
1

Place Lab — An Open Architecture
for Location-Based Computing

Timothy Sohn† William G. Griswold† James Scott‡ Anthony LaMarca*
Yatin Chawathe* Ian Smith*

†Computer Science and Engineering
University of California, San Diego

{tsohn,wgg}@cs.ucsd.edu

‡Intel Research Cambridge
james.w.scott@intel.com

*Intel Research Seattle
{anthony.lamarca, yatin.chawathe,

ian.e.smith}@intel.com

ABSTRACT
Location-based computing (LBC) is an emerging hot topic in both
industry and academia. A key challenge is the pervasive deploy-
ment of LBC technologies; to be effective they must run on a
wide variety of client platforms, including laptops, PDAs, cell
phones, and even embedded devices, so that location data can be
acquired anywhere and accessed by any application. Moreover,
LBC as a nascent research area is experiencing rapid innovation in
sensing technologies, the positioning algorithms themselves, and
the applications they support. Lastly, as a newcomer, LBC must
integrate with existing communications and application technolo-
gies, including web browsers and location data interchange stan-
dards.

This paper describes the Place Lab architecture, a first-generation
open platform for client-side location sensing. Using a layered,
pattern-based architecture, it supports modular innovation in any
dimension of LBC, enabling the field to move forward more rap-
idly as these innovations are shared with the community as plug-
in components.

Several uses of Place Lab are described to demonstrate the archi-
tecture's effectiveness and limitations. These experiences are
instructive for future developers of mobile context-aware systems.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures –
Domain-specific architectures; D.2.13 [Software Engineer-
ing]: Reusable Software – Domain Engineering;

General Terms
Algorithms, Design

Keywords
Location-based computing, pervasive computing, ubiqui-
tous computing, software architecture

1. INTRODUCTION
Location-based computing (LBC) is now possible on a variety of
platforms for use in developing and deploying rich context-aware
applications. However, location-based computing depends heavily
on the technologies on which it is deployed and how it is applied.
In order to achieve effective, pervasive deployment of location
technologies, the supporting software must run on a variety of
platforms including laptops, PDAs, and mobile phones. These
devices vary widely in their computing power, operating system
environment, sensing technologies, and in the types of application
deployed on them. Developing a portable location-based comput-
ing software architecture to support these platform demands is
challenging. Moreover, LBC is a nascent research area, and the
positioning algorithms are still in a period of rapid innovation.
Examples of recent positioning algorithms involve using particle
filters [9] or fingerprinting techniques [4]. A driver for innovation
in positioning algorithms is the emergence of new sensing tech-
nologies. Radio beacon technologies such as 802.11, Bluetooth,
GSM, and infrared are all being used for positioning. The posi-
tioning capabilities of other technologies are also being actively
explored, including new technologies such as ultra wide-band, and
with novel uses of existing technologies such as sound hardware
[15]. Lastly, location-based computing must integrate with exist-
ing communications and application technologies in order to
prove useful. The ability to incorporate location into an applica-
tion without significant effort is useful in promoting the greater
aspect of context-awareness to affect application behavior.

In this paper we describe the software architecture of Place Lab, a
widely used first-generation open source toolkit for client-side
location-based computing. Place Lab supports multiple platforms
and innovation in three different dimensions: applications, posi-
tioning algorithms, and sensing technologies. We first detail the
requirements for pervasive client-side deployment of a location-
based computing architecture, and then describe Place Lab and
several case studies that demonstrate the architecture’s effective-
ness as well as its limitations. These experiences are instructive
for future developers of mobile context-aware systems.

2. RELATED WORK
Place Lab falls into the general category of fusion architectures.
Conceptually, a fusion architecture refines raw streams of data
from possibly many sources into a sequence of high-level infer-
ences. Fusion architectures have a place in wide-scale defense
systems, context-aware computing, and sensor networks, to name
a few examples. The purpose of such an architecture is to sepa-
rate the different aspects of the data processing into logical algo-
rithmic components that can be independently improved, re-

This research supported in part by a gift from Intel Re-
search.

Submitted To FSE 2005

2

placed, or composed. A dominant theme in fusion architectures is
the pipelining, stacking, or layering of the components into a se-
quence of processing stages that successively refine a data stream
into inferences.

An example fusion architecture for defense systems is the U.S.
Department of Defense’s JDL1 data fusion conceptual architec-
ture, which contains five levels (phases) of situation modeling,
proceeding from top to bottom [18]:

0. Sub-Object Data Association and Estimation: signal-
level data association and characterization.

1. Object Refinement: combines data from multiple sen-
sors and other sources to determine position, kine-
matics, and other attributes.

2. Situation Refinement: develops interpretation of the
relationships among the objects and events in the
context of the operational environment.

3. Significance Estimation: intent prediction and conse-
quence prediction.

4. Process Refinement: monitors the fusion process to
refine the process itself and guide acquisition of addi-
tional data.

The seven-layer Location Stack architecture focuses on the infer-
ence of location-related information [10], and provides an infra-
structure for location-sensing based on Bayesian inference [9].
The six software layers in the stack are sensor measurements,
fusion, arrangements, contextual fusion, activities, and intents.
The difference in this architecture from the JDL is that the fusion
of location measurements (“fusion”) is distinguished from fusion
across context categories (“contextual fusion”). In short, the
composition is understood to be more like a tree than a pipeline.
ActiveCampus is a server-centric database-oriented fusion archi-
tecture for extensible, integrated application design [8]. It employs
a multi-stage mediator-observer design pattern [19] to create the
stages of processing. The event-driven database model provides
for decoupling of components yet tight integration: the storing of
a lower-level data element into the database triggers an event that
causes the next stage of processing to begin; the storing of that
stage’s results triggers another event that starts the next stage of
processing. New inference components can be added by register-
ing for the appropriate events. Normalization of the database
tables supports incremental extension of the objects being mod-
eled and the components that process those objects.

