
How Software Engineering Tools Organize Programmer
Behavior During the Task of Data Encapsulation�

Robert W. Bowdidge
IBM T. J. Watson Research Center
P.O. Box 704, Yorktown Heights, NY 10598

William G. Griswold
Department of Computer Science and Engineering
University of California, San Diego, CA 92093-0114

(Received ; Accepted in final form)

Abstract. Tool-assisted meaning-preserving program restructuring has been proposed to aid
the evolution of large software systems. These systems are are difficult to modify because rel-
evant information is often widely distributed. We performed an exploratory study to determine
how programmers used a restructuring tool interface called the “star diagram” to organize their
behavior for the task of encapsulatinga data structure. We videotaped six pairs of programmers
while they encapsulated and enhanced a data structure in an existing program. Each team used
one of three environments: standard UNIX tools, a restructuring tool with textual view of the
source code, or a restructuring tool using the star diagram view.

We systematically analyzed the videotape transcripts to derive a model of how the pro-
grammers performed encapsulation. Each team opportunistically exploited the features of the
tools (e.g., cursors) and the program representation (e.g., ordering of lines in a file) to help
them track the current state of the activity. Each method of exploiting structure tracks state
in a way that decreases the likelihood of some types of oversights (e.g., missing a required
change), but may not address others (e.g., making a change incorrectly), hence requiring a
separate check. We also observed that programmers often preferred to design and restructure
in an exploratory fashion.

The major challenge of restructuring, then, appears to arise from the fact that it is cost-
ly or haphazard to maintain some completeness and consistency properties with the state-
maintaining tactics that programmers employ with current tools. The inherent invisibility of
some information makes completenesseven more costly. These insights have led us to redesign
our restructuring tools to better support exploratory design and counter invisibility.

Key words: restructuring, data encapsulation, empirical study, software tools

1. Introduction

Software maintenance is the greatest contributor to the cost of useful soft-
ware. Lientz and Swanson found that software maintenance can account for
70% of the total software system’s lifetime cost (Lientz & Swanson 80).
Boehm cited an Air Force project in which the development cost was $30 per
line, but the maintenance cost was $4,000 per line (Boehm 75). Much of this
cost is attributed to the difficulty of modifying software whose structure has
been degraded by the numerous changes that have been layered onto it in the

� This work supported in part by NSF Grants CCR-9211002 and CCR-9508745, a Hellman
Faculty Fellowship, and an SAIC Summer Fellowship.

2 Robert W. Bowdidge and William G. Griswold

past (Belady & Lehman 71). Such changes are necessitated by the need to
accommodate the demands of users for new features and changes in the under-
lying technology. If these changes have not been appropriately anticipated
in the system’s design, the change will span many system modules (Parnas
72), incurring high costs and likely degrading software structure (Belady &
Lehman 71).

One way to lower software maintenance costs, then, is to restructure the
system into a more modular form while preserving the original functionali-
ty (Opdyke & Johnson 90; Opdyke 92; Griswold 91; Griswold & Notkin 93;
Johnson & Opdyke 93). By isolating the code related to a changing design
decision within a module, the change can be applied locally, and hence at
lower cost (Parnas 72).

Restructuring, however, is a difficult task, requiring a global understanding
of the program’s structure as well as global changes to achieve the desired
change in structure. If these changes are not made in a complete and consistent
manner, the resulting structure may be misleading or the behavior of the
program may be inadvertently changed. We developed a prototype tool to
assist restructuring (Griswold & Notkin 93; Bowdidge & Griswold 94), but
were unsure whether the technology in this tool should serve as the basis
for similar tools designed to restructure large systems. To effectively use the
ideas from this prototype to help develop production-quality restructuring
tools, we need to understand how programmers use this tool, and how the
organization and features of this tool influence how programmers perform
maintenance.

To learn how programmers restructure and better understand the problems
that they encounter during restructuring, we employed systematic obser-
vational techniques on pairs of programmers using one of three tool sets:
traditional UNIX editing and searching tools, a prototype restructuring tool
with a text-oriented interface, or this same tool augmented with a manipula-
ble graphical visualization—called the star diagram—designed specifically
for data encapsulation. The basic question we were asking was “How do
programmers use the capabilities of each set of tools to guide their progress
in the restructuring task of data encapsulation?” We observed in detail how
programmers accomplished a restructuring assignment during a two hour
session, and used the resulting videotapes and transcripts to qualitatively
characterize how programmers restructure and identify unanticipated issues
for future investigations.

The purpose of observing programmers using a variety of tools was not
to see which tool set was better. Indeed, our restructuring tools should prove
better in certain ways simply because they are specifically designed to ease
the task of restructuring, whereas the UNIX tools are not. The restructuring
tools are also certainly inferior in other ways because they are prototypes.
Rather, we looked at a variety of tools to help us generalize our observations

paper.tex; 28/03/1997; 15:34; no v.; p.2

How Software Engineering Tools Organize Programmer Behavior... 3

and permit us to make comprehensive improvements to our tools rather than
make narrow fixes to the few peculiarities observed in this study.

Although our study was largely exploratory in nature, we did hypothe-
size that there were two principal problems in program restructuring: making
correct global changes to accomplish a structural change, and planning out
an entire restructuring activity such as extracting an abstract data type from
existing code. We operationalized the first as a set of tasks to carry out a
structural change, and the second as a significant planning effort by program-
mers before undertaking any actual restructuring. In short, we observed the
following:

� Our postulated sequence of tasks was essentially correct, but we discov-
ered an additional key task, called the “finding non-literal uses task”,
which is concerned with finding computations that should be part of a
new abstraction, but are not always easily identified with the tools in use.
It appears that no tool technology can eliminate the need for this task,
but only reduce it.

� Keeping track of the state of the overall restructuring task as well as
the state of specific restructuring modifications—what might be called
bookkeeping—is a crucial activity. Bookkeeping occurs at many levels
in the process: completely performing a specific restructuring change,
evaluating progress during a set of changes, and overall sequencing of
restructuring activities. Each team exploited structure implicit in the tools
(e.g., cursors) and the program representation (e.g., the ordering of lines
in a file) to keep track of information regarding the current state of the
activity.

The methods employed by the programmers vary widely, although they
share the underlying similarity of trying to achieve certain properties of
completeness and consistency of a change. Each method of exploiting
structure decreases the possibility of some class of oversights (e.g., miss-
ing a required change), but does not address others (e.g., formulating a
flawed design), hence requiring additional integrity checks. In general,
these tactics amount to maintaining “to-do lists” of data or design consid-
erations that have yet to be processed. Although we did not anticipate the
importance of bookkeeping, it indirectly supports our hypotheses about
the challenges of making correct global changes and planning to carry
out a restructuring.

� The nature of the planning effort varied widely amongst teams, with some
teams choosing a genuinely exploratory style. This variation appears to
be due to the interplay between tool design, a complex design task,
and personal preference. Tool design influences what information can
be held for the programmer. If a design task is sufficiently complex, the

paper.tex; 28/03/1997; 15:34; no v.; p.3

4 Robert W. Bowdidge and William G. Griswold

programmer may not be able (or want to invest the time) to completely
understand all the issues in a vast design space. Some programmers,
however, collected more-or-less complete information.

Together, these discoveries led to the following insights about restructur-
ing:

� Due to the large amount of distributed information that must be managed
during restructuring, programmers use the tools available in a way that
attempts to reduce the need to mentally recall information. In particular,
when faced with a complex design task, a programmer will use tool
features in a way that allows the tool to store information conveniently
for the programmer. Moreover, if the tool cannot conveniently store the
information, the programmer will order subtasks in a way so that the
information is immediately used and can then be forgotten.

� There is an inherent invisibility (Brooks 87) of design information in
restructuring. For example, it is not always straightforward to identify all
the computations in a program that correspond to a proposed function.
It is this invisibility that results in the finding non-literal uses task and
encourages exploratory behavior as an alternative to a costly up-front
analysis.

Prior to this study, we had thought of the star diagram as a tool for
visualizing structure in a program and providing functionality to act on that
visualization and the underlying program. We had not considered the star
diagram as a mechanism for helping the programmer to orchestrate a compli-
cated design activity. However, our observations and insights led us to give
explicit consideration to the unanticipated affordances1 of each tool set that
programmers used to maintain state during modifications. In particular, we
made changes to improve the star diagram’s ability to store task-related state
and to allow the programmer to engage in exploratory design. We have also
taken steps to increase both the visibility of program details relevant to design
and the programmer’s awareness of invisibility issues.

The remainder of this paper describes these results and briefly discusses
other insights into the design of the star diagram. Additionally, this paper
documents the observational techniques we employed so that others may use
them. Although time-consuming, they require few other resources and are
well-suited to studies of research prototypes.

1 affordance: “The perceived and actual properties of a thing, primarily those fundamental
properties that determine just how the thing could possibly be used.” (Norman 89)

paper.tex; 28/03/1997; 15:34; no v.; p.4

How Software Engineering Tools Organize Programmer Behavior... 5

(get-line *line-storage* lineno)
...
(get-line *line-storage* lineno)
...
(define get-line
(lambda (ls line)
(list-ref ls line)))

(get-line lineno)
...
(get-line i)
...
(define get-line

(lambda (line)
(list-ref *line-storage* line)))

(a) Before Inline Parameter (b) After Inline Parameter

Figure 1. The Inline Parameter transformation takes a variable or expression that occurs as
a parameter to a function call, destroys the parameter, and replaces the function’s argument
with the expression. This transformation only works if all calls to the function have matching
arguments. Note that this transformation converts the code so that the programmer directly
sees that *line-storage* is acted upon by the list-ref function. (When programming
in Scheme or Lisp, asterisks around a variable name are used as a convention for indicating
global variables.)

2. Background: Meaning-Preserving Restructuring Tools

Our basic restructuring tool allows a program’s structure to be changed with-
out affecting its behavior, thus ensuring that the restructuring does not intro-
duce bugs into the program (Griswold 91; Griswold & Notkin 93). To use the
restructuring tool, the programmer selects meaning-preserving restructuring
transformations to apply to selected portions of the code. Each transformation
changes the selected code, as well as other related portions of the program, to
achieve the restructuring. There are twenty basic transformations, including
inlining a parameter (See Figure 1), changing order of statements, replacing
a function call with the body of the function, or replacing a set of similar
statements with calls to a new function (See Figure 2), and their inverses.
If the tool detects that the programmer’s transformations could change the
running behavior of the code, the tool prohibits the change and highlights the
limiting dependencies. The current restructuring tool operates on the impera-
tive language Scheme,2 and correctly manipulates programs that use pointers
and assignment.

The star diagram’s user interface has two views with different styles of
interaction, the “text-based” restructuring tool and “star diagram”.

2.1. TEXT INTERFACE FOR THE RESTRUCTURING TOOL

The “text-based” restructuring tool displays the source code of the program
in a scrolling window. Transformations are selected from a panel, which pops
up a dialog that the programmer fills in by typing or with selections from the

2 Although Scheme has a number of functional language features, it supports assignment
to variables and pointer structures.

paper.tex; 28/03/1997; 15:34; no v.; p.5

6 Robert W. Bowdidge and William G. Griswold

...
(let

((len (length (list-ref *line-storage* lno))))
...

)
...
(set! linelen (length (list-ref *line-storage* linenum)))
...

(a) Before Extract Function

(define words-on-line
(lambda (line-number)

(length (list-ref *line-storage* lno))))
...
(let ((len (words-on-line lno)))))
...

)
...
(set! linelen (words-on-line linenum))
...

(b) After Extract Function

Figure 2. The Extract Function transformation takes a common expression occurring through-
out the code, creates a new function whose body is the expression, and replaces occurrences
of the expression with calls to the new function. The tool user also specifies the name of the
new function, its location in the code, and what parts of the expression will be parameterized.

source code (See Figure 3). The interface provides few searching features, so
programmers must use existing UNIX tools to perform some queries.

To extract a new function from existing code, the programmer selects
the Extract Function button from the Restructuring Operations menu,
partially covered in the upper right of Figure 3. The Extract Function trans-
formation panel, on the right in the Figure, specifies the parameters required
to perform the transformation.

2.2. THE STAR DIAGRAM: SUPPORTING ENCAPSULATION

Although the text-based restructuring tool solves the problem of making com-
plicated behavior-preserving global changes to a program, the programmer is
still faced with the problem of understanding the program’s structural prob-
lems. Such an understanding is complicated by a straightforward display of
the program text—as shown in Figure 3—which does not convey how an
expression is related to other expressions elsewhere in the program in terms
of redundancy or the use of related values. Rather, the programmer is shown a
significant amount of local computational context, only a small part of which
may be relevant to the current structural problem.

paper.tex; 28/03/1997; 15:34; no v.; p.6

How Software Engineering Tools Organize Programmer Behavior... 7

Figure 3. User interface for the text-based restructuring tool, in the process of performing
Extract Function.

