.) the Euler Gamma
function. Given an observation D = 7 at one of our surprise detec-
tors and prior density y(4;a, f8), the posterior y(; 0/, ') obtained
by Bayes’ theorem is also a Gamma density, with:

To prevent these from increasing unbounded over time, we add a
forgetting factor 0 < { < 1, yielding:
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New data

D

Prior beliefs Posterior beliefs
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Fig. 3. Hypothetical implementation of surprise computation in a single neuron. (a) Prior data observations, tuning preferences, and top-down influences contribute to
shaping a set of “prior beliefs” a neuron may have over a class of internal models or hypotheses about the world. For instance, .# may be a set of Poisson processes
parameterized by the rate 2, with {P(M)},,. , = {P(4)},.: the prior distribution of beliefs about which Poisson models well describe the world as sensed by the neuron. New
data D updates the prior into the posterior using Bayes’ theorem. Surprise quantifies the difference between the posterior and prior distributions over the model class .#. The
remaining panels detail how surprise differs from conventional model fitting and outlier-based novelty. (b) In standard iterative Bayesian model fitting, at every iteration N,
incoming data Dy is used to update the prior {P(M|Dy,D;,...,Dn_1)}y.., into the posterior {P(M|D;,D,,...,Dy)}y. ,. Freezing this learning at a given iteration, one then picks
the currently best model, usually using either a maximum likelihood criterion, or a maximum a posteriori one (yielding Mysp shown). (c) This best model is used for a number
of tasks at the current iteration, including outlier-based novelty detection. New data is then considered novel at that instant if it has low likelihood for the best model (e.g., Dl,’V
is more novel than D). This focus onto the single best model presents obvious limitations, especially in situations where other models are nearly as good (e.g., M. in panel (b)
is entirely ignored during standard novelty computation). One palliative solution is to consider mixture models, but this just amounts to shifting the problem into a different
model class. (d) Surprise directly addresses this problem by simultaneously considering all models and by measuring how data changes the observer’s distribution of beliefs
from {P(M|D;,D;,...,Dn_1)}yc., to {P(M|D;,D,,...,Dy)}y. , over the entire model class .# (orange shaded area).
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are combined additively to yield the final surprise metric. Addi-
tional implementation details have been described previously (Itti
& Baldi, 2005, 2006).

The outlier detection metric uses exactly the same Poisson
models and low-level visual features as the surprise metric, but
fundamentally differs from surprise in that it focuses onto the sin-
gle best model at a given moment, instead of simultaneously con-
sidering all models like the surprise metric. Thus, at every location
in every feature map, the best Poisson model M(/pes) given the ob-
served data to date is considered, and is used to compute the like-
lihood of the new data sample, yielding:

s 1
0D, MUses)) = ey~ & (20)

Thus, a data observation D which is an outlier, that is, has low
likelihood P(D|M (/nest)) = O given the currently best model, yields
a large response, while an inlier data observation with high
P(D|M(/pest) yields a lower response.

Fig. 3 illustrates how surprise differs from the notions of sal-
iency and novelty based on outliers and Shannon information, by
examining a hypothetical implementation of surprise computation
in a single neuron.

4. Results

We compare the ten computational metrics described above,
which encompass and extend the state-of-the-art found in previ-
ous studies, to Bayesian surprise (Table 2). The first six metrics
quantify static image properties while the remaining four, and
Bayesian surprise, also respond to dynamic events. The first three
metrics compute local variance, Shannon entropy, and DCT-based
(discrete cosine transform) information within 16 x 16 image
patches, as previously proposed to characterize attractors of hu-
man gaze over static images (Reinagel & Zador, 1999; Privitera &
Stark, 2000; Itti et al., 1998). We find that humans are significantly

Table 2

KL scores for the eleven computational metrics studied. (a) Metrics based on static
image properties overall scored lowest. (b) Metrics also sensitive to dynamic image
properties scored higher, with surprise significantly the highest. For all metrics
shown, humans saccaded towards image locations of higher metric response more
often than expected by chance (nonparametric sign tests, p < 10™'%° for every metric).
Consequently, KL distances between human and random (mean4S.D. from 100-times
repeated random sampling) were all significantly higher than zero, which would
indicate a metric not predicting human saccades better than chance (t-tests,
p <107'% or better). KL distances differed from one another with p < 107'® or
better on t-tests for equality of the KL scores, except for orientation vs. intensity
contrasts (p < 107'?), variance vs. color (p < 107°), motion vs. flicker (p > 0.15),
outliers vs. saliency (p > 0.10), suggesting a strict ordering of all eleven metrics
except for equivalent performance of flicker and motion, and of saliency and outliers.
While significantly above chance level, obviously, image-based, or purely bottom-up,
computational metrics only explain a fraction of the correlation among humans,
which encompasses both bottom-up and top-down factors.

