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Abstract—Opportunistic ad-hoc communication enables
portable devices such as smartphones to effectively exchange
information, taking advantage of their mobility and locality. The
nature of human interaction makes information dissemination
using such networks challenging. We use three different

experimental traces to study fundamental properties of human
interactions. We break our traces down in multiple areas
and classify mobile users in each area according to their
social behavior: Socials are devices that show up frequently
or periodically, while Vagabonds represent the rest of the
population. We find that in most cases the majority of the
population consists of Vagabonds. We evaluate the relative role
of these two groups of users in data dissemination. Surprisingly,
we observe that under certain circumstances, which appear to be
common in real life situations, the effectiveness of dissemination
predominantly depends on the number of users in each class
rather than their social behavior, contradicting some of the
previous observations. We validate and extend the findings of
our experimental study through a mathematical analysis.

I. INTRODUCTION

Independently of what technology they rely on, opportunis-

tic mobile ad-hoc networks will allow users of portable devices

such as smartphones and netbooks to communicate in a natural

and effective way, taking advantage of locality and mobility to

increase information exchange opportunities. The potential of

epidemic dissemination is huge, enabling, for instance, a wide

range of mobile ad-hoc communication and social networking

applications supported entirely through opportunistic contacts

in the physical world [1]. However, communication in such

opportunistic mobile ad-hoc networks is challenging due to

the volatility of contacts, communication technologies, and

resource limitations (e.g., batteries, communication opportuni-

ties, wireless data transmission technologies). Communication

is also strongly impacted by human mobility, which is driven

by user social behavior.

Despite substantial work in the area, both theoretical and

experimental, our understanding of these networks is limited.

Progress in understanding opportunistic mobile ad-hoc net-

works is mainly limited by the difficulty to collect complete

traces, and to model large systems with realistic assumptions

(which is linked to the absence of large experimental data

sets). The main difficulty in the experimental approach is to

collect traces that (i) contain enough information about each

device (in particular its mobility, social profile of its owner,

exhaustive list of contact opportunities, duration of contacts

and communication technology impact) and (ii) are not biased

by constraints due to experimental conditions.

In particular, there is a need to collect and consider data

that encompasses the behavior of all devices in a population—

not just experimental devices—to have a complete view of

the experimental environment. Indeed, most data sets collect

information in a pre-defined experimental population, such as

participants carrying GPS receivers [2], Bluetooth sensors [3]

and smartphones [4], and WiFi PDAs [5]. These data sets have

at best a partial view of the environment, and of the role non-

experimental devices could play in data dissemination. This

situation is best illustrated by the Hong Kong trace explored

in [6] where the experimental devices have strictly no direct

contact with each other, yet they contact thousands of external

devices that could play an important role in data dissemination

but for whom it is not possible to collect data.

We use publicly available traces to improve the understand-

ing of information dissemination in opportunistic mobile ad-

hoc networks. We overcome the limitations identified above by

choosing traces that collect information about all devices in an

area (and not only a limited set of experimental devices). We

further process these traces by subdividing each trace based on

a specific social or professional geographical area of interest.

We observe that a significant amount of devices appear rarely

within a given area, and because of their large population, we

explore their impact on information dissemination. In each

sub-trace, we define two classes of populations with differ-

ent presence characteristics, namely Socials and Vagabonds.

Socials are individuals who return periodically to a specific

area (analogous to the experimental devices in the discussion

above, or to community members). Vagabonds instead are seen

more rarely and randomly (i.e., the external devices that are

in general not measured, or removed from traces because of

partial information). A device can be a Vagabond in one area,

and Social in another as well as change its role over time, thus

exhibiting both spacial and temporal characteristics.

The first contribution of our work is to study, for the first

time, data dissemination spanning a large range of Social

and Vagabond compositions. Previously, most studies consider

Socials only and ignore Vagabonds entirely, or have just a

partial knowledge of them because of experimental conditions.



Second, we observe that the efficiency of content propaga-

tion is not only a consequence of the devices’ social status,

but also a consequence of the number and density of devices.

We see that in many cases, due to their large population,

Vagabonds are more effective in spreading a message, even

though they are considered unimportant. They therefore play

a key role in information dissemination and they should not be

ignored. This result contrasts previous works that focused only

on the effect of social properties on dissemination [6]–[8].

Third, we study both experimentally and analytically the

“tipping” point beyond which the population size becomes

more significant than the social status. We do so by observing

this behavior on our traces but also by developing an analytic

model that formally characterizes the relationship between

population size and the social behavior of users. Our analysis

confirms our experimental results and identifies a simple

formula for determining when data dissemination through

Vagabonds outperforms dissemination through Socials.