The star diagram graphical interface (see Figure 4) helps with one impor-
tant instance of this problem: performing data encapsulations. A star diagram
graphically and compactly presents only those computations in the program
that use a chosen data structure, helping the programmer to select and cre-
ate the functions to completely encapsulate it (Bowdidge & Griswold 94).
These functions and the underlying data structures collectively represent an
abstraction or module that hides the data structures from the rest of the system.

The root of the star diagram, on the left, represents all uses of a variable
being encapsulated; nodes at the first level of the diagram indicate operations
directly using the variable; nodes at the second level represent operations
nested around or consuming the result of the previous operation, and so forth.
Thus, each expression or statement containing a use of the data structure is
shown as a chain of operation nodes representing the operations performed
on the use. Each chain is terminated at the function definition in which the
use occurs—displayed as a parallelogram—-thus showing the context of each
chain.

When nodes with similar labels connect to the same parent node, the
matching nodes are combined into a single node. An icon representing a
“stack” of nodes denotes that the node actually corresponds to several similar
expressions. Stacking combines similar expressions from possibly separate
scopes. Graphically overlaying similar expressions means that each unique
computation is represented just once, helping the programmer to identify

paper.tex; 28/03/1997; 15:34; no v.; p.7

8 Robert W. Bowdidge and William G. Griswold

new operations and to manipulate similar expressions together to create a
new operation. A node near the left of the tree is an expression or statement
that might implement a “low level” operation, encapsulating little more than
the data structure representation itself. A node farther to the right might
implement a “high level” operation.

Figure 4 presents a star diagram during the encapsulation of the
line-storage variable in the program used for this study. The expres-
sions corresponding to the words-on-line abstraction shown in Figure 2
are presented by the left-to-right chain of *line-storage*, list-ref,
length, near the bottom of the diagram.

Each node in a star diagram is linked to a text view of the source so
that elided details are readily accessible. Selecting a node displays and high-
lights its corresponding source code in the program text view. In the case
of a “stacked” node—where there are multiple statements associated with
a node—the programmer can navigate to each occurrence through a menu
selection.

A program is restructured with the star diagram by selecting a node in the
diagram, and pressing a restructuring transformation button. Dialog boxes
prompt for any additional information. The star diagram provides transfor-
mations tailored to encapsulation. Transformations outside the encapsulation
paradigm can be accessed from the text view of the restructuring tool.

The star diagram provides additional assistance for the encapsulation task.
The functions encapsulating the data structure are recorded in a list located on
the far left side of the star diagram window. When the programmer creates a
new function appropriate for the interface of the new module, the programmer
adds the function to the interface by selecting the function node in the star
diagram and pressing the Move into interface transformation button. This
operation adds the function name to the interface list, then removes the
relevant calculations from the star diagram. (The operation can be reversed
by selecting a function and pressing the Remove button at the top of the list.)
Through this process, the star diagram representation clearly distinguishes
between uses of the data structure that are unencapsulated (those in the star
diagram) and those that are encapsulated (those occurring within the functions
in the interface list.)

Transformation Extract Function is a fundamental star diagram transfor-
mation. It is invoked from the star diagram by selecting a node stack and then
selecting the Extract Function button (Figure 4). A dialog appears with a
summary of each computation associated with the node stack, and the pro-
grammer selects those which are to be replaced by a call to the new function.
The tool then presents a dialog, similar to that shown in Figure 3, for choosing
the function’s name and what parts of the computation will be its arguments.
Finally, the tool verifies that the chosen computations are in fact behaviorally
identical and that the resulting transformation will preserve the functionality

paper.tex; 28/03/1997; 15:34; no v.; p.8

H
ow

Softw
are

E
ngineering

Tools
O

rganize
Program

m
erB

ehavior...
9

Figure 4. Star diagram visualization for restructuring to encapsulate data structures. This particular view shows the program after several applications of
Inline Parameter. The boxes to the far left of the star diagram window will list the names of functions representing the interface to the abstraction being
created.

p
a
p
e
r
.
t
e
x
;

2
8
/
0
3
/
1
9
9
7
;

1
5
:
3
4
;

n
o

v
.
;
p
.
9

10 Robert W. Bowdidge and William G. Griswold

Figure 5. After the words-on line function has been extracted by the Extract Function
transformation.

Figure 6. After moving the new function from the star diagram into the module interface with
the Move into Interface operation.

of the program. If so, the tool performs the transformation and updates the
star diagram to reflect the changes to the program (Figure 5). The program-
mer can then click on the new function definition in the diagram, and click
the Move into Interface button, removing the definition and its body from
the star diagram and placing it in the interface panel to the left (Figure 6).
Repeating this basic sequence—interleaved with other transformations that
prepare the code for function extraction—results in an empty star diagram,
signaling that every computation on the data structure has been abstracted as
a module operation.

paper.tex; 28/03/1997; 15:34; no v.; p.10

How Software Engineering Tools Organize Programmer Behavior... 11

3. Study Method

3.1. MOTIVATION FOR USING SYSTEMATIC OBSERVATIONAL TECHNIQUES

Choosing a method to evaluate our tools was not easy. We know of only
one study of programmers performing restructuring of any kind (Griswold &
Notkin 92), and it was ad hoc and focused on the mechanics of the change.
Also, our restructuring tool is a prototype that can only be used on small
Scheme programs, so a case study in an industrial setting is currently infeasi-
ble. Because little is known about how programmers use these tools, it is not
possible to isolate and test a few experimental variables. Indeed, Schneider-
man and others have noted that understanding the context of usage is crucial to
understanding how software tools are used (Schneiderman & Carroll 88), and
so unless we understand the full context of restructuring and encapsulation
tasks, we may make inappropriate decisions in the design of a restructuring
tool. Although an anthropological approach of observation in a completely
natural setting would be ideal (Blomberg et al. 93), our desire to understand
the use of prototype tools and to compare different tools in similar settings
precluded such an approach for the time being.

We can understand how programmers perform restructuring by observing
their behavior during a restructuring task. These techniques, most generally
called systematic observational techniques (Weick 68), are common methods
for studying real-world behavior in the social sciences. When the observations
are recorded on video or audio tape and then analyzed, these techniques can
be referred to as exploratory sequential data analysis (Sanderson & Fisher
94). When applied to understanding how programmers work, approaches
can range from using analysis of video and transcripts to test a specific
research hypothesis (Gray & Anderson 87; Ericsson & Simon 93), to using
verbal data for exploratory understanding of planning, behavior, and problem
solving (Curtis et al. 88; Guindon 90b).

Exploratory studies can be divided into observations in the workplace and
observations in a laboratory setting. Exploratory studies involving cognitive
or problem-solving issues are often performed in a laboratory setting. The set-
ting allows the experimenter to choose tasks and programs designed to expose
specific behaviors, and to record observations easily. Letovsky observed
programmers’ program comprehension methods (Letovsky & Soloway 85)
and browsing strategies (Letovsky 86). Sutcliffe and Maiden explored
mental behavior of analysts during problem solving (Sutcliffe & Maid-
en 92). Cousin used observations of programmers to identify information
that should be provided in a software engineering environment (Cousin
& Collofello 92). Lange and Rosson both documented reuse strategies
in an object-oriented programming environment (Lange & Moher 89;
Rosson & Carroll 93). Other studies tested the design of a database-style pro-

paper.tex; 28/03/1997; 15:34; no v.; p.11

12 Robert W. Bowdidge and William G. Griswold

gramming environment for the Dylan language (Dumas & Parsons 95) and
listed common problems in Macintosh programming environments (Houde
& Sellman 94).

We chose to systematically observe programmers as they performed
restructuring during a two hour restructuring exercise. With such methods,
we can analyze the behavior of a small number of subjects in a simulated
setting, and produce qualitative descriptions rather than quantitative results.
Inferences from such descriptions can be used as guidelines for tool develop-
ment or provide hypotheses that can be tested with a specific experiment at a
later time.

Our study is modeled on Flor’s studies of organization within groups of
programmers in a laboratory setting (Flor & Hutchins 91). Flor’s work differs
from the other programmer studies because he used pairs of programmers
working together as subjects. This technique, known as constructive interac-
tion (Miyake 86; Wildman 95), uses the programmers’ dialogue to observe
their problem solving processes in a more natural context than single-person
think-aloud methods. Because the programmers are also working in a famil-
iar work environment, their dialogue and actions on the computer may also
reflect habits and patterns typical of the programming culture. By observing
the two programmers and the computer together, we can also identify what
information programmers must record or examine to perform the restructur-
ing.

3.2. SETUP

To determine a suitable setup for the studies, we performed a pilot study on
the star diagram using six programmers; another six participated in a previous
study enhancing a C program. These studies revealed that a small, focused
task was necessary in order to prevent programmers from getting onto time-
consuming tangents. We also found that some programmers were unwilling
(as opposed to unable) to produce a program with a different structure without
sufficient motivation or explicit directions.

For the final setup, we chose to instruct teams of two programmers3 to
perform a specific enhancement to a somewhat complex 150 line Scheme
program by using a “restructure, then enhance” process. We ran the sessions
in a laboratory setting to limit interruptions and facilitate video recording
for later analysis. Teams worked at a single monitor and were told that they
had two hours to work on the task, although they could continue up to an
additional hour if they chose. (We allowed the programmers to continue
because we assumed most would strongly desire to finish the task during

3 We have chosen the term team because the programmers are working together towards a
common goal. Our use of the term should not be construed to mean that they normally work
together.

paper.tex; 28/03/1997; 15:34; no v.; p.12

How Software Engineering Tools Organize Programmer Behavior... 13

the session. addition, because we were interested in behavior, not speed of
modifications, we had little reason to force programmers to complete the task
in an arbitrary time period.) The task was limited to restructuring a small
program because larger programs could not be restructured using the current
restructuring tools, and because detailed exploratory analysis of the resulting
video data would have been infeasible. Three teams finished the complete
task in the allotted time, two finished the encapsulation but did not have time
to add the enhancement, and one team did not finish the encapsulation.

3.2.1. Conditions
Each team performed the restructuring task using one of three tool sets:
using standard UNIX tools, using a text-based restructuring tool, and using
the star diagram interface. Although the star diagram and restructuring tool
teams primarily used the tools they were given, some tasks not supported
by the restructuring tool led them to use standard UNIX tools. For example,
because the restructuring tools omit comments in their presentation of the
source code, programmers used standard editors to view the comments in the
original source code. Allowing the programmers to use UNIX tools could
encourage them to ignore the new tools, but the programmers were explicitly
told at the beginning of the experiment and in the instructions that they were
“encouraged to first see if the restructuring tools could help them perform the
task.”

Although most teams accomplished major parts of the task with the sug-
gested tools, one team using the text-based restructuring tool stopped using
the restructuring tool halfway through the session because of frequent crash-
es, and instead finished the task using standard UNIX tools. Their behavior
is included in this study because their methods for modifying the file with an
editor were distinct from methods used by other teams, and thus highlights
the range of techniques programmers might apply when restructuring.

3.2.2. Selection of subjects
There were a total of twelve programmers working in six teams (See Table I).
Subjects were either graduate students (many with industry experience), or
programmers from local industry. Subjects were chosen because of their
experience in programming and knowledge of Lisp-like languages, ensuring
that programmers would not face difficulties because of the programming
language used. All programmers were familiar with the UNIX programming
environment, so they understood the tools they had available and how to
use them. All understood the concept of modularization and had experience
programming in an object-oriented language, thus ensuring they were familiar
with the basis of the encapsulation task. Although this group may be somewhat
unusual in its characteristics, we expect that large-scale restructuring is an

paper.tex; 28/03/1997; 15:34; no v.; p.13

14 Robert W. Bowdidge and William G. Griswold

Table I. Years of industry experience, UNIX experience, and Lisp experience (including
classroom experience) for subjects, grouped by team and tools given. * Text restructuring
team 1 stopped using the restructuring tool due to frequent crashes, and instead finished the
encapsulation with UNIX tools.

Condition, Subject Experience (years) Progress in task
team Industry UNIX Lisp

UNIX tools 1 F 1 5 1 performed encapsulation
B 0 6 5 only

UNIX tools 2 P 7 7 10 encapsulation and
C 1 6 3 enhancement

text restr 1* D 7 7 6 encapsulation and
M 0 6 2 enhancement

text restr 2 T 0 9 4.5 encapsulation and
A 4 5 3 enhancement

star diagram 1 J 10 9 2 performed encapsulation
K 2.5 6 2 only

star diagram 2 I 0 4 5 encapsulated 5 of
R 16 20 4 6 functions

avg. / std. dev. 4.0/5.1 7.5/4.2 4.0/2.5

activity most often carried out or directed by system architects, who are highly
trained specialists themselves.

Programmers were paired according to when they were available and
assigned to conditions according to when the restructuring tools were ready
for the experiment. Each programmer received a payment of $5/hour for
participating. Although the money was an inducement to participate, we
found all the programmers to be extremely motivated, many working beyond
the nominal two-hour time limit.