The Context Toolkit is a small set of generic base classes from
which a programmer can derive specific subclasses for the devel-
opment of a streaming peer-to-peer networked context-aware
application [6]. The primary classes are a Context Widget, which
abstracts away a sensor as a data stream, a Context Interpreter,
which provides a mapping of one type of context element to an-
other, and a Context Aggregator, a context widget that fuses data
streams from multiple widgets. The data element streamed be-
tween widgets is an aggregation of generic key-value pairs. The
Context Toolkit’s primary value lies in the generic services of
storing and forwarding data between peers, as well as the flexible
interoperability of the classes that are developed by the program-
mer.

1JDL stands for “Joint Directors of Laboratories”.

Place Lab follows the general lines of a layered event-streaming
fusion architecture. Like ActiveCampus, it makes heavy use of
the hybrid-mediator design pattern. Place Lab’s components map
on to those of the Context Toolkit. What distinguishes it from
these systems is its focus on location sensing, client-side infer-
ence, and the expected presence of the application itself on the
client. These unique characteristics yield a distinct set of re-
quirements, and enable the deployment of not only a toolkit, but
also an infrastructure that can infer location on a wide variety of
today’s client computing platforms.

3. LOCATION-BASED COMPUTING
 REQUIREMENTS
The research community is particularly active in three aspects of
location-based computing: sensing, sensor fusion in positioning
algorithms, and applications. There is also substantial innovation
in the personal computing devices that might deploy location-
based applications. Our motivation is to provide a toolkit to serve
as a “playground” for researchers in each area, minimizing unnec-
essary overhead in exploring their aspect of location-based com-
puting. At the same time, we want to provide modularity for soft-
ware components in each area, facilitating interoperability.
Ideally, a new sensor fusion algorithm and a new sensor type
could be developed independently, but would be able to operate
together without any modification to either.

While modularity is a goal, providing this through pure abstrac-
tion is not useful to the research community. For example, the
802.11 and GSM radio technologies have very different character-
istics. If data from these two sources is abstracted so that they are
indistinguishable, this hinders the development of algorithms that
handle those sources differently to achieve better accuracy. We
therefore desire ”lossless” abstractions between modules, in which
useful abstractions can be made, but essential details remain ac-
cessible.

Our final priority is supporting a wide range of platforms, so that
an application relying on many different form factors are all sup-
ported. A cross-platform toolkit has the additional advantage of
providing platform independence for the code developed, thus
allowing code to be more easily reused between applications that
are otherwise very different.

3.1 Sensing
Sensing involves observations about the environment, such as
nearby radio access points. There are many different ways of con-
ducting sensor measurements. Some of these result in direct posi-
tioning information, such as the Global Positioning System (GPS).
Others provide data that can indirectly indicate location, such as
observing an 802.11 access point that is known to be mounted on
a particular building. Even more indirect sources of location data
might include using a microphone to monitor ambient noise levels
to provide an estimation of whether a user is outdoors or indoors.
We wish to provide an API that allows different sensor types to be
easily integrated into the architecture. Beyond the type of data that
sensors produce, we identify at least three distinct ways in which
sensor types differ and a LBC computing architecture must flexi-
bly support. First, some sensors are implemented such that their
natural interface is synchronous, polling the environment in some
way, while others are asynchronous, generating events in reaction
to the environment. Second, some sensors may generate groups of
simultaneous data that are connected by belonging to the same
“scan” in a given timeframe, while other sensors may generate

3

individual readings that are conceptually independent of one an-
other. (Note that, according to our principle of not hiding poten-
tially important distinctions in the data, we cannot simply present
a group of readings as multiple individual readings). Third, sen-
sors may be local (i.e., running on the same device as the user’s
application) or remote (i.e., running on another device that the
user is carrying).

3.2 Fusion
The fusion stage includes any sort of transformation from raw
sensor measurements to information such as a coordinate position
or a place name. The architecture should allow for flexible fusion
of the sensed data. In addition to the sensor data, it might need to
make use of persistent information about the environment. For
example, observing several nearby access points and relating them
with persistent information about where they are located can help
determine one’s current position.

As with the sensor stage, fusion algorithms may be developed that
naturally operate synchronously or asynchronously. Some may
support sensor data from only a certain sensor type, others from
broad classes of sensor types. Also, the fusion might be carried
out on the same device as the application, or on a remote device to
the application (e.g. on a computing server, if the application de-
vice is underpowered). Similarly, any persistent storage that is
necessary for fusion might be available either locally or remotely
(making use of network connectivity).

3.3 Applications
The range of potential location-aware applications is quite broad
[16], [17], and it is unrealistic to expect that a single toolkit could
provide seamless support for every unanticipated need. Nonethe-
less, in support of innovation, a LBC architecture must aim to
make it easy to prototype or “upgrade” a wide range of applica-
tions.

One important way in which applications differ is subset of plat-
forms on which they run. In addition to PCs and PDAs, location-
aware applications can run on “smart phones”, or on custom plat-
forms such as embedded sensors. The latter would be very diffi-
cult to support, since it is impossible to predict the properties of a
future custom platform. It would also be very difficult to design a
single architecture that is interoperable across many custom plat-
forms. We therefore chose to initially focus on the commodity
platforms of PCs, PDAs, and smart phones.

Two dimensions of existing work that we wish to support in the
space of location-based computing are existing applications and
existing location data standards that applications use. A signifi-
cant number of location-aware applications have been developed
alongside a particular brand of location sensor. For example, loca-
tion-enhanced map applications typically use GPS for positioning,
but GPS is limited to outdoor environments. A powerful ability
would be to simply plug in an indoor positioning technology
without any software changes. In the latter category, we find loca-
tion standards such as NMEA [1] and JSR-179 [3], which numer-
ous applications are built on (e.g., many applications relying on
GPS information understand NMEA).