Section II reviews related literature, and Section III de-

scribes the data sets we use in this study. Section IV introduces

three possible definitions of the Social and Vagabond groups,

and analyzes their properties in each area. Using the most

promising definition, we study the mobility characteristics of

Socials and Vagabonds in Section V. Then we analyze the

impact and role of each group on content propagation using

trace-driven simulations in Section VI. Finally, we formulate

an analytical model that captures Social and Vagabond mobil-

ity properties to explain and extend our results in Section VII,

and conclude in Section VIII.

II. RELATED WORK

Exploiting social behavior in opportunistic mobile networks

has recently received considerable attention. Routing protocols

such as SimBet [8], [9], Bubble Rap [6] and PeopleRank [7]

use social-based metrics derived from contacts between de-

vices (such as betweenness centrality and neighborhood simi-

larity) to make opportunistic forwarding decisions with low

overhead. Protocols using explicit knowledge of friendship

relationships have also been proposed and shown to improve

efficiency over socially agnostic protocols [10], [11].

All of the above protocols route over “strong ties” among

mobile users, inferred either from contact behavior or declared

friendships. Our work extends these previous efforts, exploring

the role and potential of non-social, vagabond devices for com-

munication and data dissemination. Previous routing protocols

ignore such devices and, to the best of our knowledge, our

work is the first to study their effect on data dissemination.

Beyond routing, social networking concepts have been used

in mobile opportunistic applications such as publish/subscribe

systems [12], [13], newsfeed [14] and query propagation [15],

[16], and multicasting [1], [17]. These systems make use of

social networking concepts like node centrality [13], friendship

relationships [1], [13], [15], hotspots [16], contact useful-

ness [12] and edge expansion [14]. Our analysis focuses

mostly on epidemic message dissemination; nevertheless, our

understanding on the effect of Vagabonds motivates further

Data Set Pop. Length Area Pop. type Log Freq.

San Francisco 483 24 days City Cabs 1–3 mins
Dartmouth 4248 60 days Campus Devices Instant

Second Life 2713 10 days Small Avatars 1–3 mins

TABLE I: Basic characteristics of the data sets: population size,
trace length, type of area, population type and logging frequency.
The population size is the number of devices that have at least one
contact with another device.

study of their effect on the behavior of applications like the

ones described above.

III. DATA SETS

We use traces from three data sets.1 We specifically chose

these traces because they represent distinct and considerably

different mobile environments. We avoid using traces of ex-

perimental devices only (e.g., participants in a conference)

unless all existing devices (even the ones not seen by the

experimental devices) are monitored. We refer to these data

sets as Dartmouth, San Francisco (SF) and Second Life (SL),

according to the location where they were collected. We

further subdivide Dartmouth and SF into smaller geographical

areas which have different social behavior characteristics.

Table I summarizes the basic characteristics of the three data

sets we consider. We discuss below the features of each data

set and our motivation for using them.

a) Dartmouth: The Dartmouth data set comprises logs of

association and disassociation events between wireless devices

and access points at Dartmouth College [18]. The logs span

60 days and include events from 4920 devices. Of these, 4248

have at least one contact with another device, and we focus

our study on these devices. As with many previous studies

using WiFi traces (e.g., [3], [5]), we assume that two devices

are “in contact” when associated with the same access point.

We identify three areas within the Dartmouth campus

likely visited by different social communities: Engineer-

ing (300m×200m), and Medical (300m×300m) are specific

schools while Dining (150m×150m) corresponds to the main

food court of the Dartmouth College campus where we expect

all students to mix. The main features of this data set are that

(1) it logs all WiFi devices on campus, as opposed to only pre-

selected experimental devices in prior work [6]–[8], and (2)

each region represents different social behavior in a university

environment. However, the assumption that contacts take place

between any two devices associated to the same access point

may introduce a bias compared to real contact opportunities.

b) San Francisco: The San Francisco data set consists of

GPS coordinates of 483 cabs operating in the San Francisco

area [19], collected over a period of three consecutive weeks.

We assume that any two cabs can communicate whenever their

distance is less than 100 meters, a realistic range for WiFi

transmissions.2 We select three regions of San Francisco in

which we expect cabs to exhibit different behavior. We refer

1Two available through CRAWDAD at http://crawdad.cs.dartmouth.edu
2We tried other values and observed no significant difference for ranges of

100–300 meters in our results.



to these areas as Sunset (2km×6km), Airport (0.7km×1km),

and Downtown (2km×2km).

