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LECTURE 10
The Correspondence Problem

10.1. Introduction

In the last lecture, we assumed an “oracle” gave us the correspondences that
we used for estimating planar transformations (affine, TPS). How do we get
these, assuming no oracle is available?

This lecture, we’ll look at four popular methods:

• Scott & Longuet-Higgins (SLH)
• Hungarian
• Softassign
• RANSAC (related to geometric hashing, pose clustering, Hough

Transform)

These methods are widely used in two main areas: multiview geometry
(Structure From Motion) and object recognition. The correspondence prob-
lem can be classified as:

• sparse v.s. dense
• narrow baseline v.s. wide baseline
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In object recognition, we are primarily interested in sparse and wide baseline.
Compared to SFM, object recognition is different in that the image being
compared may not be different views of the same objection; it is more com-
mon to have different instances of the same object category. Also, note that
the baseline can’t be too wide, or self-occlusion takes over. Most approaches
use multiple 2D views to cover the viewing sphere adequately.

Often the goal is to use the sparse correspondence to get a foothold on
a coordinate transform that will allow dense correspondence (explicitly or
implicitly) – we’ll see that RANSAC has this spirit.

Several algorithm exist to find correspondences between images. Most
approaches for estimating correspondences require a cost function over puta-
tive point-to-point matches. In practice, these can come from methods such
as SIFT or MSER. To motivate the basic idea of solving a correspondence
problem, we’ll consider a very simple example that depends only on distances
between points.

10.2. Scott & Longuet-Higgins (SLH)

One algorithm that makes very few assumptions is Scott & Longuet-Higgins
(1991). It is an instance of a sparse correspondence algorithm. The reason it
works is a bit mysterious, but it will become clearer later in the class when
we discuss grouping and segmentation.

The input to this algorithm is two sets of points: pi, i = 1, 2, . . . ,m and
pj, j = 1, 2, . . . , n. Assume m ≤ n w.l.o.g. Think of the two point sets
as lying in the same place. Now, construct the Gaussian weighted distance
matrix G:

(10.1) Gij = e−r
2
ij/2σ

2

, r2
ij = ‖pi − pj‖2.

G represnts the proximities between the two point sets, and σ controls the
notion of “close” or “far away.”

Now comes the mysterious part. Compute the SVD of G:

G = UΣV >,

and set Σ = I to make a new matrix P (Figure ??):

P = UV >.

SLH showed that P is the orthogonal matrix that “correlates” best with G
in the sense of maximizing the inner product:

(10.2)
∑
i

∑
j

PijGij = tr(P>G).

In numerical linear algebra, this is known as the “orthogonal Procrustes
problem” (Golub & Van Loan, 1996).
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Figure 1. Longuet-Higgins algorithm. (a) Original points. (b) G. (c)
P . (d) Final matching

Orthogonal matrices are one possible generalization of permutation ma-
trices, and a permutation matrix that takes us from i in pi to j in pj is what
we seek. In fact, the final step of SLH is to form the matrix Π where:

(10.3) Πij =

{
1, if pij is both maximal in its row and column
0, otherwise

This enforces the principle of exclusion or “uniqueness constraint” (i.e. one-
to-one matching) while applying the principle of proximity. Outliers are
gracefully handled in that their corresponding row or column in Π will be
empty.

Pilu (CVPR’97) has pointed out that Gij can be enhanced by including
a term for the similarity of a small grayscale patch around each point; this
revived some interest in this algorithm a few years back.

10.3. Hungarian Method (Kuhn-Munkres)

There are of course other ways of finding the correspondences using the infor-
mation in G. Arguably the most direct way is to treat r2

ij as the cost matrix
for a linear assignment problem, i.e. a weighted bipartite matching prob-
lem. This can be solved in O(n3) using the so-called Hungarian algorithm
(Kuhn-Munkres).

Definition 10.4. The Hungarian algorithm is a combinatorial optimization
that finds the minimum cost one-to-one matching between two point sets.
It is a linear assignment problem and there is a cost rij to each assignment.
“Dummy nodes” are used so that a point that does not match anything can
still be matched to a node. The corresponding assignment has a cost of ε
(see Figure ??).
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Figure 2. Linear assignment problem. Dummy nodes are represented
by open circles.

10.4. Softassign

Another interesting approach is the so-called “Softassign” method of Gold &
Rangarajan (PAMI ’96), which is related to the “invisible hand” algorithm
by Kosowsky & Yuille (1994).

Like SLH, they view permutation matrices as special cases of a larger
family of matrices; this time, instead of orthogonals, they use doubly sto-
chastic matrices. A doubly stochastic matrix has rows and colums that sum
to 1, which seems to be a more appealing version of a “soft” permutation ma-
trix, since its rows and columns can be regarded as probability distributions
over correspondences.

The algorithm finds the “closest” doubly stochastic matrix to G and ap-
plies Sinkhorn balancing, or alternating the steps of row and column normal-
ization until convergence, with annealing (dropping the value of σ), making
the matrix look more like a permutation matrix. Outliers are handled by
using slack variables.

10.5. RANSAC

Random Sample Consensus (RANSAC) (Fischler & Bolles, 1981) is a tech-
nique from robust statistics. When applied to point matching, it combines
stereo matching with epipolar (or homography) constraints.

RANSAC is interesting because it makes use of the minimum number
of correspondences needed to find relation between images, but it does so
many times. An example of RANSAC being used is with robust line fitting
(Figure ??). It requires:

• a transformation model
• the minimum number of correspondences needed to estimate this

transformation.
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Figure 3. Three possible line fits for data points {1,. . . ,7}. (1) Regular
least squares. (2) Regular least squares with one outlier, 7, removed. (3)
RANSAC (Torr & Murray, 1997).

10.6. Dense matching

Now let’s turn our attention to the dense matching case. Assume now that
we have successfully established the epipolar geometry and now the images
are rectified so that the correspondence problem is reduced to a 1D search
along corresponding scanlines.

In the 1970s, a number of scanline matching algorithms were developed
based on dynamic programming. The basic idea is to set up a cost ma-
trix between all pixels of two scanlines. An arc joins two nodes (i, i′) and
(j, j′) when intervals (i, j) and (i′, j′) match each other, and we can find the
minimum cost path through the cost matrix 1.

1See Ohta & Kanade or Baker & Binford for more details.
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Figure 4. Example of RANSAC used in Structure From Motion. The
choice of transformation is a homography and requires 4 correspondences
(8 parameters and 2 per correspondence). The top images are two views
of the same scene. The bottom image contains the correspondences after
applying RANSAC.