A third dimension, application support, is in how location infor-
mation is presented to applications. Although some applications
might understand global latitude/longitude coordinates, others
might expect locations relative to some base point (e.g., the corner
of a building).

4. THE PLACE LAB ARCHITECTURE
Place Lab is a client-side location-inferencing architecture that
was designed with respect to the requirements outlined. In this
section we begin with an architectural overview, then describe
how the platform is abstracted away, and finally discuss the com-
ponents of the architecture in detail.

4.1 Overview
Place Lab is a fusion architecture based on a layered mediator-
observer hybrid design pattern [19] (Figure 1). Conceptually, in
each layer of the architecture a location Tracker receives locative
Measurement objects from the layer below (e.g., {timestamp,
remote beacon ID, signal strength}), correlates it to persistent loca-
tion meta data from a read-only repository called a Mapper (e.g.,
{beacon ID, {latitude, longitude}}), infers a location, and then
publishes a location inference event as a higher-level Measure-
ment, known as an Estimate when an actual location is included
(e.g., {timestamp, latitude, longitude, error}). Feeding the Track-
ers at the bottom of the layered architecture are one or more Spot-
ters that gather raw sensor outputs and abstract them as initial
Measurement events. The Placelab façade object groups and hides
the above components. Optionally, a separate adapter can provide
a standard location-reporting interface to the application (e.g.,
GPS serial port emulation). At the top of the architecture, loca-

Figure 1. The Place Lab Architecture. Boxes are major compo-
nents. Solid arrows are calls, dashed arrows are events. Coordi-
nate is effectively a library extension of the Java environment.
The events are all of subtype Measurement, permitting flexible
composition of Spotters and Trackers. Each Tracker effectively
has its own Mapper, but they may be combined for ease of im-
plementation. Nominally run in a J2ME environment, the Coor-
dinate abstraction hides the possible absence of floating point
number support. The Placelab object hides the separate compo-
nents, and a separate adapter can provide a standard location-
reporting interface (e.g., GPS serial port emulation) to the appli-
cation.

4

tion-based applications process a stream of location events from
the service or directly from the Placelab object.

The rules governing the use of architecture make it uniquely
flexible in its ability to be extended or adapted. For one, the dis-
tinction of a read-only Mapper from a dynamic Tracker separates
data-oriented and algorithm-oriented innovation in location track-
ing. This permits greater mixing and matching of innovations, and
also isolates platform-independent tracking algorithms from store-
dependent mapping services. Two, the ability to stack Trackers on
top of Spotters permits independent innovations in different as-
pects of tracking to be composed. At its simplest, Place Lab could
be instantiated with a GPS Spotter and no Trackers (Figure 2a).
Using one Tracker, Place Lab could be instantiated with a GSM
Spotter and a Bluetooth Spotter feeding an IntersectionTracker
that performs fusion of these measurements (Figure 2b). On a PC,
it could be instantiated with an 802.11 (WiFi) Spotter, a Cen-
troidTracker, and a SmoothingTracker above that smoothes the
incoming Estimates into a more probable path (Figure 2c). Such a
configuration could be painlessly upgraded by replacing the Cen-
troidTracker with a newly developed FingerprintTracker, with no
change required to the Spotter or SmoothingTracker (Figure 2d).

This conceptual view of the architecture only tells part of the
story. Abstracting away the vagaries of the underlying platform is
addressed in the next subsection. Three other overarching archi-
tectural issues are briefly discussed here, and then details on the
components of the architecture are provided in the following sub-
sections.

One, an asynchronous event-driven model is not appropriate to all
applications. For example, some applications update their location
information only on request from the user. Others are imple-
mented sequentially and use polling to acquire updates. Conse-
quently, all Spotters and Trackers provide an alternative synchro-
nous method-call interface. Generally, superclasses implement
the emulation of one in terms of the other, so that subclasses are
not burdened with satisfying these error-prone details.

Two, a consumer of Estimate events may need the source data
from which they were computed, especially in a research envi-
ronment. Therefore, when a Tracker creates a new Estimate, it

provides a link back to the Measurements or Estimates that con-
tributed to it. Consequently, each Estimate inexpensively refer-
ences its provenance, making it available to subsequent trackers.

Three, for performance reasons, the Mappers in a particular in-
stantiation of the architecture might be fused, perhaps as one big
hash table, a database with multiple tables, or a sequential tuple
store. These implementation details are of course abstracted away
from the Trackers, each of which views the Mapper as its own.
This abstraction of independence is assisted by the fact that the
Mappers are effectively read-only.

4.2 Platform Abstraction
We decided to implement Place Lab on Java 2 Micro Edition
(J2ME). This is a subset of the Java 2 Standard Edition (J2SE)
framework, which only uses Java 1.1 facilities. J2ME was chosen
because many mobile phones support it, using the Mobile Infor-
mation Device Profile (MIDP) and Connected Limited Device
Configuration (CLDC) libraries. Since Java virtual machines are
available for PC and PDA platforms, this decision allowed much
of Place Lab’s core code to be directly reusable across these three
platforms. The upwards compatibility of J2ME with J2SE also
permits PC-specific components to take advantage of the full
J2SE facilities without loss of flexibility in the overall architec-
ture.

4.2.1 Real Number Support
There are a number of differences between Java implementations
on the PC/PDA and phone platforms that required special atten-
tion. The most notable of these is that floating point arithmetic is
not available on many smart phone models, but location coordi-
nates, notably latitude/longitude, are normally represented as real
number quantities. Five digits of decimal precision are required to
achieve one-meter location precision with decimal lati-
tude/longitude measurements.