Our cab population is not exhaustive but represents all

vehicles in a cab company comprising a large proportion of

the San Francisco cabs, which number around 1500 [20]. The

interest of this trace is that it represents the behavior of taxi

drivers in different parts of a city where some of them live,

park their cab, or simply decide to wait for customers because

of their friends or social habits. Their social behavior is clearly

impacted (and possibly dominated) by customer requests and

the lack of information about customers is clearly a limitation

of this trace. Nonetheless, the SF trace is very interesting as it

is representative of a community behavior across the different

areas we study, and it is the only environment where the ratio

of Social and Vagabond varies significantly. Last, it is worth

noting that mobility in this trace is mostly defined by traffic

conditions and speed limits.

c) Second Life: The last data set captures avatar mobility

in the Second Life (SL) virtual world [21], [22]. The data set

consists of the virtual coordinates of all 3126 avatars that visit

a virtual region during 10 days. We assume that two avatars

are able to contact each other and exchange data when they are

within a vicinity of 10 meters, a reasonable range for close-

proximity communication such as Bluetooth [23]. The number

of avatars which engage in contacts is 2713, and as with the

Dartmouth trace we study only these avatars. It has recently

been shown that the social network defined by such contacts

between SL avatars resembles real-life social networks [24].

We do not define sub-areas in this data set as the virtual

region is small (300m×300m). This limitation is balanced

by the exhaustive user population captured, where Socials

are people returning on regular basis and Vagabonds are

occasional visitors that come only once in most cases.

IV. SOCIALS AND VAGABONDS

We first classify users according to their social mobility

behavior. To do so, we divide the user population in each trace

into two distinct groups: Socials and Vagabonds. Intuitively,

Socials are the devices that appear regularly—and, therefore,

predictably—in a given area. In contrast, Vagabonds are de-

vices that visit an area rarely and unpredictably.

Based on the above intuitive definition, we propose three

different methods for classifying users into Vagabonds and

Socials, and we apply these methods to the selected areas

of the three data sets we presented in the previous section.

By definition, the classification of a user as a Social or a

Vagabond will depend on the area one considers. For example,

it is possible that a user is a Social in the Engineering area of

Dartmouth, and a Vagabond in the Medical area.

A. Identifying Vagabonds and Socials

The first method classifies users based on how long they

stay in a given area. The other two methods classify users

based on the regularity of their appearance in an area.

The results shown in this section focus on a five-day

consecutive weekday period, as we expect Vagabonds and
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Fig. 1: Total time the population appears in each area. The black
dots represent the knees of the CDF curves as found by the linear
regression method.

Socials to exhibit different behavior between weekdays and

weekends. We have verified, however, that our definitions

and behavioral properties hold on all other five-day weekday

periods in all traces.

1) Least Total Appearance: We define total appearance as

the total time spent by each device within an area during

the five-day period. Figure 1 shows the CDF of the total

appearance time of the population for the first week of each

area. In almost all areas (excluding Engineering) more than

75% of the population appears less than 20% of the time, with

even lower appearance time being the common case. Thus, few

devices stay within an area for longer periods and, intuitively,

such devices would be the Socials of this particular area.

We define the least total appearance (LTA) threshold as

the first inflection point (“knee”) of the CDF of the total

appearance for an area. This threshold separates Vagabonds

from Socials, and is specific to each area.

To objectively identify such inflection points in the CDF

curves of Figure 1, we employ a technique for detecting

significant changes in curvature [25]. Each curve is iteratively

approximated by a straight line using linear regression in the

range [0, t], where t > 0. The iteration stops when there is a

significant error in the approximation. We assume that there

is a significant error in approximation when the correlation

coefficient r is such that r2 < 0.9. This point identifies the

knee in the CDF, and thus also signifies the threshold that we

should use in the LTA method.

Figure 1 also shows the inflection points for the different

sub-areas as dots on their respective CDF curves. Although

Sunset has a single clear “knee”, Downtown and Engineering

do not. Downtown has two possible inflection points, and LTA

selects the lowermost. Engineering has no distinctly apparent

knee. Its curvature varies slowly across the full distribution,

and LTA eventually selects a point as the CDF levels off.

2) Fourier: Our second classification method, Fourier, de-

tects periodicity. It relies upon the Fourier transformation and

the autocorrelation of the appearance of a user in an area,

approaches used in signal processing to detect periodicity.

We employ a technique by Vlachos et al. [26], and Figure 2

shows an example of applying this technique to a device in



Fig. 2: An example of a social device detected using the Fourier
method.

Dartmouth Medical. The top graph shows the appearance of

the device throughout a five-day period. The next graph shows

the Fourier transform of this signal into the frequency domain.

The Vlachos technique determines a threshold on the fre-

quency coefficients in the Fourier transform. If the transform

has coefficients above the threshold, the device appearance

is periodic and corresponds to a social user. Otherwise, the

device is a Vagabond. The bottom graph shows the threshold

for the example device with a horizontal dashed line. Several

Fourier coefficients exceed this threshold, and hence the device

is Social.