Model Human to random
KL distance

(a)

Intensity variance 0.074 + 0.003
DCT-based information 0.101 + 0.004
Entropy 0.151 £ 0.005
Color center-surround 0.077 + 0.004
Intensity center-surround 0.089 + 0.004
Orientation center-surround 0.084 + 0.004
(b)

Flicker center-surround 0.179 £ 0.005
Motion center-surround 0.180 + 0.005
Outliers 0.204 + 0.006
Saliency 0.205 + 0.006
Surprise 0.241 £ 0.006

attracted by image regions with higher metric responses (Fig. 5, Ta-
ble 2). However, these purely local metrics typically respond vigor-
ously at numerous visual locations. Hence they are poorly specific
and yield relatively low KL scores between humans and random:
while humans preferentially gaze towards locations with high
metric responses, such locations are often so numerous that high
metric responses are also collected at random saccade targets.

The next three metrics increase specificity by focusing on spa-
tial image outliers in the dimensions of color, intensity, and orien-
tation, using heuristic biologically-inspired center-surround
detectors operating at six spatial scales. These metrics yield sparser
maps, as local responses are inhibited unless they contrast with
neighboring regions. While we find that humans also significantly
gaze towards regions with outlier color, intensity, and orientation,
these metrics do not score substantially better than the previous
three.

The next two metrics consider the dimensions of flicker (onsets/
offsets of light intensity) and directional motion energy, again
employing six center-surround scales, and hence measure spatio-
temporal novelty. Both score equivalently well and significantly
higher than the static metrics (nearly 20% better than the best sta-
tic metric, entropy), providing a quantitative evaluation of the
stronger impact of dynamic features onto human attentional selec-
tion over natural video scenes.

The last three metrics - biologically-inspired saliency, outlier
detection, and surprise - employ a common front-end which con-
sists of a set of linear filters tuned to the five features of color,
intensity, orientation, flicker, and motion at six spatial scales (Itti
& Koch, 2001). They differ in the computations applied to the out-
puts of these linear detectors to yield a master map. The biologi-
cally-inspired saliency metric implements a heuristic detection of
spatial and temporal outliers in each of the low-level feature chan-
nels and spatial scales: non-linear competitive interactions be-
tween distant visual locations, mimicking the non-classical
surround suppression effects observed in primary visual cortex
(Sillito et al., 1995; Itti et al., 1998), enhance isolated or outlier
stimuli while suppressing more extended regions with high linear
filter outputs. Because it considers both static and dynamic fea-
tures, our saliency metric combines both notions of spatial saliency
and temporal novelty into a generalized biologically-inspired mea-
sure of saliency. It scores better than any of the single visual fea-
tures taken in isolation, suggesting that all features do contribute
to human gaze allocation.

The explicit outlier detection metric retains the same front-end
as the saliency metric, but instead of biologically-inspired long-
range interactions it explicitly computes likelihood of the incoming
pixel data given an adaptive model for that data at every location
in each of the feature maps. This metric yields a strong output
when incoming data is an outlier (low likelihood) given the adap-
tive model (Methods). Hence this metric exactly computes outlier
probabilities instead of relying on biologically-plausible heuristics
as used in the saliency metric. We find that explicit outlier detec-
tion and biologically-inspired saliency score equally well, suggest-
ing that the neural competitive interactions in the saliency metric
well approximate a true detection of outliers.

Finally we evaluate the surprise metric, which retains the raw
linear visual features of the saliency and outlier detection metrics,
but attaches surprise detectors to every location in each of the fea-
ture maps. This metric quantifies low-level surprise in image
patches over space and time, and at this point does not account
for cognitive beliefs of our human observers, nor does it attempt
to consider high-level, possibly semantically-rich, models for the
video frames (such as the models of television channels discussed
in Methods). Rather, the surprise metric assumes a family of simple
models for image patches and computes surprise from shifts in the
distribution of beliefs about which models better describe the



L. Itti, P. Baldi/Vision Research 49 (2009) 1295-1306 1303

patches (Methods). Notably, the models used in the surprise metric
are the same as in the outlier detection metric. The only difference
between these two metrics is that one detects outliers based on
computing likelihood while the other computes surprise. Conse-
quently, any difference in performance at predicting human gaze
patterns cannot be due to the low-level front-end or class of mod-
els used, but must reflect a difference between computing outliers
and computing surprise.

We find that the surprise metric significantly outperforms the
outlier and all other computational metrics (p < 107' or better
on t-tests for equality of KL scores), scoring nearly 20% better than
the second-best metric (saliency) and 60% better than the best sta-
tic metric (entropy). Surprising stimuli often substantially differ
from simple feature outliers; for example, a shower of randomly-
colored pixels continually excites all low-level feature detectors
and outlier detection mechanisms, but rapidly becomes
unsurprising.