3.2.3. The task, process, program, and instructions
Subjects were first informed about what would occur during the session, and
were asked to sign standard consent forms informing them, for example, that
they could stop participating at any point, and that at any time in the future
they could ask for the videotapes and logs to be destroyed. Programmers then
received printed copies of the task instructions (Appendix A), a definition and
example of encapsulation and, if applicable, a 15 minute demonstration of a
restructuring tool and instructions on its use. Programmers had two hours to
perform the task, although they were free to continue up to three hours if they
felt close to finishing the task, and wanted to continue. Programmers were
then given a questionnaire to identify their background and were debriefed

paper.tex; 28/03/1997; 15:34; no v.; p.14

How Software Engineering Tools Organize Programmer Behavior... 15

in an open-ended interview regarding what they did and why they did it.
Interviews usually lasted about twenty minutes.

The programmers were given an implementation of the KWIC index-
ing program (Parnas 72), written in a functional decomposition style
(Appendix B). Although short, KWIC is not a “toy” program. The program
is about 150 lines, containing 14 functions and four major global variables
used throughout the program. The program also contains nested functions.

The task given to the programmers was to change the internal represen-
tation of the main data structure from a “list of lines” representation to a
“list of words” representation with an auxiliary data structure identifying line
breaks. The modification requires examining all functions of the program and
performing several global changes. Programmers were asked to first encap-
sulate the data structure storing the internal representation of the file being
indexed (an array pointed to by the *line-storage* variable), creating
a new module that hid the *line-storage* data structure behind a set
of functions which acted as the interface to the module. The encapsulation
was not to change the program’s running behavior. Teams were asked to next
perform the enhancement. By enforcing this two-phase process, the program-
mers were more likely to perform a separate activity that could be identified
as data encapsulation.

3.2.4. Setting
The laboratory was set up for recording and observation to be as unob-
trusive and realistic to the programmers as possible. The laboratory is in
fact a workspace for programmers. They had access to paper and pencil for
note-taking and sketching, which was collected for later analysis. Only the
subjects and experimenter were present in the laboratory. The experimenter
was normally out of the subjects’ line of sight, and was present only in case
the restructuring tool crashed. A video camera was also set up behind the
programmers, out of their line of sight. Clip-on microphones were used for
audio capture. We found that the subjects quickly forgot about the presence
of the camera, microphones, and experimenter. In particular, the subjects
would sometimes block the camera’s view of the screen, accidentally brush
the microphone (without comment), and spontaneously digress onto topics
unrelated to the study. Still, the experimental setting differs from a work
environment in the fixed time limit, lack of access to printouts, paired work,
and size of the program. We discuss these four influences in turn.

Although programmers in industry would not be asked to restructure a
program in two hours, it is common for software design problems to be solved
under extreme time constraints (Guindon 90b). Moreover, the programmers
were able to complete the task in the given time.

Programmers in industry would also have access to additional methods
of bookkeeping, such as marking printouts of the code. Programmers in the

paper.tex; 28/03/1997; 15:34; no v.; p.15

16 Robert W. Bowdidge and William G. Griswold

study were not given printed listings in order to force them to browse the
code on the computer and in sight of the video camera, making analysis
easier. Because the size of the program made substantive note-taking on
paper copies unnecessary, the lack of printouts for note-taking should not
affect their behavior significantly.

Programmers may not work closely with others on a daily basis. However,
programmers do work closely on occasion, and the experimental setup mimics
such interactions. Some programmers noted that the greatest change between
working alone and working with another person in this setting was that
the process of working through solutions with another person caused them
to discuss and avoid unproductive actions before actually performing the
action. Thus, the programmers made fewer observable errors than if they were
working alone, but we were still able to identify their misconceptions from
their dialogue. Because our study focused on capturing overall behaviors,
rather than error rates or time spent in erroneous behavior, the effect of the
team organization weakly influenced our observations.

The size of the program was smaller than typical programs; however, the
code was complex enough to limit the programmers’ abilities to memorize
every detail of the program. The fact that all groups either introduced errors
or encountered problems with planning is also indicative of the adequate
complexity of the task. On larger systems, we would expect to see such issues
only magnified. Because the Scheme restructuring tool could only handle
small programs, we could not study scalability issues for the star diagram.
However, separate studies indicate that improvements are required for the
star diagram to scale (Bowdidge 95; Griswold et al. 96).

3.3. RECORDING METHOD

In order to record the sessions for later analysis, we used videotape to record
programmer discussions and gestures, and used keystroke logs for computer
actions. To facilitate audio analysis, we used two clip-on microphones record-
ing to separate audio tracks of the videotape. The two microphones improved
sound quality over a fixed microphone, and enabled us to distinguish between
speakers more readily. We recorded keystrokes and mouse actions using the
UNIX script command, as well as logging within the restructuring tool.
We videotaped the screen to observe pointing motions, identify programmer’s
focus of attention, and to synchronize the keystroke logs, actions, and dia-
logue. Wall-clock time was imprinted on the videotape. Notes written by the
programmers were saved. Because the video camera was usually focused on
the screen, we identified when programmers wrote notes by context of their
discussions or writing noises.

paper.tex; 28/03/1997; 15:34; no v.; p.16

How Software Engineering Tools Organize Programmer Behavior... 17

3.4. ANALYSIS METHOD

To understand how the different tools affected how the programmers restruc-
tured, we first recorded the data, identified relevant issues, condensed the
data by coding (reducing the data by categorizing episodes according to
a small set of concepts), then compared the reduced accounts (Chi 97;
Strauss 87). We focused our analysis on how programmers restructured,
but beyond that narrow question, our hypotheses were built up as we noted
interesting patterns in the behavior of one team and asked questions about
whether the patterns held in other sessions.

The first step of analysis was to transcribe each videotape into a written
verbal account, first beginning with a rough transcript for the session, then
creating a transcript of all conversation and actions. (See Appendix C for
a sample transcript.) We found we could not pick and choose what to fully
transcribe because of the nature of exploratory studies, and because the inter-
esting decisions in restructuring seem to be distributed throughout a session.
We found it took at about thirty to forty hours to create a full transcript of
each two hour session with speakers identified and actions noted. We tried
to get verbatim accounts of what the programmers said so the transcripts
could be our primary tool for studying each session. All the transcripts con-
tained frequent references to the wall-clock time embedded in the videotape
so we could easily find a given section of tape when we needed more context.
Linking keystroke transcripts to the text was more difficult because of the
lack of timing information, but we identified rough actions in the transcript
(actions on the restructuring tool interface, commands to the UNIX shell, etc,
transformations performed). We continued to fill in and refine the computer
actions as we found the need for order and timing of actions.

To identify relevant issues, we first understood the entire tape by creating
rough transcripts from a single watching of the tape and from our transcribing
of the activity logs. (We tried to have others transcribe tapes, but we found
that the act of transcribing helped our analysis activities.) We then cataloged
our observations using colored index cards, with each card representing a
key issue or interesting behavior, and each color represented a category of
observation. Each card named a specific event, behavior, or hypothesis, then
a list of instances of the behavior, arranged by team and location on the
videotape. Our categories included:

� interesting behavior or events that occurred for one team (e.g., J and K
visited nodes from top to bottom in the star diagram view);

� tabulation of the behavior of all teams for a given question (e.g., when
did each team run the program?);

� hypotheses, issues, inferences (e.g., presentation order affects program-
mer behavior).

paper.tex; 28/03/1997; 15:34; no v.; p.17

18 Robert W. Bowdidge and William G. Griswold

Because we were performing bottom-up analysis, our usual procedure
was to represent an unconnected fact as a unique issue, then create tabulation
cards as specific questions or patterns emerged. The cards served as a written
record of likely issues to study, permitted sorting in multiple ways to identify
trends, supported marking, and in general provided the flexibility needed to
explore the data.

As we proceeded, patterns of programmer behavior emerged, such as the
order in which programmers visited or changed functions. When we decided
a pattern represented an important research question, we coded the data to
reduce the transcript to an account only focused on the pattern being exam-
ined. Coding usually involved finding all instances of a given behavior, then
excerpting the time, context, or duration of the behavior. When we studied
the reasons why programmers switched between the star diagram view and
text view, we coded by marking the transcript at such points and tabulating
the cause for switching views. (This issue proved uninteresting.) Coding for
how programmers described restructuring transformations involved listing
the metaphors used. Comparing when programmers visited each function
involved creating a time-line showing the time spent examining each func-
tion. For understanding overall behavior, we noted the overall process the
programmers followed: when they visited the top of each file, when they
created a new function, when they converted a call, etc. This data could then
be converted into pictures to explain a concept and match to a idea (e.g., see
Figures 8, 10, and 11).

When coding for infrequent events, we searched the transcripts for similar
or divergent behavior. For frequent events, we segmented or coded specific
instances, then produced an outline of behavior based only on that action.
As an example of the former, to understand how the teams evaluated their
progress, we first discovered the existence of an explicit test for completeness
in one transcript. We then checked the other transcripts to see how the other
teams behaved with regard to completing a subtask.

We used the latter method for reducing the data to analyze the phases a team
went through. One coding kept track of what procedures the programmers
were examining at what times. The UNIX tools teams usually passed through
the text linearly with a few forward or backward passes. The star diagram
teams usually scanned down the star diagram, then navigated to the text at
each node. A second coding identified dialogue that could signify a change
of focus or intent:4

I: [I and R have been examining uses of line-storage] Let’s try to
remember what our goal was for a second.

4 For excerpts of transcripts in this paper, // indicates a pause by the speaker, fg indicates
garbled dialogue or an uncertain transcription, and [] indicates programmer actions or editorial
comments.

paper.tex; 28/03/1997; 15:34; no v.; p.18

How Software Engineering Tools Organize Programmer Behavior... 19

R: Well, I think the first thing was we’re supposed to encapsulate these
global variables, right?

We then produced a time-line and outline describing the overall behavior
of each team. We used the outline of actions to identify how programmers
maintained state within transformations and identify the visitation strategies
the programmers used.

In general, we found codings related to concrete issues such as process
and task ordering more valuable than more abstract codings, such as for
motivation. Part of the problem is that it is easier to measure and identify
ordering than extract reasons why a programmer performed a given action.
Because we are not—as in a think-aloud study—asking for justification of
actions, a programmer will only expose motivations when dictated by the
circumstances of the collaborative work. For example, we could not easily
answer the question, “Why did programmers navigate from the star diagram
to the text?” with our data.

One author performed the analysis, and the other evaluated the hypotheses
against the video data. We also discussed our observations and hypotheses
with some of the subjects. Because of the exploratory nature of our study, we
used only a single coder and performed no inter-coder reliability tests.

4. Observations and Model of the Encapsulation Process

4.1. MODEL

Because of our interest in identifying the difficulties that teams might
encounter during restructuring, we postulated a set of five kinds of tasks
that we expected a team to perform during restructuring. Observing how
each team realized these tasks helped us understand how the teams used the
tools, and exposed the similarities between the different teams in spite of the
differing tools. In the process, we discovered a sixth task, called the finding
non-literal uses task. All six activities are summarized in Table II. By for-
mulating a model and then testing its usefulness against the transcripts, we
avoided, as best we could, either deriving a model that did not correspond
to our broader experience or imposing our preconceptions about what was
happening.

To make the model as descriptive as possible, we chose to derive a narrow
model of encapsulation by restructuring, rather than of maintenance in gen-
eral (Collofello & Bortman 86). Consequently, not all programmer activities
fit within our six categories. For instance, the teams in this study frequent-
ly engaged in a general program understanding activity when first presented
with the program, and later ran and debugged the modified program. To check

paper.tex; 28/03/1997; 15:34; no v.; p.19

20 Robert W. Bowdidge and William G. Griswold

Table II. Model for encapsulation. The model does not specify temporal ordering because
programmer behavior varied significantly between teams.

Task Subtask

Finding variables Navigate to uses of the data structure being
encapsulated.
View the relevant code.

Finding non-literal uses Restructure the code to expose uses OR
follow dataflow to identify copies of the data
structure.

Grouping uses Match similar expressions.
Identify abstract operations.

Choosing functions to create

Creating functions Create definition.
Unit test the new functions.
Convert common expressions into calls to
new functions.
Test that all expressions have been convert-
ed to calls.

Detecting completion Test done with transformations
Test functionality of system

that our model was representative, we discussed our model with some of the
programmers. They found it to be representative of what they did, although
they noted the omission of the early program understanding activity in our
model.

Two of the more difficult tasks for this study were the finding non-literal
uses task and the choosing functions task, so we describe them in more detail.

