
1

CSE 120CSE 120
Principles of Operating Principles of Operating

SystemsSystems

Fall 2004Fall 2004

Lecture 6: SynchronizationLecture 6: Synchronization

Geoffrey M. VoelkerGeoffrey M. Voelker

October 7, 2004 CSE 120 – Lecture 6 – Synchronization 2

SynchronizationSynchronization
Threads cooperate in multithreaded programs

To share resources, access shared data structures
» Threads accessing a memory cache in a Web server

To coordinate their execution
» One thread executes relative to another (recall ping-pong)

For correctness, we need to control this cooperation
Threads interleave executions arbitrarily and at different rates
Scheduling is not under program control

We control cooperation using synchronization
Synchronization enables us to restrict the possible
interleavings of thread executions

Discuss in terms of threads, also applies to processes

2

October 7, 2004 CSE 120 – Lecture 6 – Synchronization 3

Shared ResourcesShared Resources
We will initially focus on coordinating access to shared
resources
Basic problem

If two concurrent threads (processes) are accessing a shared
variable, and that variable is read/modified/written by those
threads, then access to the variable must be controlled to
avoid erroneous behavior

Over the next couple of lectures, we will look at
Mechanisms to control access to shared resources

» Locks, mutexes, semaphores, monitors, condition variables, …
Patterns for coordinating accesses to shared resources

» Bounded buffer, producer-consumer, etc.

October 7, 2004 CSE 120 – Lecture 6 – Synchronization 4

Classic ExampleClassic Example
Suppose we have to implement a function to handle
withdrawals from a bank account:
withdraw (account, amount) {

balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
return balance;

}

Now suppose that you and your significant other share
a bank account with a balance of $1000.
Then you each go to separate ATM machines and
simultaneously withdraw $100 from the account.

3

October 7, 2004 CSE 120 – Lecture 6 – Synchronization 5

Example ContinuedExample Continued
We’ll represent the situation by creating a separate
thread for each person to do the withdrawals
These threads run on the same bank machine:

What’s the problem with this implementation?
Think about potential schedules of these two threads

withdraw (account, amount) {
balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
return balance;

}

withdraw (account, amount) {
balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
return balance;

}

October 7, 2004 CSE 120 – Lecture 6 – Synchronization 6

Interleaved SchedulesInterleaved Schedules
The problem is that the execution of the two threads
can be interleaved:

What is the balance of the account now?
Is the bank happy with our implementation?

balance = get_balance(account);
balance = balance – amount;

balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);

put_balance(account, balance);

Execution
sequence

seen by CPU Context switch

4

October 7, 2004 CSE 120 – Lecture 6 – Synchronization 7

Shared ResourcesShared Resources
The problem is that two concurrent threads (or
processes) accessed a shared resource (account)
without any synchronization

Known as a race condition (memorize this buzzword)

We need mechanisms to control access to these
shared resources in the face of concurrency

So we can reason about how the program will operate

Our example was updating a shared bank account
Also necessary for synchronizing access to any
shared data structure

Buffers, queues, lists, hash tables, etc.

October 7, 2004 CSE 120 – Lecture 6 – Synchronization 8

When Are Resources Shared?When Are Resources Shared?
Local variables are not shared (private)

Refer to data on the stack
Each thread has its own stack
Never pass/share/store a pointer to a local variable on
another thread’s stack

Global variables and static objects are shared
Stored in the static data segment, accessible by any thread

Dynamic objects and other heap objects are shared
Allocated from heap with malloc/free or new/delete

5

October 7, 2004 CSE 120 – Lecture 6 – Synchronization 9

Mutual ExclusionMutual Exclusion
We want to use mutual exclusion to synchronize
access to shared resources
Code that uses mutual exclusion to synchronize its
execution is called a critical section

Only one thread at a time can execute in the critical section
All other threads are forced to wait on entry
When a thread leaves a critical section, another can enter

October 7, 2004 CSE 120 – Lecture 6 – Synchronization 10

Critical Section RequirementsCritical Section Requirements
Critical sections have the following requirements:
1) Mutual exclusion

If one thread is in the critical section, then no other is
2) Progress

If some thread T is not in the critical section, then T cannot
prevent some other thread S from entering the critical section

3) Bounded waiting (no starvation)
If some thread T is waiting on the critical section, then T will
eventually enter the critical section

4) Performance
The overhead of entering and exiting the critical section is
small with respect to the work being done within it

6

October 7, 2004 CSE 120 – Lecture 6 – Synchronization 11

Mechanisms For Building Mechanisms For Building
Critical SectionsCritical Sections

Locks
Very primitive, minimal semantics, used to build others

Semaphores
Basic, easy to get the hang of, but hard to program with

Monitors
High-level, requires language support, operations implicit

Messages
Simple model of communication and synchronization based
on atomic transfer of data across a channel
Direct application to distributed systems
Messages for synchronization are straightforward (once we
see how the others work)

October 7, 2004 CSE 120 – Lecture 6 – Synchronization 12

LocksLocks
While one thread executes “withdraw”, we want some
way to prevent other threads from executing in it
Locks are one way to do this
A lock is an object in memory providing two operations

acquire(): before entering the critical section
release(): after leaving a critical section

Threads pair calls to acquire() and release()
Between acquire()/release(), the thread holds the lock
acquire() does not return until any previous holder releases
What can happen if the calls are not paired?

Locks can spin (a spinlock) or block (a mutex)

7

October 7, 2004 CSE 120 – Lecture 6 – Synchronization 13

Using LocksUsing Locks

What happens when blue tries to acquire the lock?
Why is the “return” outside the critical section? Is this ok?
What happens when a third thread calls acquire?

withdraw (account, amount) {
acquire(lock);
balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
release(lock);
return balance;

}

acquire(lock);
balance = get_balance(account);
balance = balance – amount;

balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
release(lock);

acquire(lock);

put_balance(account, balance);
release(lock);

Critical
Section

October 7, 2004 CSE 120 – Lecture 6 – Synchronization 14

How do we implement locks? Here is one attempt:

This is called a spinlock because a thread spins
waiting for the lock to be released
Does this work?