For social devices, the technique identifies the inverse of the

highest frequency coefficient as a potential period of the device

appearance. The technique subsequently uses autocorrelation

to improve the accuracy of the period estimate.

The Fourier method is problematic for nodes that appear

very infrequently (e.g., once or twice). The spectrum of

such nodes would be roughly uniform (e.g., white noise),

making the selection of an appropriate threshold difficult.

Consequently, almost half of devices that appear once or twice

in certain areas were labeled as Socials by this method, which

is clearly a mischaracterization. As a result, we investigate an

additional method that focuses on periodicity.

3) Bin: Our third method, termed Bin, is motivated by the

observation that people’s mobility patterns exhibit a diurnal

behavior [27]. Our traces also confirm this behavior, as the

most frequent period detected by the Fourier method was 24h.

Based on this observation, Bin detects if a user appears every

day in an area, and consistently during the same time period.

For each trace we divide our measurement period into bins

of equal size b, corresponding to the length of the “time

period” during which a user frequents the area. We then

represent the appearance of each device over time as a binary

string, where each bit corresponds to a time bin. For each

device, we flag a time bin with “1” if the device appears in

the area during the period corresponding to this bin, and “0”

otherwise.

We then consider a device to be periodic if it appears every

day, at a specific period of the day. For a given bin size b, a

device whose corresponding string has a “1” every 24

b
bits is

periodic. For flexibility, we identify a device as periodic even

when an exact bin is not flagged but a neighboring (either

previous or next) bin is. If a device is “periodic” by this

definition we consider it Social, otherwise it is a Vagabond.

In experiments using the Bin method in this paper, we use

bin sizes of 3 hours. We believe that this is representative of

the time variance of the diurnal behavior of users from one day

to the next. We obtained very similar results when repeating

the experiments with a bin size of 4 hours, suggesting that

around this time granularity the results are not very sensitive

to the bin size.

B. Classifying Vagabonds and Socials

Table II shows the percentage of Vagabonds in each area

according to each classification method. We observe that,

under all methods, in most of the areas Vagabonds represent

the majority of the population. The Downtown area in SF is an

obvious exception: as expected, most cabs visit the downtown

area frequently enough to be characterized as Socials by all

three methods.

Area Total LTA Bin Fourier

Airport 451 92.7% 44.1% 70.3%
Downtown 455 7.3% 9.9% 39.3%
Sunset 436 96.1% 89.0% 81.7%
Second Life 1563 60.7% 96.7% 62.0%
Dining 404 61.6% 75.5% 58.4%
Engineering 940 95.3% 51.3% 27.4%
Medical 207 72.0% 79.2% 40.1%

TABLE II: Percentage of Vagabond devices in the areas.

We observe that LTA classifies a much higher number of

Vagabonds than the other two methods in the Engineering

area. Since the total appearance curve for this area is not

amenable to partitioning the population into Vagabonds and

Socials (Figure 1), the threshold selection method for LTA

does not work well for this area.

We also conduct a pairwise comparison of the results of

the three methods to determine to what extent they agree on

device classifications. We use the fraction of users for which

the methods make the same decision as the metric of similarity.

Table III compares the three methods. We observe that the

overlaps are similar for LTA and Bin yet surprisingly different

for Fourier, even though Bin and Fourier are both based on

periodicity detection.

Area LTA & Fourier LTA & Bin Bin & Fourier

Airport 71.8% 51.4% 53.4%
Downtown 60.0% 90.9% 60.4%
Sunset 81.4% 91.5% 78.4%
Second Life 84.3% 63.0% 63.1%
Dining 64.6% 82.7% 59.7%
Engineering 23.2% 56.0% 55.5%
Medical 49.8% 85.0% 52.2%

TABLE III: Percentage of devices for which the classification
methods agree.

For the remainder of the paper, we use the Bin method to

classify Socials and Vagabonds. Bin strikes a balance between

the simplicity of LTA and the rigidity of Fourier. Although
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Fig. 3: Contact rate distributions in three areas.
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Fig. 4: Inter-contact time distributions.

LTA is simple, the single dimensionality of appearance time

is not flexible enough to capture essential differences in Social

behavior across the full range of areas. Fourier, however,

requires Socials to appear according to a strict period and

regimented schedule. Bin goes beyond LTA by incorporating

appearance frequency and periodicity, but with a flexibility

that better matches human behavior.

V. CONTACT PROPERTIES

We know from previous work [3], [7] that contact char-

acteristics are key in the effectiveness of opportunistic ad-

hoc communication. We examine three different contact met-

rics: the contact rate, the inter-contact time, and the contact

duration. We study these metrics for four different con-

tact scenarios: Social-meets-Socials (SS), Vagabond-meets-

Socials (VS), Social-meets-Vagabonds (SV) and Vagabond-

meets-Vagabonds (VV). For example, the contact rate for VS

is the rate at which a given vagabond device meets any social

devices.