4.1.1. The finding non-literal uses task
Because this implementation of KWIC is designed using a functional decom-
position, *line-storage* appears literally only at the top of the pro-
gram’s calling hierarchy (as arguments to functions). As a result, some pro-
grammers decided to localize the uses of *line-storage* so that the
variable is not passed down through all procedures, but used directly in the
computations. Finding, and in some cases inlining, these indirect uses con-
stitute the finding non-literal uses task. Figure 1 provides an example of this
task.

paper.tex; 28/03/1997; 15:34; no v.; p.20

How Software Engineering Tools Organize Programmer Behavior... 21

4.1.2. The choosing functions task
In KWIC, encapsulating the *line-storage* data structure requires
choosing a set of functions to act as the interface to the new abstrac-
tion. The programmers’ choice of functions roughly corresponded to
two major abstractions. Some teams chose to abstract away only the
“lines” representation by creating the functions number-of-lines,
get-line, and insert-line. Others chose to abstract away
the “words” representation as well by creating other functions
such as get-word-on-line, number-of-words-in-file, and
length-of-line. Both approaches adequately encapsulate the represen-
tation for the subsequent change.

Programmers had two methods for realizing the functions that encapsu-
lated the data structure. In some cases, existing functions such as insline
(which inserts a line into the line storage data structure) and allwords
could be used as-is in the new encapsulation. In other cases, the programmer
could find likely functions by identifying common expressions that should
be converted into functions. Calls to the new functions could replace several
expressions throughout the code that directly access the data structure. The
finding non-literal uses task can affect the choice of functions because not
finding uses hides some computations on the representation.

4.2. HIGH-LEVEL OBSERVATIONS OF EACH TEAM

Our task model provides a framework for describing how the programmers
completed the restructuring task. By describing behavior relevant to this
model, we also provide context for later discussions of specific bookkeeping
methods used by each team. The following describes the behavior of each
team in greater detail.

4.2.1. Behavior of F and B (UNIX tools team 1)
F and B used emacs and more to view the code. They read linearly through
the code multiple times, each time focusing on a different issue. While first
reading the code, they focused on understanding the code as a whole, and
saw the uses of *line-storage* and ls in passing (i.e., the finding
variables task and finding non-literal uses task). To choose the functions,
they re-examined the code (again with a single pass through the source
code), matched the common expressions by recall (the grouping uses task),
chose operations that matched the abstraction represented by the current data
structure, and wrote down the names of the new functions to create. They
chose a word-oriented abstraction for the module to be created. F and B
then created the new functions, and made another pass through the code
to convert the expressions, replacing the expressions that matched the new
function bodies with calls to those functions. The programmers incorrectly

paper.tex; 28/03/1997; 15:34; no v.; p.21

22 Robert W. Bowdidge and William G. Griswold

remembered the order of parameters for certain functions when they created
the function calls, and spent a fair amount of time trying to understand why
the code no longer worked. Because of a design mismatch between their new
functions and the existing code, the new functions did not easily replace the
code in the allwords function. As a result, they recoded allwords using
a different algorithm.

F and B completed the restructuring task and tested the restructured code,
but they ran out of time before they could perform the enhancement.

4.2.2. Behavior of P and C (UNIX tools team 2)
P and C performed the requested restructuring and enhancement with the
emacs editor. They first looked through the source code to understand it,
then made a second pass to find all the uses of the *line-storage* data
structure. They noted that ls was usually the name for *line-storage*
when it was passed to other functions, and so examined uses of ls in calls
to built-in operations as possible uses of *line-storage. As they found
uses of *line-storage*, they wrote down the name of the enclosing
function to be used as a search tag later to revisit the uses. After understanding
the code and identifying the uses of *line-storage* in passing, they
then discussed their observations. When they began changing the code, they
first created empty function declarations for the functions they decided that
they needed. They then filled in the bodies of the new functions with code
meeting the needs of the enhancement, and tested the functions alone to
make sure they behaved correctly.5 Next, they returned to all the uses and
inserted the calls on the appropriate functions, using the list of functions using
line-storage or ls to navigate to the next use in the file. They found
during this process that they incompletely examined theallwords function.
P and C originally thought that they could slightly modifyallwords to call
get-line and size-of-line. When they went to change the code,
they examined it again and found that it represented the number of words
in the file, a function they had already written as part of their new interface
without knowing that it was a function they actually needed. When they
finished adding the calls to the new functions, they tried to load the code into
Scheme. After fixing a number of typos, the code loaded and ran correctly.
They assumed that since they had applied the changes to all the places they
thought necessary, they must be finished, and so no explicit completion test
was performed.

5 Although adding the new functionality before restructuring violates their directions when
interpreted literally, it still meets the primary requirement that the enhancementand the restruc-
turing are separated.

paper.tex; 28/03/1997; 15:34; no v.; p.22

How Software Engineering Tools Organize Programmer Behavior... 23

4.2.3. Behavior of D and M (Text-based restructuring tool team 1)
D and M initially were given the text-based restructuring tool. They used
vi and the restructuring tool’s source code window to understand the code.
They then used the text-based restructuring tool to start the encapsulation.
They first tried to simplify browsing and understanding the code by using
the move transformation to reorganize functions in the code. Next, they
began the choosing functions task by creating a function around the get-line
computation. After frequent crashes of the restructuring tool, they decided to
perform the change withvi. (They mentioned in the debriefing that the tool’s
style of automation encouraged them to make changes with the UNIX tools in
a similar manner to the restructuring tool. Observations confirm this claim.)
They used vi to search for references to *line-storage*, at which time
they also discovered the ls alias. When they decided on a change to make,
they ended up using regular expression matching to match (grouping uses
task) and change all the similar expressions at one time (creating functions
task). In one case, they used regular expression matches to find the candidate
code, but then changed the code manually. After creating the functions, they
found that one of their choices of abstraction, the line-ref function, was
not used outside the module, and therefore was not strictly necessary. Their
final interface was word-oriented.

The regular expressions they used for substitution were not trivial, and
depended on the coding conventions of the program. Changing all expressions
of the form (list-ref *line-storage* lineno) to call a new
line-ref function was accomplished by a global substitution on only the
first half of the expression, replacing "(list-ref *line-storage*"
with "(line-ref". The transformation component of finding non-literal
uses was also handled with global substitution by exploiting their observa-
tion that any parameter containing the line storage was named ls. Addi-
tionally, when planning the substitution of ls with *line-storage*,
they determined that a similar variable name would falsely match ls, and
so they temporarily “renamed” the similar variable with a global substitu-
tion before performing the main substitution. When they went to remove
line-storage from the parameter lists, they only removed the vari-
able from calls, and incorrectly left *line-storage* as the name of a
parameter to each function.

Once D and M created the new module, they tested that the behavior of
the code had not changed. After fixing syntactic errors, they modified the
module to support the new data structure, then tested the new code to see that
the enhancement behaved correctly.

4.2.4. Behavior of A and T (Text-based restructuring tool team 2)
A and T first ran the program, then read through the code from top to bot-
tom. During their first pass, they saw that some uses of *line-storage*

paper.tex; 28/03/1997; 15:34; no v.; p.23

24 Robert W. Bowdidge and William G. Griswold

occurred in function calls and were passed into functions. They recognized the
non-literal uses and the mapping ofls to*line-storage*, and identified
these uses by eye during their first pass through the code. They then decided
that they needed to look for each use of *line-storage* and replaced
each use with a function. They read through the code, writing down likely
abstractions as they saw them. Their abstractions were object-oriented, with
line-storage or the ls alias being passed in at all points, removing
the need to expose the non-literal uses with transformations. They identi-
fied implementations of abstractions such as get-word and length-of-line,
but decided these would encapsulate too much if extracted as actual opera-
tions. This decision led them to a line-oriented encapsulation that does not
include a length-of-line operation. After the second pass through the code,
they began restructuring. Using the restructuring tool, they replaced instances
of each abstraction with a new function and function call. They first tried
to replace all uses of (list-ref *line-storage* linenum) with a
call to an ls-get-line function, but they wanted to parameterize both
line-storage andline, and as a result matched all list-ref calls,
even those not representing the ls-get-line abstraction. They backed
off this transformation, then started converting ls-add-line. Next, they
created a single use of ls-get-line and used the make-subcall trans-
formation to convert computations identical to the function’s body into calls
on the function. Because they were performing the changes one at a time,
they had to search through the text by eye looking for the next match. This
worked, although when they finished transforming the uses, T mentioned
that he thought another use existed. They searched for a moment before
finding that no other uses existed. They then created an ls-num-lines
function, and then changed allwords to be ls-num-words. Their “test”
for completion at the end was the pronouncement, “we’ve created the four
functions.”

Once they finished with the change, they saved the file out and ran it to
verify it still behaved as before. Next, they modified the source code to add
the functionality, and finally tested the changes.

4.2.5. Behavior of J and K (Star Diagram Team 1)
J and K began by searching the code using the star diagram, navigating to
references of *line-storage* in the code (finding variables task) while
understanding the code. They moved linearly down the nodes on the first
level of the star diagram, and also examined information on the right hand
side of the star diagram to identify containing functions. In a later pass over
the first level of nodes, they begin creating a function for each node.

They did not appear to look deeply into the star diagram. The choice of
functions might suggest that the star diagram did not make clear to them that
they could have chosen a word-oriented abstraction, although while looking

paper.tex; 28/03/1997; 15:34; no v.; p.24

How Software Engineering Tools Organize Programmer Behavior... 25

at the text, they identified the more complex expressions as representing
manipulations of words. They also decided early-on to create a line-oriented
abstraction, so the choice of functions could be due to this, rather than limiting
themselves to the first level of children.

At first, J and K implicitly took the star diagram’s presentation of similar
expressions (grouping uses task) as complete, and thus delayed undertaking
the finding non-literal uses task with the needed transformations. When the
non-literal uses were discovered in parts of the star diagram that they had
passed over earlier, they exposed them with inline-parameter. Because the
star diagram did not have a direct way to turn the newly exposed expressions
into calls on an existing function, they backtracked by inlining the function,
thus putting all similar expressions in the star diagram together where they
could be re-extracted. They expressed surprise over the fact that the star
diagram did not show non-literal uses directly.

Despite the instructions, J and K created additional modules unrelated to
the enhancement, and did not perform the enhancement. They did talk through
how they would make the change, however.

4.2.6. Behavior of I and R (Star Diagram Team 2)
I and R made four understanding passes through the source code usingemacs
and the restructuring tool’s text view. On the third pass, they identified that
they not only needed to encapsulate the literal uses of *line-storage*,
but also the implicit non-literal uses where *line-storage* was passed
as an argument as well. After the fourth pass, they created a star diagram. They
inspected all the direct uses of the variable in the star diagram, navigating
to each use in turn. At each use, they decided how the code would need to
change to support the new functionality they would be adding.

As they examined the uses of *line-storage* with the star diagram,
they again noted the non-literal uses, and decided they could restructure the
program to expose those uses. They used the inline-parameter transforma-
tion to make the uses visible within the function csline<=. The star diagram
exposed the multiple uses of *line-storage* within the function, but
the star diagram doubled in size. Although they appeared to realize that the
source code had been changed as they intended, they were disturbed by the
increase in the size of the star diagram. If the star diagram increased in size,
they presumed that they were moving away from their goal of “removing”
all items from the star diagram. They backed out of the transformation using
the undo feature, but then eventually reapplied the transformation.

They identified functions from the star diagram representation by first
choosing the expressions that represented functions they understood, then
dealing with the expressions they were not sure how to restructure. At one
point, they used the interface list to determine that one needed function had
already been created, but another had not. The last use they needed to encap-

paper.tex; 28/03/1997; 15:34; no v.; p.25

26 Robert W. Bowdidge and William G. Griswold

sulate was an expression that represents the get-line abstraction, retrieving a
specific word on a specific line. They seemed to identify the basic behavior
of the code, but did not appear to understand that the computation has some
sub-computations that must be parameterized, and stopped before they per-
formed this transformation. They then talked through the code modifications
needed to support the maintenance change.

5. Analysis

Our videotapes reveal that performing the global changes during restructuring
required the programmers to make changes systematically, maintaining a
constant awareness of their progress at multiple levels in the restructuring task.
With each tool set, the programmers perform these bookkeeping activities
differently in order to implement a change correctly. The correctness of a
change depends on many factors, but two facets seen directly in the data are
completeness and consistency.

By completeness, we mean that all items in a set are visited or changed.
When understanding how a global data structure is used, the programmers
must ensure that they visit and understand each use. When converting similar
expressions into calls, the programmers must make sure that all similar sites
are found and changed. When performing the overall restructuring action,
the programmer must make sure that all uses of the data structure occur in
one of the encapsulated functions. Achieving completeness is trivial if the
programmer has an explicit list of uses and a method for visiting each.

By consistency, we mean that related but separate changes are applied in
the same manner at different locations. For converting a frequently occur-
ring expression into function calls on a new function, the programmer must
ensure that the parts of each expression corresponding to the arguments on
the new call must be correctly identified, and the argument order and types
of each call site match the function definition’s parameters. The program-
mer must also maintain consistency of the full interface during the change,
ensuring that functions take arguments of the same type, have similar names,
or correspond to an overall design. When a change is broken into temporal-
ly separated operations, the programmer may forget a given constraint and
create mismatches.