Many of the solutions considered were determined to be unten-
able. Using integer representations of coordinates throughout
Place Lab was rejected since programmers would not be able to
use the coordinate systems that were familiar to them. Using an

 (a) (b) (c) (d)
Figure 2. Four Actual Place Lab Instantiations. (a) Using only a GPS Spotter (b) Running on a phone platform using a GSM Spotter
and a Bluetooth Spotter with an Intersection Tracker and a Record Management System (RMS) Mapper (c) 802.11 Spotter with a Cen-
troid Tracker and a Smoothing Tracker stacked on top using a Java DataBase Connectivity (JDBC) Mapper (d) 802.11 Fingerprint
Tracker and a Smoothing Tracker stacked on top.

5

abstracted representation for a number, instantiated as a fixed-
point or floating-point number depending on the platform, was
rejected since Java does not allow the basic arithmetic operators
like + and * to be defined for new types. All arithmetic operations
would have to be coded using long-hand method calls (i.e.,
x.add(y).times(z)), which was deemed to be too inconvenient.
The chosen solution was based on the observation that most ma-
nipulations of coordinates do not need to access the numerical
values of the coordinates themselves. A Coordinate abstract data
type class, with suitable method definitions, can hide the
fixed/floating distinction from much of the code. For example,
application code that needs to compute the distance between two
coordinates A and B can invoke A.distanceFrom(B) to obtain an
integer value in meters. Programmers whose needs are not sup-
ported by existing methods have a choice between writing new
methods (allowing their code to operate seamlessly across fixed
and floating platforms) or casting the Coordinate to the true fixed
or floating subtype, and sacrificing portability for simplicity of
development. We incorporated a factory class called Types that
detects the availability of floating point (using Java’s Sys-
tem.getProperty method) and manufactures the appropriate
Coordinates for the platform, thus abstracting away this particular
platform difference from the programmer.

4.2.2 Cross-Platform Libraries
Another difference between PC/PDA and smart phone platforms
is in the libraries available. In particular, persistent storage access
and user interfaces are both provided by different libraries on the
two types of platforms.

Persistent storage is treated similarly to real numbers in that the
supported storage abstractions are one level up from the typical
primitive abstractions (e.g., open, read, write, seek, close), which
would not perform well on many platforms. However, there isn’t
one appropriate high-level abstraction with two obvious imple-
mentation alternatives; the anticipated usage patterns over the
persistent store affect which storage structure would be most effi-
cient. Consequently, storage-centric Place Lab services are de-
clared as Java interfaces (e.g., User Preferences and Mapper
(4.3.2)) and a few obvious class implementations are provided.

User interface abstraction is more difficult to achieve, given the
richness of function available (and expected) today. Since it is the
applications and not Place Lab itself that interacts with users, the
problem of cross-platform user interfaces was not addressed in
this framework.

4.2.3 Native Interfaces
The final issue with using the Java platform is that many location
sensor types are not intrinsically supported; hence Java classes
cannot directly access these sensors. The Java Native Interface
(JNI) system is useful here, allowing platform-specific sensor
“drivers” to be written in another language and accessed by Java.
For current smart phones, no JNI support is available; instead, a
“loopback networking” paradigm is used to virtualize a sensor as
a generic operating system service that Java can access, such as a
network stream. More details on implementing various sensors
are found in the next subsection.

4.3 Architecture Components
We now describe the main architectural components of Place Lab,
namely Spotters, Mappers, Trackers, and the interfaces provided
for applications.

4.3.1 Spotters
Spotters are the components that abstract away the hardware that
senses the environment. In the cases where native code is required
to interface with the hardware, we have implemented the smallest
feasible native part, and performed as much logic as possible in
the Java component. This facilitates code reuse; for example, our
802.11 spotter uses a different native part on the Windows Mobile
(PDA), Mac OS X (PC), Windows XP (PC) and Linux (PC) plat-
forms, but share the same Java part. Maximizing the reuse oppor-
tunities required careful design. The four standard spotters im-
plemented in Place Lab are 802.11, GSM, Bluetooth, and GPS.
These technologies are varied in how they obtain data from their
data source. The 802.11 and GSM spotters require a native code
module that is accessed synchronously; however for Bluetooth, a
Java API standard (JSR-82 [2]) is available that returns measure-
ments asynchronously. Supporting these different data access
methods, as well as exposing a flexible synchronous or asynchro-
nous interface to outside components led us to the spotter class
hierarchy shown in Figure 3.

At the top level, the Spotter interface exposes synchronous and
asynchronous modes of interaction for outside components to use.
The interface also defines the generic methods to support these
operations. The AbstractSpotter class implements the
Spotter interface, establishing a framework for the emulation
of synchronous calls with asynchronous events, and vice versa.
The AbstractSpotter is extended by the Synchro-
nousSpotter and the AsynchronousSpotter classes.
The SynchronousSpotter provides facilities for emulating
the asynchronous interface with synchronous hardware. The
AsynchronousSpotter provides the converse emulation. The
result of this hierarchy is that spotter implementations can sub-
class either the synchronous or asynchronous spotter class, which-
ever is more natural for the spotter, and the other interface is auto-
matically emulated.

The GPSSpotter superclass handles both the serial port stream-
ing and NMEA data formats provided by GPS devices. Properly
speaking, the GPSSpotter hierarchy should appear under
AsynchronousSpotter, as it would eliminate a largely re-
dundant implementation of the synchronous interface.

Spotters communicate with other components using Measure-
ment objects. A Measurement captures a spotter’s observed
readings and a timestamp of when the readings occurred. Beacon-
based spotters (e.g., 802.11, GSM, Bluetooth) construct Bea-

Figure 3. Spotter Hierarchy Diagram. Beacon technology spot-
ters extend the Synchronous or Asynchronous spotter depending
on the interface. GPS devices are treated as serial ports that
produce NMEA data. The GPS Spotter class handles NMEA
parsing and allows for synchronous or asynchronous access.