Implementing Locks (1)Implementing Locks (1)

struct lock {
int held = 0;

}
void acquire (lock) {

while (lock->held);
lock->held = 1;

}
void release (lock) {

lock->held = 0;
}

busy-wait (spin-wait)
for lock to be released

8

October 7, 2004 CSE 120 – Lecture 6 – Synchronization 15

Implementing Locks (2)Implementing Locks (2)
No. Two independent threads may both notice that a
lock has been released and thereby acquire it.

struct lock {
int held = 0;

}
void acquire (lock) {

while (lock->held);
lock->held = 1;

}
void release (lock) {

lock->held = 0;
}

A context switch can occur
here, causing a race condition

October 7, 2004 CSE 120 – Lecture 6 – Synchronization 16

Implementing Locks (3)Implementing Locks (3)
The problem is that the implementation of locks has
critical sections, too
How do we stop the recursion?
The implementation of acquire/release must be atomic

An atomic operation is one which executes as though it could
not be interrupted
Code that executes “all or nothing”

How do we make them atomic?
Need help from hardware

Atomic instructions (e.g., test-and-set)
Disable/enable interrupts (prevents context switches)

9

October 7, 2004 CSE 120 – Lecture 6 – Synchronization 17

Atomic Instructions: Atomic Instructions:
TestTest--AndAnd--SetSet

The semantics of test-and-set are:
Record the old value
Set the value to indicate available
Return the old value

Hardware executes it atomically!

When executing test-and-set on “flag”
What is value of flag afterwards if it was initially False? True?
What is the return result if flag was initially False? True?

bool test_and_set (bool *flag) {
bool old = *flag;
*flag = True;
return old;

}

October 7, 2004 CSE 120 – Lecture 6 – Synchronization 18

Using TestUsing Test--AndAnd--SetSet
Here is our lock implementation with test-and-set:

When will the while return?
What about multiprocessors?

struct lock {
int held = 0;

}
void acquire (lock) {

while (test-and-set(&lock->held));
}
void release (lock) {

lock->held = 0;
}

10

October 7, 2004 CSE 120 – Lecture 6 – Synchronization 19

Problems with Problems with SpinlocksSpinlocks
The problem with spinlocks is that they are wasteful

If a thread is spinning on a lock, then the thread holding the
lock cannot make progress

How did the lock holder give up the CPU in the first
place?

Lock holder calls yield or sleep
Involuntary context switch

Only want to use spinlocks as primitives to build
higher-level synchronization constructs

October 7, 2004 CSE 120 – Lecture 6 – Synchronization 20

Disabling InterruptsDisabling Interrupts
Another implementation of acquire/release is to
disable interrupts:

Note that there is no state associated with the lock
Can two threads disable interrupts simultaneously?

struct lock {
}
void acquire (lock) {

disable interrupts;
}
void release (lock) {

enable interrupts;
}

11

October 7, 2004 CSE 120 – Lecture 6 – Synchronization 21

On Disabling InterruptsOn Disabling Interrupts
Disabling interrupts blocks notification of external
events that could trigger a context switch (e.g., timer)

This is what Nachos uses as its primitive

In a “real” system, this is only available to the kernel
Why? (From your homework)
What could user-level programs use instead?

Disabling interrupts is insufficient on a multiprocessor
Back to atomic instructions

Like spinlocks, only want to disable interrupts to
implement higher-level synchronization primitives

Don’t want interrupts disabled between acquire and release

October 7, 2004 CSE 120 – Lecture 6 – Synchronization 22

Summarize Where We AreSummarize Where We Are
Goal: Use mutual exclusion to protect critical sections
of code that access shared resources
Method: Use locks (spinlocks or disable interrupts)
Problem: Critical sections can be long

acquire(lock)
…
Critical section
…
release(lock)

Disabling Interrupts:
Should not disable interrupts

for long periods of time
Can miss or delay important

events (e.g., timer, I/O)

Spinlocks:
Threads waiting to acquire

lock spin in test-and-set loop
Wastes CPU cycles
Longer the CS, the longer

the spin
Greater the chance for lock

holder to be interrupted

12

October 7, 2004 CSE 120 – Lecture 6 – Synchronization 23

HigherHigher--Level SynchronizationLevel Synchronization
Spinlocks and disabling interrupts are useful only for
very short and simple critical sections

Wasteful otherwise
These primitives are “primitive” – don’t do anything besides
mutual exclusion

Need higher-level synchronization primitives that:
Block waiters
Leave interrupts enabled within the critical section

All synchronization requires atomicity
So we’ll use our “atomic” locks as primitives to
implement them

October 7, 2004 CSE 120 – Lecture 6 – Synchronization 24

Implementing Locks (4)Implementing Locks (4)
Block waiters, interrupts enabled in critical sections

struct lock {
int held = 0;
queue Q;

}
void acquire (lock) {

Disable interrupts;
while (lock->held) {

put current thread on lock Q;
block current thread;

}
lock->held = 1;
Enable interrupts;

}

void release (lock) {
Disable interrupts;
if (Q) remove waiting thread;
unblock waiting thread;
lock->held = 0;
Enable interrupts;

}

acquire(lock)
…
Critical section
…
release(lock)

Interrupts Enabled

Interrupts Disabled

Interrupts Disabled

13

October 7, 2004 CSE 120 – Lecture 6 – Synchronization 25

Next time…Next time…
Read Chapter 7.7 – 7.10