Completeness and consistency of a change depend primarily on main-
taining information about the restructuring: parameter ordering, location of
uses, functions to create, and common expressions that will be converted to
function calls. Depending on how the programmers order the tasks they per-
form, they change the information they either must memorize, write down,
embed in the tool, or lazily determine in order to perform a consistent and
complete change. If they forget certain facts, cannot calculate them, or ignore

paper.tex; 28/03/1997; 15:34; no v.; p.26

How Software Engineering Tools Organize Programmer Behavior... 27

them, then they can make mistakes, performing an incomplete or inconsistent
change. Each tool set “remembers” different facts for the programmers, and
the process the programmers follow maintains additional state and design
information. We can see how the processes and tools retain certain informa-
tion. When the tools and programmers’ processes do not save information,
we can see errors.

Completeness and consistency issues are complicated by the fact that it
is sometimes costly to enumerate the set of related elements because some
of the elements can be hard to find. This invisibility can lead to exploratory
restructuring by the programmers. We also observed regular evaluation of
progress by teams who worked in an exploratory manner. Such evaluations
can lead to a change of direction or even backtracking.

We will examine first how programmers perform a single complete
and consistent restructuring change. We then examine the programmers’
exploratory behavior and evaluation of progress in the overall restructuring
task.

5.1. MAINTAINING COMPLETENESS AND CONSISTENCY DURING
MODIFICATIONS

To a first approximation, we observed two distinct completeness and consis-
tency tactics among the six teams. One is based on visiting a set of potentially
related items using the structure of the file; the other is based on visiting a set
of related items using the underlying structure of their relationship.

5.1.1. The file-based for-each-use tactic
Both UNIX tools teams performed their work using the tactic of mak-
ing linear passes through the file, inspecting or manipulating each use of
line-storage in order to understand, group, and change the uses. By
making modifications from top to bottom in the file, the programmers implic-
itly use their current position in the file to keep track of what uses have already
been inspected, what uses are under consideration, and what uses remain to
be considered. The position is represented by the current screen of displayed
text, perhaps augmented by a cursor on the screen. This tactic is distinguished
by the fact that the specific action performed at each use during a pass can
vary depending on the kind of abstraction represented by the code surround-
ing the use. This tactic naturally guarantees completeness of the overall task
(e.g., converting every use to a call), but it separates the handling of uses that
are treated similarly (e.g., all uses that should be replaced by a call to the
get-word function), complicating the consistency of changes related to a
single abstraction.

These teams also broke down the creating functions task (creating a func-
tion and then making calls on that function) into subtasks that were handled

paper.tex; 28/03/1997; 15:34; no v.; p.27

28 Robert W. Bowdidge and William G. Griswold

by separate, complete passes (creating all the functions in one pass, then
creating all the calls on those functions in a second pass). This subdivision
helped the programmers group tasks with similar editing characteristics, but
it distributed the changes related to a single function across multiple passes,
complicating the consistent handling of the function from pass to pass. To
help maintain consistency between passes, teams wrote down or memorized
function names and parameter orders.

For example, F and B’s use of more for searching dictated that they
view the source in a largely linear fashion. They did not use more’s regular
expression capability. Instead, they usedmore’s scrolling function and picked
out uses by eye. By starting more on the program, inspecting each line on
the current screen, advancing the screen, and repeating the inspection until
the end of the file was reached, they guaranteed they would visit every use of
line-storage. Although F and B wrote down the names of functions
they created on a previous pass, they did not write down or correctly memorize
parameter order between creating the functions and creating the calls. As
a result F and B inverted the order of arguments when they created the
calls. Such problems are indicative of the impact of separation due to linear
visitation within a file or division of tasks into subtasks.

P and C at first used emacs’s forward search to find each use of
line-storage. Once they observed*line-storage*was passed to
other functions, they searched forls, the usual name of the parameter holding
line-storage. They also wrote down the names of the functions con-
taining the uses, perhaps to simplify searching for both *line-storage*
and ls. They used the list of names to navigate to modification sites by
searching for the function name, and visited functions in order of appearance
in the file. Like F and B, P and C found all uses by visiting all lines, guaran-
teeing they found all locations where *line-storage* or ls were used.
By creating the list of functions containing uses of *line-storage*, they
simplified the searching process for subsequent subtasks.

The file-based for-each-use tactic can be summarized by the algorithm
in Figure 7. Its influence on the overall process of the UNIX tools teams is
shown in Figure 8. For a particular activity, all uses tend to be processed
before another activity is undertaken.

Although only the text-based teams used linear passes through the file dur-
ing the planning and execution of the transformations, all six teams resorted
to the file-based tactic for ill-defined tasks such as figuring out the behavior
of a component or developing an overall understanding of the system. More
structured methods of visitation require a good understanding of what needs
to be examined and what does not.

paper.tex; 28/03/1997; 15:34; no v.; p.28

How Software Engineering Tools Organize Programmer Behavior... 29

advance cursor to the top of the file
repeat
search to next use of data structure or terminate
determine the kind of use it is
determine the action for that kind of use
perform the action on the use

end

Figure 7. Algorithmic description of the file-based for-each-use tactic.

Function

Convert similar
expressions to calls

Convert similar
expressions to calls

Convert similar
expressions to calls

Create function Create function Create function

Choose function to create Choose function to create Choose function to create

Group uses Group uses Group uses

Find uses of data structure

...Function 1 nFunction 2...

Figure 8. Overall process of the UNIX tools teams, who used the file-based for-each-use
tactic. Tasks are represented by boxes; arrows represent the order that they performed tasks.
They created all functions in one set, then made a single pass through the code to convert the
expressions into calls. The finding non-literal uses task is not shown due its widely distributed
character.

5.1.2. The similarity-based for-each-use tactic
All four restructuring tool teams (including D and M, who ultimately used
vi for the restructuring) used the tactic of inspecting or manipulating each
conceptually similar use of *line-storage* in a single pass without con-
cern for the dissimilar uses. Each team’s use of its tool’s pattern-matching and
transformational capability ensured consistency of a single pass (e.g., replac-
ing a group of similaruses with a call toget-word). Likewise, completeness
is straightforward (e.g., after replacement, no uses match the similarity criteri-
on). However, by performing all actions related to creating a new abstraction
as a set, the programmers temporally separated design decisions about the
functions, and thus sacrificed completeness and consistency of the overall
change. Completeness of a task over all the uses (e.g., every use has been

paper.tex; 28/03/1997; 15:34; no v.; p.29

30 Robert W. Bowdidge and William G. Griswold

replaced by a call) requires a separate check to make sure that all the passes
together touched on every use. (Of course, the star diagram’s check is simple:
the encapsulation is complete when the star diagram is empty.) To maintain
consistency in the overall task of creating all the functions, the text restruc-
turing tool teams sometimes wrote down details about function naming and
parameter ordering to ensure the consistency of all the functions’ interfaces.
The star diagram teams, by contrast, recorded no such information.

D and M, who abandoned use of the restructuring tool part-way through
their session, read through the file linearly for understanding, and may have
grouped during this pass, but no information was explicitly recorded. They
then used either the restructuring tool’s “all expressions that match” feature
of the extract-function transformation or vi’s regular expression matching
for the finding and grouping tasks. They also performed global substitutions
to replace common expressions with calls to the new functions for all of the
newly created functions but one. In this one case, the substitution was appar-
ently too complicated to program, so they simply used the regular expression
searching feature and performed the change by hand on each match, leaving
consistency to the programmer. They also used structural properties of the
program implementation to make correct global substitutions.

D and M tested for the completion of the encapsulation (the detecting
completion task) by exploiting the linear structure of the file, searching for
an unencapsulated use starting at the bottom of the new module (which is
located at the top of the file):

M: Okay. So is... so are there any more references to line-storage?
...

D: So we don’t want any above // lower than here [the functions encapsu-
lating line-storage]. [D. searches for an occurrence of the line-storage
variable.] And there aren’t!

M: Okay.

D: That’s good. So we’ve narrowed down the usage of that thing.

A and T, the second text-based restructuring tool team, first read through
the file linearly to understand, then group, the uses. Unlike D and M, they
completed the grouping uses task and wrote down a list of possible interface
functions before beginning the restructuring. They used the restructuring
tool to convert all expressions matching a code fragment into a function
call before moving to the next function. In one case they did not use this
feature because the tool matched too many expressions, and instead found
each use by scrolling in the text interface and performing the transformations
one-by-one.6

6 The restructuring tool supports the narrower match that they wanted, but not in a straight-
forward manner.

paper.tex; 28/03/1997; 15:34; no v.; p.30

How Software Engineering Tools Organize Programmer Behavior... 31

Star diagram team J and K used the stacking of similar expressions in
the star diagram and the restructuring transformations to perform complete
and consistent individual restructuring transformations, such as the creating
functions task. The detecting completion task was achieved by noting that
the star diagram for *line-storage* was empty. However, this team
also used the graphical display for the grouping uses task and the choosing
functions task. When browsing to find appropriate abstractions, they scanned
linearly down the first level of children nodes in the star diagram, navigating
to the program text associated with each node to look at the details. It appears,
then, that they used the list of star diagram node stacks as a straightforward
way of ensuring that they had visited every use, giving them a simple overall
completeness check for these tasks even though they are using a similarity-
based visitation tactic.

while unhandled uses remain do
choose a kind of use on the data structure
determine the action for that kind of use
for each use of the kind do
perform the action on the use

end
end

Figure 9. Algorithmic description of the similarity-based for-each-use tactic.

During the creating functions task we observed that although the pro-
grammers were aware that creating a function might miss some unexposed
non-literal uses, and require the transformation to be redone later, they chose
to create the new function anyway and move it into the interface list:

J: Well, should we do thislist-ref while we’re here? We can always
undo it.

K: Yeah. That sounds good.

It appears that they are doing this transformation, in part, because of the order-
ing of the visitation. Their dialog suggests a notion of consistent movement
down the star diagram: “while we’re here.” To skip over this item without
transformation might be a violation of their overall task completeness tactic.
On the other hand, by transforming only some of the uses, it appears they
might be at risk of incompleteness of the single task of creating a function and
all the calls on it. However, because the star diagram lists the created func-
tion in the interface view and would identify any unencapsulated uses related
to this function in the star diagram view, this is not possible. Also, the star
diagram’s transformations and undo capability lower the cost of backtracking
and making repairs.

paper.tex; 28/03/1997; 15:34; no v.; p.31

32 Robert W. Bowdidge and William G. Griswold

Star diagram team I and R used the star diagram similarly for the purposes
of completeness and consistency, but with two notable differences. First, to
help them understand the program, they explored the code with emacs and
the text view of the restructuring tool before building a star diagram. Second,
they actually examined and restructured nodes past the first level of the star
diagram, signifying a slightly different enumeration tactic than J and K.

Function

Convert similar
expressions to calls

Create function

Convert similar
expressions to calls

Create function

Convert similar
expressions to calls

Create function

Choose function to create Choose function to create Choose function to create

Group uses Group uses Group uses

Find uses of data structure

Function 1 Function 2 n......

Figure 10. Overall process of star diagram team 2, A and T, who used the similarity-based for-
each-use tactic. The programmers reasoned about all the functions to create before beginning
restructuring, but uses are replaced with calls on the appropriate function immediately after
the function is created.

The similarity-based for-each-use tactic can be summarized by the algo-
rithm in Figure 9. Its influence on the overall process of the restructuring
tool teams is shown in Figure 10 and Figure 11. The process tends to group
a function’s creation with the creation of the calls on it, but separates the
creation of the functions.

5.1.3. Discussion
All teams, in different ways, employed ordered visitation tactics in order to
keep track of what part of a task is done, what part is under consideration,
and what part is yet undone. Depending on the specific tactic, completeness
of an overall task or an individual subtask is ensured. Likewise, the order of
visitation resulting from a tactic can aid consistency for a task by enumerating
related elements together for simultaneous handling, or complicate consis-
tency by not doing so. As one participant described a previous restructuring
experience:

R: “If I change the order of parameters, I’ll run through and make the
changes in one pass, from beginning to end, and use the feature

paper.tex; 28/03/1997; 15:34; no v.; p.32

How Software Engineering Tools Organize Programmer Behavior... 33

Choose function to create

Find uses of data structure

Group usesGroup uses

Choose function to create

Create functionCreate function

Convert similar
expressions to calls

Convert similar
expressions to calls

Group uses

Choose function to create

FunctionFunction 1 Function 2 n......

Choose function to create

Create function

Convert similar
expressions to calls

Figure 11. Overall process of remaining restructuring tool teams, who used the similarity-
based for-each-use tactic. The teams grouped similar uses before choosing functions (although
some teams’ delay in coping with non-literal uses qualifies this assertion), but then created
each function in turn without consideration for the overall module interface. As a result, the
teams sometimes made inappropriate decisions and had to back off of changes.

of emacs to find every instance of the thing. I sit there until it’s
done because, if I stopped, I’d be screwed. That’s what I’d do to
keep disaster from happening. That way, you can keep the change
straight.”