6

conMeasurement objects that are made up of one more Bea-
conReading objects, while the GPS spotter streams Posi-
tionMeasurement objects that contain Coordinate ob-
jects.

4.3.2 Mappers
Mappers are static databases of information that are used by
trackers to retrieve location information for spotter measurements.
The data stored in a mapper always includes a location coordinate,
but may include other useful information such as coverage radius.
The data to populate a mapper can come from a mapping data-
base, or user-defined files containing known beacon locations.
Mappers can also be populated by war-driving data.2 Construct-
ing the dataset for a mapper can be non-trivial [13]. The cache of
data stored in a mapper can be for any size area scale ranging
from single cities to the entire world.

Mappers that reside on different systems will require a different
method of persistent storage. For example, a mapper using the
Java DataBase Connectivity (JDBC) or Java DataBase Manager
(JDBM) libraries would work well on a PC, but would not func-
tion on a mobile phone. The Mapper interface defines the meth-
ods a class must implement to insert, query, and retrieve data from
the persistent store (Figure 4). The AbstractMapper class
implements the Mapper interface to provide a superclass for all
Mapper classes to extend. The superclass also implements caching
of data for quick accesses. To date we have implemented several
mappers for the PC using JDBC and JDBM, a mapper for the
mobile phone that uses MIDP’s Record Management System
(RMS) interface, and a mapper that draws data from Wigle.net, a
world wide 802.11 beacon database. Mapper objects can be com-
posed through a CompoundMapper to search through multiple
sources of data.

Mappers are generic with respect to the data they store. To
achieve this, each entry in the database is represented as a serial-
ized object that includes the name of the class–a subclass of Bea-
con–that represents it. The Beacon abstract class is a factory
that uses reflection to construct and initialize the appropriate Bea-
con subclass object for the mapper.

4.3.3 Trackers
Trackers are the system components that produce position esti-
mates. The tracker utilizes the stream of spotter observations as

2 War-driving is the act of driving around with a mobile device

equipped with a GPS device and a radio (typically an 802.11
card but sometimes a GSM phone or Bluetooth device) in order
to collect a trace of network availability.

Measurement objects, together with persistent data from Map-
pers, to calculate a single position Estimate. In doing so,
Trackers may perform sensor fusion by combining data from mul-
tiple types of sensors with different characteristics. Estimate
objects are a subclass of Measurement allowing the estimates
of one tracker to be used as input to another tracker (Figure 2c).
The complexity of trackers varies enormously, from simply find-
ing the centroid of recently seen beacons’ positions to trackers
that take into account signal strength, propagation models, envi-
ronment information, and physical world models.

The Tracker class defines the methods that all trackers must
implement (Figure 5). Each tracker must implement a method to
update its position estimate when receiving a new spotter meas-
urement, filtering out any unwanted measurements that may be
provided. For example, some trackers may not be able to under-
stand GPS Measurements. If an application or another tracker is
registered with the tracker, the update of a tracker’s estimate will
result in estimate event being announced. Regardless, the updated
estimate is available through a procedural interface as well. Mul-
tiple trackers can be composed using a CompoundTracker.
The CompoundTracker updates each individual tracker sepa-
rately and returns a compound estimate that contains the estimates
from each tracker. Numerous trackers have been implemented in
Place Lab [5].

4.3.4 Platform/Application Adapter—Façade
When Place Lab is instantiated, it must be adapted to the platform,
available sensors, and the application. In a few cases runtime
checks are used to detect the available sensors, but generally the
configuration is determined by how the Placelab adapter ob-
ject is subclassed and instantiated. The Placelab constructor
accepts a tracker, mapper, and list of spotters, and plumbs them
into the specified configuration. An application then obtains loca-
tion information by communicating with the Placelab object
by one of several means, described below.

Place Lab currently runs in many different platform configura-
tions, as shown in Figure 6. Several Placelab objects and sub-
classes exist to provide convenient preconfigured combinations
for several platforms. For example, because of platform limita-
tions and available spotter technologies, the PlacelabPC object
for the PC platform instantiates a different set of spotters than the
PlacelabPhone object for the phone platform.

Figure 4. The Mapper Hierarchy. Each class that extends Ab-
stractMapper is able to hold any Beacon type. JDBC and JDBM
run on PCs, RMS runs on phones. The Wigle.net mapper uses
802.11 data from the Wigle website. A CompoundMapper can
combine any of these other Mappers.

Figure 5. An Excerpt of the Tracker Hierarchy. All trackers
extend the Tracker class. Most trackers are single beacon-based
and extend the Beacon Tracker class. A Compound Tracker can
combine several Trackers together.

7

Place Lab provides five interfaces for communicating location
information to applications; one directly connects to the Placelab
object, and the others provide the Placelab data as an existing
standard service. The availability of these services means that an
application that already uses location via an existing standard may
require no modification to use Place Lab.

1. Direct Linking. Applications may communicate with the
Placelab object directly. For applications that use a pre-
configured Place Lab object, they can invoke a single method
to start the location tracking service. The application can use ei-
ther an asynchronous or synchronous interface to obtain posi-
tion estimates from Place Lab.

2. Daemon. For some applications, it may be desirable or neces-
sary to not link them directly to Place Lab. To support such
applications, Place Lab can be run as a daemon and be queried
via a simple HTTP interface. This interface allows programs
written in a wide range of languages and styles to use Place
Lab.

3. Web Proxy. A web proxy interface uses Place Lab functional-
ity to support location-enhanced web services by augmenting
outgoing HTTP requests with extension headers that denote the
user’s location. By configuring web browsers to use this proxy
(in the same way one uses a corporate firewall’s proxy), web
services that understand the extension headers can provide loca-
tion-based service to the user.

