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Vision problems as image labeling

• depth (stereo)

• object index (segmention)

• original intensity (image restoration)
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Labeling problems can be cast in terms of 
energy minimization 

Labeling of pixels

Penalty for pixel labeling

Interaction between 
neighboring pixels. 
Smoothing term.

E(L) =
∑

p∈P

Dp(Lp) +
∑

p,q∈N

Vp,q(Lp, Lq)

Dp : Lp → "

L : P → Lp

Vp,q : P x P → "
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Energy minimization can be solved with graph 
cuts

S terminal S terminal

T terminal T terminal
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• Energy function and graph construction

• Min-cut of graph minimizes energy

• Summar max-flow/min-cut algorithms

• Rest of bone segmentation example
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Some Notation

L = (L1, . . . , Lp, . . . , L|P |)

P = set of pixels p

N = set of unordered pairs (p, q) of neighbors in P

Binary vector representing 
a binary segmentation

G = (V, E) graph with nodes, V, and edges, E

B = set of user defined background pixels

O = set of user defined object pixels
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Labeling problems can be cast in terms of 
energy minimization 

Labeling of pixels

Penalty for pixel labeling

Interaction between 
neighboring pixels. 
Smoothing term.
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Their Energy Function

E(L) = λ ·

∑

p∈P

Rp(Lp) +
∑

(p,q)∈N

B(p, q) · δ(Lp, Lq)

Dp(Lp) becomes regional term Rp(Lp)

Vp,q becomes boundary term B(p, q) · δ(Lp, Lq)
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Regional term

E(L) = λ ·

∑

p∈P

Rp(Lp) +
∑

(p,q)∈N

B(p, q) · δ(Lp, Lq)

Penalize pixel label based on local properties

Negative log-likelihood of intensity

Rp(obj) = − lnPr(Ip|O)

Rp(bkq) = − lnPr(Ip|B)
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Boundary term: penalize dissimilar neighbors

E(L) = λ ·

∑

p∈P

Rp(Lp) +
∑

(p,q)∈N

B(p, q) · δ(Lp, Lq)

B(p, q) ∝ exp(−
(Ip − Iq)2

2σ2
) ·

1

dist(p, q)

rp

sq
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Boundary term: penalize dissimilar neighbors

B(p, q) ∝ exp(−
(Ip − Iq)2

2σ2
) ·

1

dist(p, q)

rp

sq

E(L) = λ ·
∑

p∈P

Rp(Lp) +
∑

(p,q)∈N

B(p, q) · |Lp − Lq|
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Graph construction: cost of n-links

Object

Background

c(p, q) = B(p, q) if (p, q) ∈ N

B(p, q)

T

S

B(p, q) ∝ exp(−
(Ip − Iq)2

2σ2
) ·

1

dist(p, q)
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Graph construction: cost of t-link (p, S)

Object

Background

If p ∈ O then c(p, q) = K
K

K = 1 + max
p∈P

∑

q:(p,q)∈N

B(p, q)

T

S

14



Object

Background

If p /∈ O ∪ B then c(p, q) = λ · Rp(bkg)

Graph construction: cost of t-link (p, S)

T

S
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Object

Background

Graph construction: cost of t-link (p, S)

T

S

If p ∈ B then c(p, q) = 0 0
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Claim: min-cut of graph minimizes energy

• Min-cut on G is a feasible cut

• Each feasible cut has a unique binary 
segmentation

• Segmentation associated with min-cut that 
satisfies user defined constraints minimizes 
the energy function
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Summary of max-flow/min-cut algorithms

• Augmenting paths (Ford and Fulkerson)

• Push-relabel (Goldberg and Tarjan)

• Their implementation (see [2]) 
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