Although the tactic of enumerating all uses in each pass over the code
does not appear economical, it is a simple tactic that is reasonably good at
maintaining consistency and completeness of an overall task. In a program
spanning multiple source files, this tactic can be accomplished with the UNIX
tool grep, as long as the pattern for enumerating the uses is simple.

Visitation by stacking or regular expression matching of similar uses facil-
itated performing all tasks related to a given abstraction at once, maintaining
consistency of issues related to that abstraction. In addition, the star diagram
tool’s enumeration of the node stacks themselves also aided completeness of
the overall encapsulation overall task.

It is notable that the differences in behavior divided largely along the lines
of UNIX tools teams and restructuring tool teams (both text and star diagram).
However, it is also notable that one of the restructuring teams applied the
similarity-based tactic using an editor, and that the restructuring tool teams
resorted to the file-based tactic for ill-defined tasks. The restructuring tool
teams also tended to have more problems with non-literal uses. Together,
these suggest that the tool has some influence in programmers’ behavior—

paper.tex; 28/03/1997; 15:34; no v.; p.33

34 Robert W. Bowdidge and William G. Griswold

sometimes positive and sometimes negative—but that the tools can be used
in a variety of ways.

5.2. EXPLORATORY VERSUS FULLY PLANNED RESTRUCTURING

One aspect of programmer behavior not captured in the above analysis is
that the overall process enacted by each team varied between a fully planned
restructuring task (as shown in Figure 8 and Figure 10) and a rather explorato-
ry approach to performing the restructuring (as shown in Figure 11). In this
context, by exploratory we mean that activities such as examining all the uses,
identifying the non-literal uses, choosing the functions, or stating an overall
plan for the restructuring did not occur before actual restructuring began.

For instance, the teams who used the file-based for-each-use tactic planned
out their restructurings before beginning changes. This behavior is strongly
linked to their tactics. For example, replacing all the uses with calls on
functions is not feasible unless all the functions have been planned.

A and T, who used the text-based restructuring tool, also took the approach
of fully planning out their restructuring. Their behavior is surprising because
the text-based restructuring tool does not require fully planning an encapsula-
tion before beginning the transformations. It is trivial to create some functions
before others have even been considered.

The remaining teams worked in a largely exploratory fashion. D and M,
who used vi after abandoning the text-based restructuring tool, created one
function after another without discussing an overall design or writing out an
interface. However, this team was aware of the ls non-literal uses due to
their early browsing, so knowing this information may represent a minimal
kind of planning. I and R, the second star diagram team, also noted non-
literal uses up-front during their early browsing of the code, but proceeded
with their restructuring without recording or discussing a module interface or
restructuring plan.

The most exploratory team was the first star diagram team, J and K. After
one pass over the star diagram, they returned to the top of the star diagram and
started choosing operations without any apparent plan. They had not spent
enough time with the code in advance to discover the non-literal uses, and
they had to backtrack due to their lack of planning on this matter.

These examples demonstrate, once again, that although the tactics used
play a role in the overall process, the programmers still have the flexibility
to choose a planned or exploratory approach—at least for a program of this
size.

Originally, we thought we would prefer a process like that shown in Fig-
ure 10, which both chooses all functions beforehand and groups the creation
of a function definition with the creation of its associated calls. However, in
cases in which it is impossible or simply inconvenient to enumerate all the

paper.tex; 28/03/1997; 15:34; no v.; p.34

How Software Engineering Tools Organize Programmer Behavior... 35

changes, exploratory design is attractive. For example, although the program
restructured is small enough to plan out the encapsulation after exposing the
non-literal uses, D and M perhaps felt fully planning the change would be
more work than necessary.

In fact, the design of the star diagram (or any of the other tools) does not
support a “planning before restructuring” model. The star diagram presents
the program as it currently is, and provides no support for showing what
it might look like in the future without actually changing the program. For
example, transformations like inline-parameter (used for removing non-
literal uses), can dramatically reshape the star diagram as well as the code,
but the star diagram prior to transformation gives little indication of how
aspects like stacking will be affected. Even though the current design is
explicitly presented, promising solution paths may thus be invisible to the
programmer.

Although simple forms of non-literal uses can be exposed by building
type-oriented as opposed to variable-oriented star diagrams (Bowdidge 95),
the problem in general is much more complicated. There can be many ways
of coding the same calculation; for instance, individual instances of the same
calculation may be optimized on a case-by-case basis, obscuring their under-
lying similarity. Even though a star diagram would display such variants,
their relationship might not be noted until late in the restructuring process if
the star diagram is large.

Exploring a design in detail with these tools, then, is best aided by per-
forming transformations to change the source code’s form so that hidden
issues will be exposed. Planning in this style is possible from the star diagram
and text-based restructuring tools because they contain a multi-level undo
mechanism (added after complaints in the pilot study) and transformations
with inverses that allow retreating from a failed plan. All star diagram and
text restructuring tool teams used this feature. Backtracking in the other tools
is more awkward, but a few teams saved an intermediate version of their
programs to allow backtracking.

In general, these problems point to an inherent unvisualizability of soft-
ware (Brooks 87), and we believe that interleaved planning and restructuring
may be more practical than complete planning, especially on larger systems.

5.3. EVALUATING PROGRESS

Teams that engaged in exploratory behavior also expended effort in eval-
uating how their work was progressing. Indeed, in an exploratory process,
determining both that the work performed so far is adequate and what to do
next is non-trivial and often not well-defined because the programmers are
operating with incomplete information. Norman’s model for planning and
performing actions describes this as “perceiving system state” and “evaluat-

paper.tex; 28/03/1997; 15:34; no v.; p.35

36 Robert W. Bowdidge and William G. Griswold

ing current state” with respect to the goal (Norman 86). An evaluation may
result in noting a failure in prior planning, and backtracking may be under-
taken to attempt another solution. As with the other issues discussed in this
section, there are many ways that programmers can evaluate progress, and
the tools being employed affect the evaluation process.

For example, D and M, using vi, had no easy way to evaluate a planned
interface as they created the functions. As a result, when they began planning
the enhancement to the restructured program, they found that their design for
the new module contained a function that is actually unnecessary:

M: Do we ever need line-ref? like can it

D: Can we get away without line-ref? That’s a good question. Let’s find
out.

D: I think the sort routine uses it, but // Whoa, only these guys [functions
already in the line-storage module] see it. Ah, so that’s good. So
everything else it sees is only word-ref. So we don’t need to worry
about that hopefully here.

D: Okay, so um... But things do use line-length

M: Well we still have to write [reimplement for the enhancement] these
two.

In contrast, A and T, who planned out their restructuring, used a list of
functions as their to-do list, and assumed that when they reached the end of
their list, they had completed the task. Because their modified program ran
correctly, they had confirmation that they had not missed uses.

The star diagram teams, on the other hand, appeared to regularly eval-
uate their progress using the tool, observing the resulting code after every
transformation and choosing the next appropriate transformation. For exam-
ple, during most transformations, J and K clicked on a star diagram node,
examined the text view to ensure they understood what the star diagram node
represented, performed a transformation, then examined the source code to
identify what the restructuring tool had done. These actions generally con-
firmed their beliefs. Their actions also strongly suggest that star diagram users
need access to the source code for understanding the effect of a transformation
and evaluating their progress towards a correct restructuring.

When programmers had no obvious cues for measuring progress, they
sometimes chose inappropriate metrics. When I and R, the second star dia-
gram team, performed the inline-parameter transformation to localize uses
of *line-storage*, the star diagram’s size increased (because the trans-
formation exposed many uses of *line-storage* in the called function).
They assumed that they should be making the star diagram smaller in order
to be progressing, and wondered if they were on the correct path.

paper.tex; 28/03/1997; 15:34; no v.; p.36

How Software Engineering Tools Organize Programmer Behavior... 37

They decide to undo the transformation, even though they realize that the
code appears as they expect:

R: [The star diagram just increased significantly in size after inline-
parameter] ...but look what happened to the tree here.

I: Yeah, that looks like a bad thing to do.

R: Yeah really. // hm that’s really awful.

I: What did we do just now?

R: Well I think what we did was we took all the places that used to have
csline and now made it be

[they apparently understand how the source code was changed, and
that it did what they intended]

I: and put it // put the word // put the ftextually functiong

R: yeah, this is really funky, because all these parameters are functions.
Right and

I: Okay, let’s undo that.

R: Yeah, definitely undo that.

I: Okay, that looked too // that looks bad // whatever we did fg

R: Yeah, definitely.

These examples show that programmers look for cues to assess their
progress, and that the cues programmers use may be different than those
intended by the tool’s designer. Modifying misleading cues or training pro-
grammers to avoid using them might help.

5.4. SUMMARY

These observations suggest that the tools and processes that programmers use
affect the completeness and consistency of a modification. Techniques such as
moving sequentially through the file or performing modifications in a logical
order ensure completeness of changes during a single pass through the file,
but may result in inconsistent changes applied during multiple passes through
the file. Performing actions related to a single concept as a set can guarantee
consistency of a specific modification, but require more effort to ensure that
all modifications are performed. Explicit tool support, such as maintaining a
list of change locations, can avoid some of these problems. However, as the
complexity of the restructuring task grows, the programmer may not be able
or willing to identify every modification site before beginning modifications,
nor may the programmer be able to identify how each modification site must

paper.tex; 28/03/1997; 15:34; no v.; p.37

38 Robert W. Bowdidge and William G. Griswold

change. In such cases, the programmer may have to follow an exploratory
process to perform a maintenance change.

The use of process to minimize consistency and completeness errors is
reminiscent of Guindon’s theory of opportunistic design (Guindon 90a). Guin-
don suggests that a designer sometimes may order actions during design to
handle related concepts sequentially and minimize the details that must be
remembered throughout the design process. As with programmers perform-
ing changes by abstraction, a designer who chooses to skip opportunistically
into a different design task may risk losing track of the state of the design
process and forget to return to the original task (Guindon et al. 87).

Similarly, the restructuring tool teams’ exploratory approaches to restruc-
turing mirrors Schon’s theory of reflection in action (Schon 82). Reflection in
action asserts that professionals in many disciplines cannot solve problems
with cookbook answers. Instead, they must explore the design space of the
problem by creating a partial solution, evaluating whether the partial solution
leads towards an appropriate solution, and refining the solution. The expert
is forced to behave in this manner because the design space is so large that a
complete solution cannot be immediately identified.

Both issues suggest that the problems encountered in restructuring may be
endemic to any program modification that exposes new design issues during
the change. Software tools for helping programmers maintain large programs
may benefit from affordances for recording design state and supporting alter-
nate task orderings for applying a change. Because all design possibilities
may not be obvious before undertaking a change, tools should also permit
exploratory approaches to maintenance and restructuring.

6. Generalizing the Results to Other Settings

From our observations of C programmers and from personal experience, we
believe that the behavior of programmers restructuring by hand and pro-
grammers using restructuring tools matches how programmers work when
restructuring larger programs. We expect programmers modifying larger pro-
grams would find ways to minimize the amount of source code they need to
examine with tools such as grep, and would use printouts of source code
and grep output to create markable “to-do” lists. For example, programmers
examining a twelve-file C program used grep as their primary tool both
to search the program during understanding phases and to find modification
sites in the program. We observed cases where the programmers used a search
pattern to enumerate all uses of a variable, then proceeded linearly through
the grep output to guarantee visiting and modifying all uses of a given vari-
able. Such behavior on the grep output is similar to how the UNIX tools
teams in the Scheme study moved linearly through the entire file to guarantee

paper.tex; 28/03/1997; 15:34; no v.; p.38

How Software Engineering Tools Organize Programmer Behavior... 39

completeness of a change. Similarly, a programmer making changes to the
UNIX kernel told us how he used grep to find uses of variables and key field
names, then used a printout of that output to visit each use.

Because grep sorts uses by location, not similarity, performing all
changes related to a single abstraction (as the restructuring tool and star dia-
gram teams did) would be more difficult. Personal experiences with printouts
of source code show that programmers could still visit uses out of order and
guarantee completeness as long as an external mechanism exists for marking
each completed use and identifying when all have been changed.

The programmer may not be able to generate a grep search pattern
to identify every site in the program that must be modified, due to either
an incomplete design or a lack of knowledge of the program. We expect
that as systems become larger, tendencies towards exploratory behavior and
evaluation will only increase. The increased distribution of information and
the high cost of planning and maintaining information for restructuring will
encourage, rather than discourage, such behavior.

7. Conclusion

Little is known about how programmers restructure programs, which hampers
the design of usable tools for large-scale restructuring. We undertook an
exploratory study by applying systematic observational techniques to six
pairs of programmers in order to develop an understanding of the task of
encapsulating a global data structure. Programmers used either UNIX tools,
a text-based restructuring tool, or a restructuring tool employing the star
diagram.