4. JSR 179. To support existing Java location-based applica-
tions, Place Lab can provide location through the JSR-179 Java
location API [3].

5. NMEA 0183. Place Lab provides a virtual serial-port inter-
face that mimics an external GPS unit by emitting NMEA 0183
navigation sentences in the same format generated by GPS
hardware. Since many applications (e.g., Microsoft MapPoint)
already understand NMEA, they can seamlessly take advantage
of location functionality developed using Place Lab (which
might operate indoors, unlike GPS).

5. DISCUSSION
To review, the Place Lab architecture and infrastructure was de-
signed to serve as a playground for researchers to explore the
domain of location-based computing. First, we wanted to enable
application designers to focus on the details of their applications
rather than the hardware, data management, and algorithms of
location sensing. Second, for those performing research in loca-
tion sensing, we wanted to support modular innovation, enabling
them to freely exchange and compose their components with oth-
ers’ into the configurations best suited for their work.

In this section we evaluate the architecture in achieving these
goals. First, we provide some data to shed light on the level and
kinds of use Place Lab is seeing in the research community. Sec-
ond, we discuss three informal case studies on three unanticipated
extensions of PlaceLab.

5.1 Place Lab in the Wild
The Place Lab toolkit, available through SourceForge.net and
placelab.org, has been downloaded more than 4585 times in the
year since its initial release in April 2004. The download activity
reflects the high interest by the research community to explore
location-based computing.
The effectiveness of Place Lab is shown by the activity among
researchers who are using it to innovate in positioning algorithms
and prototype location-aware applications. Place Lab is enabling
researchers to quickly experiment with their algorithms, and take
many ubiquitous computing applications beyond the confines of
the controlled research setting and into the wild. At the University
of Washington and Dartmouth, Place Lab has been used as a part
of several class projects in location-aware computing. Researchers
are currently using Place Lab to conduct experiments with graph-
based tracking algorithms, multi-floor location estimation and
GSM fingerprinting. In addition, several location-aware applica-
tions using Place Lab have been developed by us and the user
community:

• Topiary. Topiary is a rapid prototyping tool developed at UC
Berkeley for designing location-enhanced applications [14]. A
Topiary prototype can be run on one mobile device while the
designer monitors the user’s interactions from a second mobile
device. In this mode, the user’s location is determined in a
Wizard-of-Oz-style by the designer who can change the user’s
current location by clicking on a map. Topiary has been ex-
tended to allow the use of live location estimates from Place
Lab running on the user’s device. Place Lab has proven espe-
cially useful because it can operate indoors and, permitting To-
piary to be used in a wide variety of settings.

• ActiveCampus. The ActiveCampus project is one of the
more widely used 802.11-based location-enhanced systems [8].
ActiveCampus offers a suite of community-oriented applica-
tions to students on the UC San Diego campus. The Active
Campus project is currently using the Place Lab architecture for
their location technology. Place Lab is enabling ActiveCampus
to run on a wider array of devices than was possible with their
earlier in-house spotter technologies.

• Place Bar. PlaceBar is a demonstration application developed
at Intel Research Seattle that uses a browser toolbar to manage
a user’s interactions with Google’s location-based search en-
gine, http://local.google.com/. In addition to the query terms,
Google Local accepts an address or latitude/longitude, and the

Operating
Systems Architectures 802.11 GSM Blue-

tooth

Windows
XP x86 ● ●* ●

Linux x86, ARM,
XScale ●

Mac OS X Power PC ●

Windows
Mobile ARM, XScale ● ●* ●

Symbian Series 60
phones ● ●

Figure 6. Platform configurations that Place Lab currently
runs on. All platforms also can access GPS devices for loca-
tion. Place Lab is able to use GSM on the Windows XP and
Windows Mobile platforms because of a remote GSM spotter
over Bluetooth, discussed in Section 5.2.

8

results are filtered to return pages relevant to nearby places.
(Google estimates a pages location by extracting information
like addresses and phone numbers from the page content.)
When a query is performed in the PlaceBar, the user’s location
is obtained from Place Lab via the web proxy adapter, and it is
automatically used as the location for the query.

• A2B. A2B is an online catalog of web pages that allows users
to add new geocoded pages (pages tagged with location meta-
data) or query for nearby relevant pages (http://a2b.cc/). A2B
can be queried either by manually entering a location or with a
custom client that talks to a GPS unit. A2B extended their inter-
face to support HTTP requests from clients running the Place
Lab web proxy. Devices running the Place Lab proxy can now
talk directly to A2B in any web browser and automatically use
their location-based lookup service.

5.2 Case Studies
5.2.1 Motorola V300
The Motorola V300 is a popular phone supporting Java J2ME,
with several hardware and software differences from the Symbian
Series 60 phones already supported. We now discuss the relevant
differences and their implications for the Place Lab toolkit.

The V300 does not provide native programmability like the Sym-
bians, and instead provides for directly accessing GSM beacon
information within Java. However, this method only provides
access to the Cell ID variable, as opposed to the cell ID, area ID,
network code, and country code variables available on the Series
60 phones. Without these three other pieces of information, it is
impossible to form a unique key to look up a beacon’s location in
the Mapper. This is because cell IDs may be reused across differ-
ent areas, telephony providers, or countries.
We first dealt with the different means of access, using a runtime-
detection approach in GSMSpotter (Figure 3), which expects to
get the location via a native component accessed through a loop-
back. The code was extended to initially call Sys-
tem.getProperty(“Cell ID”) to see if it returned a valid
(e.g, non-null) cell ID. If so, this means the software is running on
a device that does not need a native component. Otherwise the
spotter will attempt to use the native component to obtain GSM
information. For this change, one method was modified in
GSMSpotter and another added, for a total change of 11 Non-
Comment Source Statements (NCSS).