Clearly, in our and previous eye-tracking experiments, in some
situations potentially interesting targets were more numerous

than in others. With many possible targets, different observers
may orient towards different locations, making it more difficult
for a single metric to accurately predict all observers. To investi-
gate this, we consider (Fig. 6) subsets of human saccades where
at least two, three, or all four observers simultaneously agreed
on a general location of interest. Observers could have agreed
based on bottom-up factors (e.g., only one visual location had strik-
ingly interesting image appearance at that time), top-down factors
(e.g., only one object qualified as the main actor), or both (e.g., a
single actor was present who also had distinctive appearance).
Irrespectively of the cause for agreement, it indicates consolidated
belief that a location was attractive. While overall the KL scores of
all metrics improved when progressively focusing the analysis
onto only those consensus locations, dynamic metrics improved
more steeply, indicating that stimuli which more reliably attracted
all observers carried more flicker, motion, saliency, and surprise
(Fig. 6). Surprise remained significantly the best metric to charac-
terize these agreed-upon attractors of human gaze (p < 107'° or
better on t-tests for equality of KL scores).

Fig. 4. (a) Sample eye movement traces from four observers (CZ, NM, RC, VN) watching one video clip (545 frames, 18.1 s) that showed cars passing by on a fairly static
background. Squares denote saccade endpoints (42, 36, 48, and 16 saccades for CZ, NM, RC, and VN). (b) Our data shows high inter-individual overlap of saccade targets, as
shown here with the locations where one human saccade endpoint was nearby (within 5.6°) the instantaneous eye position of one (white squares, 47 saccades), two (cyan
squares, 36 saccades) or all three (black squares, 13 saccades) other humans. (c) Given this high overlap, a metric where the master map was created from the three eye
movement traces other than that being tested yielded an upper-bound KL score, computed by comparing the histograms of metric values at human (blue) and random (green)
saccade targets. Indeed, this metric’s map was very sparse, as demonstrated by the high number of random saccades landing on locations with near-zero metric response. Yet
humans preferentially saccaded towards the three active hotspots corresponding to the instantaneous eye positions of three other humans, as demonstrated by the high

number of human saccades landing on locations with near-unity metric responses.
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Overall, surprise explained the greatest fraction of human sac- 5. Discussion
cades, indicating that humans are significantly attracted towards
surprising locations in video displays. Over 72% of all human sac- While previous research has shown with either static scenes or
cades were targeted to locations predicted to be more surprising dynamic synthetic stimuli that humans preferentially fixate regions
than on average. When only considering saccades where two, of high entropy (Privitera & Stark, 2000), contrast (Reinagel &
three, or four observers agreed on a common gaze target, this fig- Zador, 1999), saliency (Parkhurst et al., 2002), novelty (Theeuwes,
ure rose to 76, 80, and 84%, respectively. 1995), or motion (Abrams & Christ, 2003), our data provides direct

Fig. 5. (a) Sample frames from our video clips, with corresponding human saccades and predictions from the entropy, surprise, and human-derived metrics. Entropy maps,
like variance and DCT-based information maps, exhibited many locations with high responses, hence had low specificity and were poorly discriminative. In contrast, surprise
and human-derived maps were much sparser and more specific. For three example frames (first column), saccades from one subject are shown (arrows) with corresponding
apertures over which master map activity was sampled (circles). Associated master maps exemplify the varying degrees of sparseness and specificity of the metrics tested. (b)
KL scores quantify the tendency of human saccades (narrow blue bars) to pick hotspots with high values in the master maps, compared to chance (wide green bars, which
reflect the intrinsic distributions of hotspots for each metric). A KL score of zero would indicate that humans did not look at hotspots in a master map more often than
expected solely by chance. For all metrics studied, KL scores were significantly above zero, and reflected significantly different performance levels, with a strict ranking of
variance < orientation < entropy < motion < saliency < surprise < human-derived (also see Table 1). Among eleven computational metrics tested in total, surprise performed
best, in that surprising locations were relatively few yet reliably gazed to by humans.



L. Itti, P. Baldi/Vision Research 49 (2009) 1295-1306 1305

experimental evidence that humans fixate surprising locations
even more reliably. This conclusion was made possible by develop-
ing new analysis methods to quantify what attracts human gaze in
dynamic natural scenes, and by applying these methods to large-
scale data analysis totaling over one CPU-year of numerical simula-
tions. Using these new methods and the proposed Bayesian defini-
tion of surprise, we find that surprise explains best where humans
look when considering all saccades, and even more so when
restricting the analysis to only those saccades for which human
observers tended to agree. Surprise hence represents an easily com-
putable shortcut towards events which deserve attention.