This study began as an assessment of whether the star diagram automated
the right activities and displayed the correct information about the program.
Although the answers to these questions seem to be positive, two other issues
proved more important to investigate.

First, we found that the bookkeeping of the task’s state, as supported by a
tool’s features, were influential to the programmers’ behaviors. Specifically,
the programmers followed processes and exploited features of the tools that
allowed them to keep their place in low-level activities and in the overall
restructuring. In essence, the tools not only provide a representation of the
program, but also—in cooperation with the programmers—provide a repre-
sentation of the task being performed.

Second, we found that the invisibility of design information played a large
role in influencing programmers’ behaviors. In particular, because the tools
could not automatically display all the relevant information due to its dis-
guised character, programmers chose either to take an exploratory approach

paper.tex; 28/03/1997; 15:34; no v.; p.39

40 Robert W. Bowdidge and William G. Griswold

to formulating the design or to make several passes over the code in order to
assure themselves that they had found all relevant pieces of information.

Several discoveries led us to identify these issues. First, we had originally
anticipated seeing five restructuring tasks being performed by the program-
mers, but during the coding of the transcripts we identified a sixth task, the
finding non-literal uses task. Second, we had assumed an overall restructuring
process that included a comprehensive pre-planning phase, but often found
programmers restructuring in an exploratory fashion. Third, we found pro-
grammers performing activities in unexpected orders, and noted that these
orderings simplified maintaining state during the modification.

Upon close examination of these orderings, however, we found a tension
between the programmers’ needs for achieving completeness and consistency
of various kinds. Although each team’s process ensured either all variable
uses or all abstractions were visited, each process also separated the handling
of related program elements, increasing the chance of an inconsistent or
incomplete modification. A process that guaranteed visiting every use of the
variable (and thus ensured completeness of the overall task) separated actions
occurring on the same variable use, risking inconsistent changes. A process
that visited all uses corresponding to a given abstraction guaranteed the uses
were modified in a consistent manner, but complicated testing that all uses of
the variable had been modified.

The tension between completeness and consistency can be ameliorated
if the programmers or tools correctly memorize or record where changes
must occur and the form of these changes. For example, an editor’s search-
ing facility or the star diagram’s stacks of similar expressions support both
completeness and consistency of individual changes by associating related
program elements. The star diagram, by showing only unencapsulated uses of
a variable, records the completeness of a given interface. However, none of the
tools seem to provide comprehensive mechanisms for aiding the consistency
of the overall interface for the new module.

As a consequence of this study and our predictions of how programmers
might maintain large programs, we see three issues that a star diagram tool—
and perhaps maintenance tools in general—should address: maintenance of
task state during modifications, exploratory approaches to restructuring, and
invisibility of program details relevant to restructuring.

The importance of task information during maintenance suggests that
future tools should maintain more information about the state of the modi-
fication in order to minimize the information the programmer must record
or remember. Tools should also permit programmers to modify or view the
source code in logical, not sequential, orderings so that programmers can
focus on interdependent concerns at the same time.

Our observations of exploratory approaches to restructuring suggests the
star diagram should support planning without the delays incurred to restruc-

paper.tex; 28/03/1997; 15:34; no v.; p.40

How Software Engineering Tools Organize Programmer Behavior... 41

ture the source code. We have proposed and implemented changes to the star
diagram’s features to better support the bookkeeping of design information
in a star diagram tool for manipulating large C programs (Griswold et al.
96). This tool helps identify abstractions and plan an encapsulation by allow-
ing the programmer to annotate expressions as likely functions and remove
them from the star diagram, but does not actually transform the source code.
Because the tool does not need to perform the potentially expensive analy-
sis for transformations, it can be used to examine large C programs. It also
provides a primitive feature for building a star diagram of all variables of a
given type, improving visibility compared to variable-oriented star diagrams.
Newer versions of the tool have taken these ideas further.

The problems programmers faced with invisibility in the star diagram
could be solved with training. For example, I and R identified a useful rule
during their session. They recognized if they had followed a process of per-
forming Inline Parameter until all uses had been exposed, then creating
functions, they would have reduced the number of “invisible” uses. By pro-
viding such guidelines, novice users of the tool can recognize that not all
uses of a data structure are visible from the star diagram, that the tool will not
automatically handle such hidden cases, and that such uses should be exposed
before restructuring begins.

This programmer study has raised many questions. The study was largely
exploratory, and we substantially revised our initial assumptions and hypothe-
ses. Moreover, the study was carried out with prototype tools, on a small
program, in a laboratory setting, and on a small number of subjects. Fur-
ther studies ameliorating these compromises will be required to test our new
hypotheses.

Acknowledgements

Thanks to Christine Halverson for her advice and suggestions throughout
the project. Thanks also to Edwin Hutchins of UCSD’s Cognitive Science
Department for guidance during this study. Nick Flor helped us plan and
execute the C pilot studies, and Annavictoria Duyongco helped transcribe
the C study videotapes. Our departmental staff, especially Jan Cox, Joanna
Mancusi, Steve Hopper, and Dave Wargo provided valuable assistance. We
are grateful to Larry Votta and Gail Murphy for their suggestions on the
presentation of the experimental design and Peri Tarr for helpful comments.
We also thank the anonymous reviewers who encouraged us to focus the
paper’s results. Finally, we’re especially grateful to the anonymous subjects,
without whom the study could not have been done.

paper.tex; 28/03/1997; 15:34; no v.; p.41

42 Robert W. Bowdidge and William G. Griswold

References

L. A. Belady and M. M. Lehman. Programming system dynamics or the metadynamics of
systems in maintenance and growth. Research Report RC3546, IBM, 1971. Reprinted in
M. M. Lehman, L. A. Belady, editors, Program Evolution: Processes of Software
Change, Ch. 5, APIC Studies in Data Processing No. 27. Academic Press, London,
1985.

J. Blomberg, J. Giacomi, A. Mosher, and P. Swenton-Wall. Ethnographic field methods and
their relation to design. In D. Schuler and A. Namioka, editors, Participatory Design: Prin-
ciples and Practices, chapter 7, pages 123–155. Lawrence Erlbaum Associates, Hillsdale,
New Jersey, 1993.

B. W. Boehm. The high cost of software. In E. Horowitz, editor, Practical Strategies for
Developing Large Software Systems, pages 3–15. Addison-Wesley, Reading, MA, 1975.

R. W. Bowdidge and W. G. Griswold. Automated support for encapsulating abstract data
types. In ACM SIGSOFT ’94 Symposium on the Foundations of Software Engineering,
pages 97–110, December 1994.

R. W. Bowdidge. Supporting the Restructuringof Data Abstractions through Manipulation of a
Program Visualization. PhD dissertation, University of California, San Diego, Department
of Computer Science & Engineering, November 1995. Technical Report CS95-457.

F. P. Brooks. No silver bullet: Accidents and essenceof software engineering. IEEE Computer,
20(4):10–19, April 1987.

M. T. H. Chi. Quantifying qualitative analyses of verbal data: a practical guide. To appear in
Journal of Learning Sciences, 1997.

J. S. Collofello and S. Bortman. An analysis of the technical information necessary to perform
effective software maintenance. In 5th Annual International Phoenix Conference on
Computers and Communications, pages 420–423, 1986.

L. Cousin and J. S. Collofello. A task-based approach to improving the software maintenance
process. In Conference on Software Maintenance, pages 118–126, 1992.

B. Curtis, H. Krasner, and N. Iscoe. A field study of the software design process for large
systems. Communications of the ACM, 31(11):1268–1287, 1988.

J. Dumas and P. Parsons. Discovering the ways programmers think about new programming
environments. Communications of the ACM, 38(6):45–56, 1995.

K. A. Ericsson and H. A. Simon. Protocol Analysis: Verbal Reports as Data. MIT Press,
Cambridge, MA, revised edition, 1993.

N. V. Flor and E. L. Hutchins. Analyzing distributed cognition in software teams: A case
study of team programming during perfective software maintenance. In J. Koenemann-
Belliveau, T. G. Moher, and S. P. Robertson, editors, Empirical Studies of Programmers:
Fourth Workshop, pages 36–64. Ablex, Norwood, NJ, 1991.

W. D. Gray and J. R. Anderson. Change episodes in coding: When and how do programmers
change their code? In G. M. Olson, S. Sheppard, and E. Soloway, editors, Empirical
Studies of Programmers: Second Workshop, pages 185–197. Ablex, Norwood, NJ, 1987.

W. G. Griswold and D. Notkin. Computer-aided vs. manual program restructuring. ACM
SIGSOFT Software Engineering Notes, 17(1):33–41, January 1992.

W. G. Griswold and D. Notkin. Automated assistance for program restructuring. ACM
Transactions on Software Engineering and Methodology, 2(3):228–269, July 1993.

W. G. Griswold. Program Restructuring as an Aid to Software Maintenance. PhD disserta-
tion, University of Washington, Dept. of Computer Science & Engineering, August 1991.
Technical Report No. 91-08-04.

W. G. Griswold, M. I. Chen, R. W. Bowdidge, and J. D. Morgenthaler. Tool support for
planning the restructuring of data abstractions in large systems. In ACM SIGSOFT ’96
Symposium on the Foundations of Software Engineering, October 1996.

R. Guindon. Designing the design process: Exploiting opportunistic thoughts. Human-
Computer Interaction, 5(2):305–344, 1990.

R. Guindon. Knowledge exploited by experts during software system design. International
Journal of Man-Machine Studies, 33(3):279–304, 1990.

paper.tex; 28/03/1997; 15:34; no v.; p.42

How Software Engineering Tools Organize Programmer Behavior... 43

R. Guindon, H. Krasner, and B. Curtis. Breakdowns and processes during the early activities
of software design by professionals. In Empirical Studies of Programmers, pages 65–81,
1987.

S. Houde and R. Sellman. In search of design principles for programming environments. In
Conference on Human Factors in Computing Systems (CHI ’94), pages 424–430, 1994.

R. E. Johnson and W. F. Opdyke. Refactoring and Aggregation. In Object Technologies for
Advanced Software, volume 742 of Lecture Notes in Computer Science, pages 264–278.
First JSSST International Symposium, November 1993.

B. M. Lange and T. G. Moher. Some strategies of reuse in an object-oriented programming
environment. In Conference on Human Factors of Computing Systems (CHI ’89), pages
69–73, 1989.

S. Letovsky and E. Soloway. Strategies for documenting delocalized plans. In Conference on
Software Maintenance, pages 144–151, 1985.

S. Letovsky. Cognitive processes in program comprehension. In First Workshop on Empirical
Studies of Programmers, pages 58–79, 1986.

B. Lientz and E. Swanson. Software Maintenance Management: A Study of the Maintenance of
Computer Application Software in 487 Data Processing Organizations. Addison-Wesley,
Reading, MA, 1980.

N. Miyake. Constructive interaction and the iterative process of understanding. Cognitive
Science, 10(2):151–177, 1986.

D. A. Norman. Cognitive engineering. In D. A. Norman and S. W. Draper, editors, User
Centered System Design. Lawrence Erlbaum Associates, Hillsdale, NJ, 1986.

D. A. Norman. The Design of Everyday Things. Doubleday, New York, 1989.
W. F. Opdyke and R. E. Johnson. Refactoring: An aid in designing application frameworks

and evolving object-oriented systems. In Proceedings of the 1990 Symposium on Object-
Oriented Programming Emphasizing Practical Applications, pages 274–282, September
1990.

W. F. Opdyke. Refactoring: A Program Restructuring Aid in Designing Object-Oriented
Applications Frameworks. PhD dissertation, University of Illinois at Urbana-Champaign,
Dept. of Computer Science, 1992. Technical Report No. 1759.

D. L. Parnas. On the criteria to be used in decomposingsystems into modules. Communications
of the ACM, 15(12):1053–1058, December 1972.

M. B. Rosson and J. M. Carroll. Active programming strategies in reuse. In ECOOP ’93, 7th
European Conference on Object-Oriented Programming, pages 4–20, 1993.

P. M. Sanderson and C. Fisher. Exploratory sequential data analysis—foundations. Human-
Computer Interaction, 9(3):251–317, 1994.

B. Schneiderman and J. M. Carroll. Ecological studies of professional programmers. Commu-
nications of the ACM, 31(11):1256–1258, 1988.

D. A. Schon. The Reflective Practitioner: How Professionals Think in Action. Basic Books,
New York, 1982.

A. L. Strauss. Qualitative Analysis for Social Scientists. Cambridge University Press, Cam-
bridge, 1987.

A. G. Sutcliffe and N. A. M. Maiden. Analysing the novice analyst: cognitive models in
software engineering. International Journal of Man-Machine Studies, 36(5):719–740,
1992.

K. E. Weick. Systematic observational methods. In G. Lindzey and E. Aronson, editors, The
Handbook of Social Psychology, pages 357–451. Addison-Wesley, Reading, MA, 1968.