Second, we modified the RMSMapper component (Figure 4) to
handle non-unique keys. Since the V300 only provides one part of
a four part unique key (cell ID:area ID:MCC:MNC) the
RMSMapper cannot do a direct lookup to find matching beacons.
Consequently, the RMSMapper was modified to find the relevant
beacons with only a matching cell ID. If more than one beacon
matches the cell ID, all of the matching beacons are returned.
Receiving a list of matching beacons is already expected by the
trackers, so no modification to a tracker is necessary unless the
tracker algorithm specifically depends upon uniqueness.3 One
method was modified and another method was added, for a total
change of 39 NCSS.

3 Trackers are generally written in a defensive manner, since in-

consistencies abound, such as access points being moved or re-
porting non-conformant ID’s.

With these small and local modifications the Place Lab software
was successfully ported to the V300 device. No modifications
were needed for the Tracker or existing applications.

5.2.2 Remote GSM Spotter
Providing a local interface to an existing remote spotter displays a
unique dimension of flexibility. A remote spotter provides the
ability to combine the strengths of two platforms to achieve a
superior result. In this case, we demonstrate making GSM meas-
urements available on a laptop, thus achieving virtually ubiquitous
location sensing of the mobile phone platform [13] on a device
with considerable computational power and GUI capabilities.

In particular, we extended Place Lab to provide a GSM-over-
Bluetooth spotter. The remote spotter requires a new class that
runs on the master device and an application on the phone to ob-
tain the needed GSM measurements.

The first change was to develop a J2ME MIDlet for the phone that
advertises itself as a remote GSM spotter over the Bluetooth inter-
face. The GSMBTMidlet application uses GSMSpotter with-
out modification to obtain the cell measurements, and stores them
in a buffer. The application required 210 NCSS. With the
GSMSpotter extension discussed in the previous section, the
remote spotter runs on both the Symbian Series 60 and Motorola
V300 phones.

The second modification was to add a RemoteGSMSpotter
class that discovers the remote GSM spotter service and periodi-
cally polls the phone via Bluetooth to read the buffer of cell read-
ings. The RemoteGSMSpotter extends the Synchro-
nousSpotter (Figure 3), fitting easily into the Spotter
abstraction. Since much spotter functionality is abstracted away in
SynchronousSpotter, the RemoteGSMSpotter required
only 108 NCSS. It can be instantiated on any device that is
equipped with a Bluetooth radio. It is currently in use on the Win-
dows XP and Windows Mobile platforms (Figure 6).

5.2.3 Fingerprint Tracker
The location-aware computing literature is full of location estima-
tion algorithms. Not all algorithms fit the typical Place Lab model
of estimating a device’s position from the positions of well-known
beacons. For example, RADAR uses a technique known as fin-
gerprinting: it relies on the fact that at a given position, a user
may hear different beacons with certain signal strengths; this set
of beacons and their associated signal strengths represent a fin-
gerprint that is unique to that position [4]. RADAR compares the
readings generated by the spotter to a database of pre-collected
fingerprints from previous war drives, and places the user at (or
near) the fingerprint(s) that most closely match the readings ob-
tained from the spotter. RADAR uses Euclidean distance in sig-
nal space as its comparison function. A related algorithm, Right-
Spot uses relative rank ordering based on signal strength as its
comparison function [12]. Thus, adding a fingerprinting tracker
to Place Lab is a good test of its adaptability.

The fingerprint tracker depends on a different kind of mapper that,
instead of aggregating information for each beacon into a single
location estimate, keeps track of all the raw fingerprints gathered
during previous mapping war drives. Each fingerprint is com-
posed of a set of { beacon-id, signal-strength } tuples obtained in
a scan and the location where the scan was taken. The mapper is
queried with a measurement to find all fingerprints that share
beacons with the supplied measurement. By not requiring a strict
fingerprint match, the algorithm is tolerant to missing or newly

9

deployed beacons. To support efficient retrieval of this kind from
the large fingerprint corpus, a modular hashing method using
MySQL’s bitwise comparisons was formulated. As a conse-
quence, a special fingerprint mapper was implemented, rather than
using the existing JDBC mapper or JDBM mapper.

The FingerprintTracker receives a set of readings from a
spotter, queries the FingerprintMapper for all matching
fingerprints, and estimates the position of the user based on either
the RADAR or the RightSpot algorithm. Details of these algo-
rithms and their use in Place Lab are available [5].

The FingerprintTracker is 106 NCSS, and the Finger-
printMapper is 315 NCSS. The resulting tracker is an inter-
operable component of the Place Lab infrastructure, usable on any
PC/PDA platform that can provide 802.11 measurements. How-
ever, the novel performance and functional requirements for the
mapper entailed implementing a new one from scratch, making
this case study a limited success. Another iteration on this project
could result in the mapper being subclassed from one of the exist-
ing mappers, or perhaps generalizing the fingerprint mapper to be
independent of the fingerprint data representation, admitting wider
reuse.

5.3 Future Work
Place Lab is a first-generation architecture for LBC. Experience
has been a good teacher, but not all its lessons have been incorpo-
rated into Place Lab, and some lessons have yet to be taught.
Minor issues include the proper integration of GPS spotters into
the framework, as discussed in Section 4.3.1.

As future work, we might consider the implementation of more
sophisticated factories for helping users build instantiations of
Place Lab, perhaps using Open Implementation [11]. However,
platforms like phones dictate that much of the configuration be
determined at compile time, both to exclude the burden of storing
unneeded (and non-J2ME) code, but also for performance reasons.