Our main observation is that Socials have significantly

higher contact rates than Vagabonds, indicating that they have

more opportunities for data dissemination, while inter-contact

times are heavier tailed for Vagabonds. This observation is in

accordance with our expectations based on our definition of

Vagabonds and Socials and provides a validation point for the

classification method that we chose. However, we have also

seen in Section IV that Vagabonds considerably outnumber

Socials in most regions. We later study how these two factors

interact to affect data dissemination in Section VI.

A. Contact rate

For each device, we compute the number of contacts per

hour with other devices in the social or vagabond group. We

normalize this metric to remove the bias introduced by the

size of the target population. Figure 3 shows the CCDF of the

normalized contact rates for representative areas of the three

traces. We also chose these areas because they span the spec-

trum of Social and Vagabond combinations: Socials dominate

Downtown SF, Vagabonds dominate Second Life, and they

are balanced in Dartmouth Engineering. The results for the

other areas are similar to these, and we omit the corresponding

graphs for space considerations.

We observe in all areas that the SS contact rate is an order

of magnitude higher than the VV contact rate, with the VS

and SV contact rates somewhere in between. The distribution

shape appears to be driven by the region characteristics and

by the nature of the source device. The tail of the distribution

is longer when the source device is a Vagabond (VS and VV

contact rates), while SS and SV contact rate distributions decay

faster and have short tails. This indicates that there are few

Vagabonds that have higher contact rates than the rest of the

vagabond population. This is possibly due to our method for

selecting Socials and Vagabonds. Social devices exhibit quite

homogeneous contact rates on the other hand.

B. Inter-contact time

The inter-contact time of a device is the time interval that

starts with the end of a contact and ends with the begin-

ning of the next contact, whatever the device encountered is.

This quantity is very interesting as it characterizes the periods

during which a device cannot forward any content to other

devices. The inter-contact distribution has been shown to be

heavily tailed [3], which makes it impossible to estimate the

delivery performance in such a network.

Figure 4 shows the CDF of the inter-contact time by social

group of devices for the representative areas in each data



set. We observe two different parts in each curve: the main

body (roughly below 12 hours) and the tail of the distribu-

tion (above 12 hours). In the main body of the distribution,

inter-contact is similar for Socials (respectively Vagabonds),

independently of what type of device they encounter. This

part of the distribution characterizes the mobility patterns that

are specific to each area. The tails of the distribution though

are always much longer when the device met is a Vagabond,

independently of the nature of the source, which characterizes

the vagabond devices and not the mobility in the area. This

heavy-tailed inter-contact with Vagabonds will help us explain

later why Vagabonds are not individually as effective at content

dissemination.

C. Contact duration

The amount of data that can be transmitted between two

devices depends both on contact durations and on the com-

munication technology (e.g., WiFi or Bluetooth). Therefore,

contact duration is difficult to interpret and does not charac-

terize the performance of communication in opportunistic ad-

hoc networks. Contact duration is mostly a characteristic of the

mobility in the area. As a consequence, we find that Socials

and Vagabonds experience comparable contact characteristics

and their distributions are very similar; as a result, we do not

plot their distributions. In the Dartmouth data set, contacts last

longer due to the stationary nature of the devices. Contacts

are uniformly distributed between a couple of minutes and 3

hours. In San Francisco, the contact duration is defined by

the road traffic condition in each area (with most of the cabs

experiencing contacts between one second and one minute).

In Second Life, avatar mobility is defined by social events

or points of interest, which leads to the majority of contacts

lasting between one minute and one hour.

VI. DATA DISSEMINATION

We now analyze the impact of each social group of de-

vices on data dissemination using trace driven simulations.

We replay each trace multiple times using only Socials, only

Vagabonds, or any device to propagate messages, while all

devices can receive messages.

Our main observation is that, in areas in which Vagabonds

outnumber Socials significantly, dissemination using Vagabonds

outperforms dissemination using Socials, despite the lower

contact rate experienced by Vagabonds. Further, we observe in

most traces that there is a simple law by which we can predict

which population is going to be more effective at propagating

information.

A. Methodology

We simulate message dissemination using flooding. Since

the outcome depends on the start time of the simulation, we

repeat the simulation by uniformly sampling many start times

between the beginning of the selected week (Sunday midnight)

and the middle of that week (Wednesday noon). At the start of

each simulation only one device carries the message, and for

each randomly chosen start time we simulate dissemination

starting from each of the devices in the trace. Simulations

last 2.5 days to ensure they all complete within the week-long

trace. The number of simulations is determined by the standard

deviation of the results of the completed simulations. For each

point in time we calculate the average value and standard

deviation of the number of devices receiving the message for

all the completed simulations. We perform as many simulation

runs as necessary so that each sampled point is within a 95%

confidence of its expected value.