D. Wildman. Getting the most from paired-user testing. ACM Interactions, 2(3):21–27, 1995.

paper.tex; 28/03/1997; 15:34; no v.; p.43

44 Robert W. Bowdidge and William G. Griswold

Appendix

A. Subset of Task Instructions

You’ve been asked by your boss to make some modifications to KWIC, an
index-creating program. The program is KWIC (Key Words In Context),
found in the file kwic.s. KWIC takes as input a set of lines that make up the
file to be indexed, and returns a sorted list of words in the file followed by
the rest of the line. For example, if the input was:

the quick brown
fox jumped over the
lazy dog

the output would be the indexed word, followed by the remainder of the line
the word appears on, followed by the prefix of the line.

brown the quick
dog lazy
fox jumped over the
jumped over the fox
lazy dog
over the fox jumped
quick brown the
the fox jumped over
the quick brown

A.1. MODIFICATIONS TO PERFORM:

At initialization, the file read into an internal data structure: a list called
line-storage. Each element of *line-storage* is a line in the
input file, and each line is represented as a list of the words on that line. Your
boss wants you to change the system so that the internal representation of the
text file to be indexed is stored within KWIC as a list of words, with another
data structure providing indexes to the beginning of lines. So, the above text
file would look like:

’(the quick brown fox jumped over the lazy dog)

with the line data structure indicating that line 1 starts at word 1, line 2 starts
at word 4, and line 3 starts at line 8. You’re not allowed to change the format
of the incoming text file.

This change is being made in anticipation of the next major modification
to the system — filling lines of the file so that all lines are no more than a

paper.tex; 28/03/1997; 15:34; no v.; p.44

How Software Engineering Tools Organize Programmer Behavior... 45

given size (such as 80 characters). You probably won’t be asked to implement
the line filling, but keep this next modification in mind!

You’re also expected to test your code to make sure it works.

A.2. PREFERRED METHOD FOR PERFORMING MODIFICATION

Your boss also has suggestions on how to make the changes. He’s been hearing
a lot about modularization and encapsulating data structures, and wants you
to add the modification by first encapsulating the variables that are going to
change – that is, hide the variable behind a set of functions BEFORE making
the modification.

Creating a set of functions that hide accesses and manipulations of the
variable improves the structure of the program. The restructuring localizes
code related to the variable so programmers can easily find the code relevant
to the variable. Changes are easier because all the code relevant to the variable
is located in the module, instead of being scattered throughout the program.
Thus, when you make a modification, you can consider the possible state of
the variable only by the states the variable can put it in.

The process he wants can be described as follows:

� First, find the data structure or variables that need to change.

� Hide each data structure or variable behind a set of functions. This set of
functions acts like a module interface. (Note that Scheme doesn’t really
have modules, but you can pretend the variable is only accessible from
the interface functions, and nowhere else.)

� Make sure that your restructuring doesn’t change the running behavior
of the code (i.e. you haven’t introduced any bugs.) At this point, you’ve
got a program that behaves as it used to, but is better structured.

� Finally, add the planned enhancement and change the program’s behavior
by modifying the functions encapsulating the program.

This approach will help you and future programmers understand and
modify the code related to the variable.

paper.tex; 28/03/1997; 15:34; no v.; p.45

46 Robert W. Bowdidge and William G. Griswold

B. Source code for the KWIC Index program

;;
;;;
;;; INPUT MODULE
;;;
;;; necessary if we’re not processing the revised scheme
;;;(define 1+ (lambda (x) (+ 1 x)))
;;;(define 1- (lambda (x) (- 1 x)))
;;;
;;; list of list of words.
;;;
(define *line-storage* nil)

(define putfile (lambda (linelist)
(letrec
;;
;; Adds a line. By convention, lineno=0 implies the first line.
;; We assume the input is a list of symbols. We convert to strings
;; for comparisons and such.
;;
((insline (lambda (line)

(if line (set! *line-storage* (cons line *line-storage*))))))

(do ((restlist linelist (cdr restlist)))
((null? restlist) nil)

(insline (car restlist))))))

;;
;;;
;;; CIRCULAR SHIFTER
;;;
;;; This module creates the illusion (or reality) that the
;;; lineholder has had all the circular shifts of lines inserted for
;;; all lines. For line i < j, all of i’s shifts come before the j’s.
;;; The shifts are inserted in order starting from the original line.
;;;
;;; Amazing fact: for a line with N words, there are N circular
;;; shifts. This means that shift M is the line containing the Mth
;;; word in the file, with the first word of the shift being the Mth
;;; word.
;;;

(define *circ-index* nil)

;;;

paper.tex; 28/03/1997; 15:34; no v.; p.46

How Software Engineering Tools Organize Programmer Behavior... 47

;;; Build an index of circulars. These are represented as pairs of
;;; (lineno, wordno).
;;;
(define cssetup

(lambda ()
(letrec
((allwords (lambda (ls)

(do ((restls ls (cdr restls))
(sum 0 sum))
((null? restls) sum)

(set! sum (+ sum (length (car restls))))))))
(let ((numcslines (allwords *line-storage*))

(cslineno 0)
(numlines (length *line-storage*))
(numwords nil))

(set! *circ-index* (make-vector numcslines))
(do ((lineno 0 (1+ lineno)))

((= lineno numlines) nil)
(set! numwords (length (list-ref *line-storage* lineno)))
(do ((wordno 0 (1+ wordno)))

((= wordno numwords) nil)
(vector-set! *circ-index* cslineno (list lineno wordno))
(set! cslineno (1+ cslineno))))))))

;;
;;;
;;; ALPHABETIZING MODULE
;;;
;;; This contains function alph. It creates an array just like CS’s
;;; but is sorted.
;;;

(define *alph-index* nil)

(define alph (lambda ()
(letrec
;; Says if shiftno1 is less than or equal to shiftno2
((csline<= (lambda (shift1 shift2 ls)
(letrec

;; Return the word on line number shiftno, at word number
;; wordno in the line. Result is a string.

((csword (lambda (shift wordno ls)
(let* ((lno (car shift))

(fwno (cadr shift))) ; number of the first word in the shift
(list-ref (list-ref ls lno)

(modulo (+ fwno wordno) (length (list-ref ls lno)))))))

;; Returns the number of words in line number shiftno
(cswords (lambda (shift ls)

paper.tex; 28/03/1997; 15:34; no v.; p.47

48 Robert W. Bowdidge and William G. Griswold

(length (list-ref ls (car shift))))))

(let ((lasti (min (cswords shift1 ls)
(cswords shift2 ls)))

(result nil)
(done? nil))

(do ((i 0 (1+ i)))
(done? result)

(let ((maxed? (= i lasti))
(cword1 (symbol->string (csword shift1 i ls)))
(cword2 (symbol->string (csword shift2 i ls))))

(if (or maxed? (not (string=? cword1 cword2)))
(begin
(set! done? t)
(set! result

(if maxed?
(<= lasti (cswords shift2 ls))
(string<=? cword1 cword2)))))))))))

(swap-indices (lambda (vec i j)
(let ((temp (vector-ref vec i)))

(vector-set! vec i (vector-ref vec j))
(vector-set! vec j temp))))

;; Look at each cs-line from start to end and put its index in
;; the upper or lower half of *alph-index*. An equal comparison
;; defaults to the left side.
(qsplit (lambda (start end split)

;; start one below bot,and use bot as <= split
(let ((low (1+ start))

(high end))

;; swap the split and start so split doesn’t get mixed in swaps.
(swap-indices *alph-index* start split)
(set! split start)

;; do split
(do ()

((> low high) nil)
(if (csline<= (vector-ref *alph-index* low)

(vector-ref *alph-index* split)
line-storage)

(set! low (1+ low))
(begin
(swap-indices *alph-index* low high)
(set! high (1- high)))))

;; On exit of loop, we are guaranteed that (1- low) is in the low end.
;; In the worst case, it is start (i.e., split). So we swap this
;; with the split, and then qalph will sort everything above and
;; below (1- low).
(swap-indices *alph-index* split (1- low))

paper.tex; 28/03/1997; 15:34; no v.; p.48

How Software Engineering Tools Organize Programmer Behavior... 49

(1- low))))

;; Quicksort the shifted lines from start to end.
(qalph (lambda (start end)
(if (< start end)

(let* ((split start)
(middle (qsplit start end split)))

(begin
(qalph start (1- middle))
(qalph (1+ middle) end)))))))

;; THE REAL CODE
(let ((numitems (length *circ-index*)))
(set! *alph-index* (make-vector numitems))
(do ((i 0 (1+ i)))

((= i numitems) nil)
(vector-set! *alph-index* i (vector-ref *circ-index* i)))

(qalph 0 (1- numitems))))))

;;
;;;
;;; OUTPUT MODULE
;;;

(define allalphcslines (lambda ()
(letrec

;; builds a circularly shifted line storage and a shiftspec
((csline (lambda (shift ls)

(let* ((lno (car shift))
(fwno (cadr shift))
(wrdcnt (length (list-ref ls lno)))
(revcs nil))

(do ((i 0 (1+ i)))
((= i wrdcnt))

(set! revcs
(cons (list-ref (list-ref ls lno) (modulo (+ i fwno) wrdcnt))

revcs)))
(reverse revcs)))))

(let ((numcslines (length *alph-index*)))
(do ((i 0 (1+ i)))

((= i numcslines) nil)
(write (csline (vector-ref *alph-index* i) *line-storage*)))))))

;;

paper.tex; 28/03/1997; 15:34; no v.; p.49

50 Robert W. Bowdidge and William G. Griswold

;;;
;;; MASTER CONTROL
;;;

(putfile (list ’(a b c d) ’(one) ’(hey this is different) ’(a b c d)))
(cssetup)
(alph)
(allalphcslines)

C. Sample transcript

This excerpt records how one of the star diagram teams performed two
restructuring operations: inline-parameter and extract-function. The program-
mers first inline one of the parameters in the function definition for all-
words, moving*line-storage* so that it is used directly in allwords,
not passed in as a parameter. The second half of the transcript involves
creating the lines-in-file function. First, the programmers identify
that the length node in the star diagram maps to the expression (length
line-storage) and represents the lines-in-file abstract opera-
tion. They then perform extract-function. In this transcript, // repre-
sents a pause by the speaker, f g surrounds garbled or unintelligible words,
bold indicates words spoken by the other subject at the same time, and
[number] identifies where in the dialogue the numbered action occurs.

paper.tex; 28/03/1997; 15:34; no v.; p.50

How Software Engineering Tools Organize Programmer Behavior... 51

time action spkr dialogue comments

J. No, I think we had to
go to the definition of
allwords.

click on definition of all-
words now visible in the
star diagram

K. Oh... What did I do? So
// where’s allwords?

K. says “Oh” before the
transformation is com-
plete and the star dia-
gram has redrawn com-
pletely. Clicks on all-
words to see the effect
of the transformation.

7:21:30 look at code in text view J. fg There we go.

K. And so it did it.

J. And that’s what we
wanted to do.

select allwords again K. Okay. So, now allwords
is in our // um // we’ll
want to move that into
the interface. Is that
right?

press move into
interface

J. I believe so!

7:21:50 [1] press length node in
star diagram, [2] press
extract function trans-
formation button

K. Okay. So we’ve got all-
words and addline. That
makes sense. Length
[1]—piece of cake. We
do the same thing. So we
should maybe // maybe
we should extract the
function. [2] So uh line

J. line-length?

K. Uh. Okay.

J. length of line?

press cancel in parame-
ters dialog to close the
dialogue prompting for
information on the func-
tion to create.

K. length—isn’t it // is
length the number of
lines, or is it the number
of words in a line?

Sounds like K. isn’t sure
what the node repre-
sents. Two lines down,
there’s the “Oh, length
of line-storage” com-
ment that makes me
think he didn’t real-
ly understand what the
node mapped to.

paper.tex; 28/03/1997; 15:34; no v.; p.51

52 Robert W. Bowdidge and William G. Griswold

time action spkr dialogue comments

7:22:20 J. I think it’s a

press extract transfor-
mation button again

K. Oh, length of line-
storage. So this is actu-
ally going to be

It isn’t until he actual-
ly looks at the code in
the text view—NOT in
the parameter choosing
window, that he actually
seems to figure this out.

J. the number of lines

Type "number of lines"
into name of new fn
field. Press extract.

K. the number of lines, so
let’s say number of lines.
// Um, lines // extract.

7:22:45 Transformation com-
pletes somewhere in
here.

J. So what did we do here
when I wasn’t looking?

click on numlines func-
tion call in star diagram,
point at code

K. Um so we made
this numlines which is
defined to be length of
line-storage.

J. Okay.

K. And then

J. What did we press to do
that, I just // just so I
know what we’re doing?

press move into inter-
face button

K. I think we did extract
function. extract func-
tion and so now I guess
so now we move this
into the interface.

Address for correspondence: Robert Bowdidge
T. J. Watson Research Center
P. O. Box 704, Yorktown Heights NY 10598
bowdidge@watson.ibm.com

paper.tex; 28/03/1997; 15:34; no v.; p.52