A larger issue is the integration of place into Place Lab. By place,
we mean personal or conceptual places like “home” or “can buy
stamps here”. There may be no coordinate system per se for place
(and no apparent distance between two places), but coordinates
pervade Place Lab. The place-based applications that have used
Place Lab to date have simply appropriated its spotters. Thus
Place Lab has been enabling to those projects, but their results
could not be distributed as interchangeable Place Lab compo-
nents. Place is certainly permitted in the architecture, but it is
unclear what impacts place might have on the design of Place
Lab’s core interfaces if it were to become a first class citizen.
Mappers return “beacons” and trackers emit coordinate-based
estimates. The orthogonality of location and place, naïvely
treated, could result in considerable dynamic type checking (i.e.,
Java downcasts), among other issues. Java 5’s generics provide
an opportunity, but our use of J2ME to support lightweight clients
currently precludes its use.

6. CONCLUSION
Location-based computing is a nascent, active research area com-
prising several major research topics, in particular sensing, infer-
encing, and applications. The Place Lab client-side architecture
for LBC was designed to support portable modular innovation in
each of these topics. Location is only one type of context to ap-
pear on personal devices, and our experiences provide an informal
roadmap for future developers of context-aware systems.

The principled use of design patterns, notably the type-compatible
stacking of sensors, trackers, and mappers into a multi-level me-
diator-observer design pattern, provides exceptional independ-
ence, interoperability, and composability. The Placelab façade
hides these details from applications, and a separate toolbox of
proxies to standards-based services enables location-based appli-
cations to adopt Place Lab with no change. The pervasive avail-
ability of asynchronous event interfaces and synchronous proce-
dural interfaces–provided at no development cost to those who
extend Place Lab–further minimizes the constraints placed on
developers.

Place Lab’s early successes are encouraging, although challenges
remain. The incorporation of conceptual places is a major consid-
eration. Also, the mobile phone market is unruly, and may pro-
vide unexpected challenges in future ports.

7. ACKNOWLEDGMENTS
The authors thank the many contributors and users of Place Lab
for their support.

8. REFERENCES
[1] NMEA 0183. http://www.nmea.org/pub/0183/

[2] Java Bluetooth API (JSR-82).
http://www.jcp.org/en/jsr/detail?id=82

[3] Java Location API (JSR-179).
http://www.jcp.org/en/jsr/detail?id=179

[4] Bahl, P. and Padmanabhan, V. RADAR: An In-Building RF-
based User Location and Tracking System. In Proceedings of
IEEE Infocomm 2000, pp. 775-784.

[5] Cheng, Y., Chawathe, Y., LaMarca, A., Krumm, J. Accuracy
Characterization for Metropolitan-scale Wi-Fi Localization.
In Proceedings of Mobisys 2005.

[6] Dey, A.K., Salber, D., Abowd, G.D. A Conceptual Frame-
work and a Toolkit for Supporting the Rapid Prototyping of
Context-Aware Applications. HCI Journal 16(2-4) 2001, 97-
166.

[7] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design
Patterns: Elements of Reusable Object-Oriented Software
Reading, MA, Addison-Wesley, 1995.

[8] Griswold, W.G., Shanahan, P., Brown, S.W., Boyer, R.,
Ratto, M., Shapiro, R.B., Truong, T.M. ActiveCampus – Ex-
periments in Community-Oriented Ubiquitous Computing.
IEEE Computer, Vol. 37, No. 10., pp. 73-81, October 2004.

[9] Hightower, J., Borriello, G. Particle Filters for Location Es-
timation in Ubiquitous Computing: A Case Study. In Pro-
ceedings of Ubicomp 2004, pp. 88-106.

[10] Hightower, J., Brumitt, B., Borriello, G. The Location Stack:
A Layered Model for Location in Ubiquitous Computing. In
Proceedings of WMCSA 2002.

[11] Kiczales, G., Lamping, J., Lopes, C.V., Maeda, C., Mend-
hekar, A., Murphy, G., Open Implementation Design Guide-
lines, 1997 International Conference on Software Engineer-
ing (ICSE), May 1997.

10

[12] Krumm, J., Cermak, G., Horvitz, E. RightSPOT: A Novel
Sense of Location for a Smart Person Object. In Proceedings
of Ubicomp 2003, pp. 36-43.

[13] LaMarca, A., Chawathe, Y., Consolvo, S., Hightower, J.,
Smith, I., Scott, J., Sohn, T., Howard, J., Hughes, J., Potter,
F., Tabert, J., Powledge, P., Borriello, G., Schilit, B. Place
Lab: Device Positioning Using Radio Beacons in the Wild.
In Proceedings of Pervasive 2005.

[14] Li, Y., Hong, J.I., Landay, J.A. Topiary: A Tool for Prototyp-
ing Location-Enhanced Applications. In Proceedings of User
Interface Software and Technology 2004.

[15] Madhavapeddy, A., Scott, D., Sharp, R. Context-Aware
Computing with Sound. Proc. of Ubicomp 2003, pp. 315-
332.

[16] Marmasse, N., Schmandt, C.Location-aware information
delivery with comMotion. In Proceedings of Handheld and

Ubiquitous Computing (HUC) 2000, Bristol, England, pp.
157-171.

[17] Smith, I., Consolvo, S., LaMarca, A., Hightower, J., Scott, J.,
Sohn, T., Hughes, J., Iachello, G., Abowd, G. Social Disclo-
sure of Place: From Location Technology to Communication
Practice. In Proceedings of Pervasive 2005.

[18] Steinberg, A.N., Bowman, C.L., and White, F.E. Revision to
the JDL data fusion model. In Proceedings of SPIE Aero-
Sense (Sensor Fusion: Architectures, Algorithms, and Appli-
cations III), pp. 430-441, Orlando, Florida, 1999.

[19] Sullivan, K.J. and Notkin, D. Reconciling environment inte-
gration and component independence. In Proceedings of the
SIGSOFT ’90 Fourth Symposium on Software Development
Environments. pp. 22-33.