We also assume that message transfers are instantaneous.

This simplification overestimates transmission opportunities,

but it does not introduce a bias between Socials and Vagabonds

as they exhibit similar contact durations characteristics.

The metric characterizing message dissemination that we

study is contamination. Contamination is the number of de-

vices that receive a given message as a function of time. It

reflects how effective a given population is at disseminating

information in an area.

B. Evaluation

To understand the role that Socials and Vagabonds play

in transmitting a message to the population of an area we

first examine the number of devices that the message can

reach relying only on Vagabonds or Socials. Note that we

only account for message transmissions that take place through

contacts that occur within the boundaries of the area. If devices

make contact outside the area, we do not consider it to be a

transmission opportunity since that situation does not reflect

the contamination properties of a specific group of devices (the

nature of a device being potentially different in each area).

Figure 5 shows the contamination result for the three differ-

ent representative areas that we used previously. The curves

represent the median across all simulations of the percentage

of all devices reached.

The general observation is that Socials outperform Vagabonds

in areas where they are the majority (SF Downtown) or of

comparable population size (Dartmouth Engineering). How-

ever, in areas where Vagabonds largely dominate, they ex-

hibit better contamination characteristics than Socials (Second

Life). We also observed the same effect in all the other areas

where Vagabonds form a clear majority (Dartmouth Dining

and Medical, SF Sunset).

Individually, Socials contaminate more effectively than Vaga-

bonds because they have a higher contact rate and more fre-

quent contacts. In contrast, Vagabonds experience long pe-

riods of time without an opportunity to forward a message.

However, we observe that large populations of Vagabonds can

achieve the same contamination performance as Socials. Each

Vagabond has a lower contact rate, but with many Vagabonds

the total number of contacts is as high as what Socials would

achieve with a smaller number of devices.

To explore the relationship between the number of devices

and social behavior further, we simulate message dissemina-

tion while varying the population sizes of each group by taking

random subsets. We decrease the number of Socials when the

social group performs better in an area, or similarly decrease
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Fig. 5: Contamination within an area when using Vagabonds (V), Socials (S), or any device (A) to propagate messages.

Area Better Socials Vagabonds V / S

Airport S 99 199 2.01
Downtown S 22 45 2.04
Sunset V 48 220 4.58
Dining V 99 205 2.07
Engineering S 229 482 2.10
Medical V 43 140 3.26
Second Life V 37 215 5.81

TABLE IV: Vagabond and social population sizes when contami-
nation is comparable using either of the two groups.

the number of Vagabonds when they perform better, until

we observe a similar contamination ratio for dissemination

using each group. Table IV reports these results. To have

comparable contamination ratios, Vagabonds need to number

two to six times more than Socials, depending on the area. Of

course, these results are just one point in the parameter space

balancing population sizes and social class—but they hint at

the possibility of a deeper relationship. In the next Section,

we formally present a model that develops a general “law”

for this relationship.

We learn here two major properties of communication in

opportunistic ad-hoc networks. First, the effectiveness of con-

tamination is more a matter of contact “density” in an area

than an issue of social behavior. Second, Vagabonds have an

important role in dissemination of information and should not

be ignored or removed when studying propagation in oppor-

tunistic networks.

VII. ANALYSIS

Section VI indicates that the performance of data dissem-

ination depends both on the density of devices as well as

their contact rate. As a result, even though Vagabonds have on

average an order of magnitude fewer contact opportunities than

Socials, they can achieve similar dissemination performance in

areas with 3–4 times more Vagabonds than Socials.

The goal of this section is to formally characterize the rela-

tionship between the population size and the social behavior

of users under which such phenomena occur. Our approach

relies on a so-called “mean field” limit applied to epidemic

dissemination.

A. Model Description

1) Vagabonds and Socials: We consider N mobile users

visiting an area A, partitioned into the two classes of Vagabonds

and Socials. Let Nv and Ns be the number of Vagabonds

and Socials, respectively. Users in each class enter and exit

the area A as follows. Time is slotted, and at each timeslot

a Vagabond enters A with probability ρv, independently of

previous slots and of other users. Similarly, a Social enters A
with a probability ρs. We call ρv and ρs the occupancy rate

of Vagabonds and Socials, respectively, and we assume that

ρv ≪ ρs, i.e., Vagabonds spend less time in the area than

Socials.