Beyond the early aforementioned studies comparing predic-
tions of simple image processing metrics to human gaze patterns,
a number of recent studies have further exploited such metrics
under a wider variety of stimuli and behavioral conditions
(Henderson, 2003; Tatler et al., 2005; Einhauser, Kruse, Hoffmann,
& Konig, 2006; Foulsham & Underwood, 2008; Einhauser, Rutisha-
user, & Koch, 2008). However, except for a few exceptions (Naval-
pakkam & Itti, 2005; Torralba, Oliva, Castelhano, & Henderson,
2006; Peters & Itti, 2007), this has typically not yielded new com-
putational metrics which would perform better than the previ-
ously proposed ones. Hence an important contribution of the
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Fig. 6. KL scores when considering only saccades where at least one (all 10,192
saccades), two (7948 saccades), three (5565 saccades), or all four (2951 saccades)
humans agreed on a general area of interest in the video clips (their gazes were
within 5.6° of each other), for all eleven computational metrics. Scores of static
metrics (bottom) improved substantially when progressively focusing onto only
saccades with stronger inter-observer agreement (average slope 0.56 + 0.37 percent
KL score units per 1000 pruned saccade). Hence, when humans agreed on an
important location, they also tended to be more reliably predicted by the
computational metrics. Furthermore, all dynamic metrics (top) improved nearly
4.25 times more steeply (slope 2.37 £ 0.39), suggesting a stronger role of dynamic
events in attracting human attention. Among those, surprising events were
significantly the strongest (Bonferroni-corrected t-tests for equality of KLscores
between surprise and other metrics, p < 107'%).

present study is to develop a new theory and computational metric
which significantly improves upon the state of the art.

In the absence of formal and quantitative tools to measure sur-
prise, most experimental and modeling work to date has adopted
the approximation that novel events are surprising, and has fo-
cused on experimental scenarios which are simple enough to en-
sure an overlap between the informal notions of novelty and
surprise: for example, a stimulus is novel during testing if it has
not been seen during training (Fecteau & Munoz, 2003). Bayesian
surprise should enable the design more of sophisticated experi-
ments, where surprise theory can directly be used to compare
and calibrate surprise elicited by different stimuli, and to make
predictions at the single-unit as well as behavioral levels.

The definition of surprise - as the distance between the posterior
and prior distributions of beliefs over models - is entirely general
and readily applicable to the analysis of auditory, olfactory, gusta-
tory, or somatosensory data. While here we have focused on behav-
ior rather than detailed biophysical implementation, it is worth
noting that detecting surprise in neural spike trains does not require
semantic understanding of the data carried by the spike trains, and
thus could provide guiding signals during self-organization and
development of sensory areas. In fact, the time constant of our sur-
prise metric (Methods) was derived from fitting neural data from
complex cells in areas V1 of monkeys (Miiller et al., 1999).

Our implementation of surprise theory into a simple computa-
tional video processing model is certainly limited, in particular by
the fact that the prior beliefs are learned here from previous video
frames, at a relatively short time scale. Hence, our implementation
does not yet fully exploit one of the more powerful facets of sur-
prise theory, by which prior beliefs can in principle be of a more
subjective and top-down nature.

At higher processing levels, top—down cues and task demands
are known to combine with stimulus novelty in capturing atten-
tion and triggering learning (Ranganath & Rainer, 2003; Wolfe &
Horowitz, 2004), ideas which may now be formalized and quanti-
fied in terms of priors, posteriors, and surprise. For instance, sur-
prise theory can further be tested and utilized in experiments
where the prior is biased by top-down instructions or prior expo-
sures to stimuli (Wolfe & Horowitz, 2004). Indeed, within the prior
distribution, surprise can in principle incorporate information
coming from past experience and/or top-down. Thus the formalism
is in place and this is not a theoretical limitation of the notion of
surprise itself.

For instance, one possible direction for future work is to use
text-based stimuli where the amount of semantic information
can be finely tuned, progressively transitioning from random
assemblages of letters, to Markov models of order 1, 2, 3, or higher
at the letter level, to Markov models of order 1, 2, 3, or higher at the
word level, to full sentences (Shannon, 1948). One question which
can then be addressed is that of how the increasing level of seman-
tic information might influence eye movements, and whether a
computational implementation of surprise theory can be embodied
which captures such influences.

In addition, surprise-based behavioral measures, such as the
eye-tracking one used here, may prove useful for early diagnostic
of human conditions including autism and attention-deficit hyper-
active disorder, as well as for quantitative comparison between hu-
mans and animals which may have lower or different priors,
including monkeys, frogs, and flies. Beyond sensory neurobiology
and human psychology, computable surprise could guide the
development of data mining and compression systems (allocating
more resources to surprising regions of interest), to find surprising
agents in crowds, surprising sentences in books or speeches, sur-
prising medical symptoms, surprising odors in airport luggage
racks, surprising documents on the world-wide-web, or to design
surprising advertisements.
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