Note that the occupancy rate of each class captures the

“social” behavior of the class, as it indicates whether its users

frequent this area or not. The expected number of Vagabonds

and socials present in the area—i.e., the density of each class—

is given by ρvNv and ρsNs, respectively.
2) Contacts between users and data dissemination: At each

timeslot, we select two users uniformly at random among all

(unordered) pairs of the N users in the system. If both of these

users are within the area A then a contact takes place between

them. If at least one of them is outside A, then no contact

takes place within this timeslot. Note that, with ρv ≪ ρs, the

contact rate (average number of contacts per timeslot) of a

Social is higher than the contact rate of a Vagabond, as the

latter is far less likely to be inside A at a given timeslot. This

is consistent with our empirical observations in Section VI.

Data dissemination starts with an initial number of users

(Vagabonds or Socials) carrying a message. Each time a user

carrying the message contacts a user that does not, a message

transfer occurs with a probability that depends on whether the

two users are Vagabonds or Socials. As with the simulations in

Section VI, we focus on the two cases where either Vagabonds

or Socials (but not both) are message forwarders, while all

devices can receive a message. In particular, denote by λvv ,

λvs, λsv , and λss the probabilities that transmissions succeed

across and within classes; for example, λsv is the probability

that the message transfer succeeds when a Social contacts

a Vagabond. We focus on the following two cases: (a) only

vagabond users forward the message, i.e.,

λvv = λvs = 1, and λsv = λss = 0, (1)

and (b) only social users forward the message, i.e.,

λvv = λvs = 0, and λsv = λss = 1. (2)

3) Main Result: Our analysis yields the following theorem,

which quantifies when the “power of the crowd” dominates

social behavior.



Theorem 1: For large enough N , the epidemic dissemina-

tion using Vagabonds eventually dominates dissemination us-

ing Socials if and only if Nvρ
2
v > Nsρ

2
s.

Recall that Vagabonds occupy the area less frequently than

Socials and are thus at a disadvantage w.r.t. epidemic dissem-

ination. Thm. 1 implies that, when relative population sizes

result in Nv ≫ Ns, propagation using Vagabonds may outper-

form propagation using Socials. The necessary and sufficient

condition is that the ratio of the two populations exceeds the

square of the ratio of their occupancy rates. For instance, if

Socials appear 10% of the time in the area, while Vagabonds

appear only 5% of the time, Vagabonds will outperform So-

cials if their population is 4 times the population of Socials.

B. Proof of Theorem 1

1) A fluid limit: Let rv = Nv/N , rs = Ns/N , be the

corresponding fractions of the total population belonging to

each class. We refer to users that carry the message as infected

and users that do not as susceptible. We denote by Iv , Is the

number of infected Vagabond and Socials, respectively, and

by iv = Iv/N , is = Is/N the corresponding fractions over

all users. We also denote by Sv, Ss the number of susceptible

Vagabond and Socials, respectively, and by sv = Sv/N , ss =
Ss/N the corresponding fractions.

Under the assumptions of Section VII-A, the evolution of

the vector ~i(t), t ∈ N, representing the number of infected

users in each class, is a stochastic process. Nonetheless, as N
tends to infinity, we can approximate the evolution of the sys-

tem through a deterministic process, also known as a “fluid” or

“mean field” limit. In particular, for large enough N , ~i(t) can

be approximated with arbitrary accuracy through the solution

of the following ordinary differential equation (ODE):

div/dt=ρ2viv(rv−iv)λvv+ρvρsis(rv−iv)λsv (3a)

dis/dt= ρsρviv(rs−is)λvs+ρ
2
sis(rs−is)λss (3b)

where the initial conditions iv(0) and is(0) are set equal to the

initial fractions of infected vagabonds and social users. Note

that the above ODE is essentially the classical susceptible-

infected model (see, e.g., [28]) applied, in this case, to two

infectious classes.

Formally, consider the following extension of the discrete

time stochastic process ~i : N → [0, 1]2 to a continuous time

process ~i : R+ → [0, 1]2. Define τk = k
N

, and, for all k ∈ N,

~i(τk) =~i(k), and

~i(τk + s) =~i(k) + s
~i(k + 1)−~i(k)

τk+1 − τk
, for 0 < s <

1

N
.

Our main lemma states that the continuous version ~i(τ)
of the fraction of infected users can be approximated with

arbitrary accuracy through the solution of the ODE (3).

Lemma 1: Let ~ξ(τ), τ ∈ [0,∞), be the solution of the ODE

(3) with initial condition ~ξ(0) =~i(0). Then, for every T ≥ 0,

lim
N→∞

sup
0≤τ≤T

‖ξ(τ) −~i(τ)‖ = 0, in probability.

The proof can be found in [29]. Intuitively, the above lemma

implies that the trajectory of~i(t), for 0 ≤ t ≤ T ·N (i.e., in an

ever increasing interval), can be arbitrarily well approximated

by the trajectory of the solution ξ(τ) of (3) in the interval

[0, T ]. For N large enough, the probability that the stochastic

process ~i(t) strays too far from the deterministic trajectory
~ξ(τ) is arbitrarily small.

2) Solution of the ODE (3): The following lemma, whose

proof can be found in [29], determines the evolution of ~i(t),
as given by (3), under a single infectious class.

Lemma 2: The ODE

dx/dt = α(A− x)x (4a)

dy/dt = β(B − y)x (4b)

with initial conditions x0, y0, has the solution

x(t) = A− (A− x0)A/
(

x0e
αAt + (A− x0)

)

(5a)

y(t) = B − (B − y0)
[

A/
(

x0e
αAt + (A− x0)

)]β
(5b)

Using the above, we establish that the condition of Thm. 1

implies the domination of propagation through Vagabonds.

Lemma 3: Let ivo and iso be the fractions of infected users

under ODE (3) when either (1) or (2) hold, respectively. If

ρ2vrv > ρ2srs, then limt→∞ (1 − ivo(t))/(1− iso(t)) = 0.
The proof of this lemma can also be found in [29]. Theorem 1

therefore follows directly from Lemmas 3 and 1. To summa-

rize, it implies that, if ρ2vrv > ρ2srs, the propagation using

vagabonds eventually dominates the propagation using social

users, in spite of the fact that Vagabonds show up in the area

much less frequently than Social users.

C. Numerical Validation

Figure 6(a) illustrates the performance of epidemic propa-

gation under our model, evaluated through the ODE (3). We

consider population ratios Nv/Ns ranging between 0.1–10 and

occupancy rates ρs, ρv ranging between 1–10%. Circles cor-

respond to cases for which propagation using Socials infects

97% of the population faster, and crosses are cases when prop-

agation using Vagabonds is faster. The dashed line corresponds

to a balance in propagation speeds between Vagabonds and

Socials, as predicted by the inequality in Thm. 1.

Note that Thm. 1 is asymptotic: it states that when Nvρ
2
v >

Nsρ
2
s, Vagabonds will eventually dominate Socials. Figure 6(a)

shows that the theorem correctly predicts which class reaches

the 97% contamination threshold in most cases. The cases

for which the theorem does not correctly predict the outcome

are due to insufficient time for the asymptotic behavior to

manifest; indeed, we repeated these evaluations with higher

thresholds and observed a decrease in misclassified points.

Recalling the simulations in Section VI, none reached more

than 95% of the total population, so it is difficult to com-

pare the analytic results in Figure 6(a) with our simulation

results. Instead, Figure 6(b) shows the relative propagation

performance of Vagabonds and Socials after 60 hours of mes-

sage propagation. Circles correspond to cases where, after 60

hours, the simulated propagation using Socials infected more
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Fig. 6: Validation of Thm. 1: (a) relative performance of epidemic
propagation using Vagabonds and Socials under our model; (b)
relative propagation performance using Vagabonds and Socials from
the Dartmouth, SF, and SL traces. The dashed lines indicate the
threshold above which, according to Thm. 1, Vagabonds outperform
Socials.

users than the propagation using Vagabonds, while crosses

correspond to the converse. To exclude simulations not in

the asymptotic regime, we show only the cases where either

simulation reached more than 60% of the total population.

Although many of these points are far from the asymptotic

propagation behavior, Thm. 1 correctly predicts the outcome

in most cases.

In summary, we proposed a model incorporating the popu-

lation sizes of Vagabond and Social devices, as well as their

social behavior. We have identified a law determined by these

two parameters that governs the asymptotic efficiency of epi-

demic dissemination. Though our focus was on asymptotic ef-

ficiency, our ODE approach in general applies to more compli-

cated interactions between users, including, e.g., transmissions

that fail with class-dependent probabilities or re-infections in-

troduced after a received message expires.

VIII. CONCLUSIONS

In this paper we improve our understanding of data dissem-

ination in opportunistic mobile ad-hoc networks. By separat-

ing users into two behavioral classes, we find that, although

Socials form an active population subset, most areas are dom-

inated by Vagabonds in terms of population size. Vagabonds,

often excluded as unimportant, can often play a central role

in opportunistic networks. As a result, tracing efforts should

strive to capture the presence of Vagabonds, and analyses of

protocols and applications should not discount them.

This work is just a first step in studying the impact of social

behavior of users on information dissemination. A number of

interesting directions naturally follow, including studying the

characteristics of inter-area message propagation, the dynam-

ics of user social behavior (e.g., Vagabonds becoming Socials

in other areas), and the interactions between Vagabonds and

Socials in supporting information dissemination.
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