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Abstract

An ultimate goal for modern Internet services is the de-
velopment of scalable, high-performance, highly-available
and fault-tolerant systems. Replication is an important ap-
proach to achieve this goal. However, replication intro-
duces the issue of consistency among replicas, which is fur-
ther complicated by network partitions. Generally, higher
consistency levels result in lower system availability in the
presence of network partitions. Thus, there is a fundamen-
tal tradeoff between consistency and availability in building
replicated Internet services.

In this paper, we argue that Internet services can
benefit from dynamically choosing availability/consistency
tradeoffs. With three consistency metrics,Unseen Writes,
Uncommitted Writesand Staleness, we show how consis-
tency can be meaningfully quantified for many Internet ser-
vices. We present the design of the TACT (Tunable Avail-
ability and Consistency Tradeoffs) toolkit that allows In-
ternet services to flexibly and dynamically choose their
own availability/consistency tradeoffs, enabling differenti-
ated availability/consistency quality of service. Further,
TACT makes it possible for Internet services to dynamically
trade consistency for performance.

1. Introduction

An ultimate goal for modern Internet services is the de-
velopment of scalable, high-performance, highly-available
and fault-tolerant systems. Replication is an important ap-
proach to achieving this goal. For example, Exodus[14] has
replicas in nine metropolitan areas, while CNN[7] is repli-
cated across several continents. However, replication intro-
duces issues of consistency among replicas. The possibility
of network partitions in wide-area networks further com-
plicates this problem. Given the tremendous scale of the

Internet, it is likely that a partition is present somewhere in
the Internet at all times. Network congestion and node fail-
ures can also be considered less severe forms of network
partitions. Generally, in the presence of network partitions,
higher consistency levels result in lower system availability
[10]. Thus, the tradeoff between consistency and availabil-
ity is a fundamental issue that must be addressed by repli-
cated Internet services.

Researchers have been concentrating on the two ex-
treme end points of the availability/consistency tradeoff
spectrum (Figure 1(a)): maximizing availability while
maintaining strong consistency[1, 2, 10, 12, 16, 37], or sac-
rificing strong consistency in favor of one-copy availability
[6, 19, 20, 24, 30, 31, 32, 35, 40]. As a result, in Figure 1(a),
applications typically have only two choices: either strong
consistency with whatever availability the system provides,
or one-copy availability with whatever consistency the sys-
tem provides.

In this paper, we argue that Internet services can benefit
from dynamically choosing availability/consistency trade-
offs in response to current network, service and access char-
acteristics. For instance, a replicated Internet stock quote
service may provide differentiated availability/consistency
Quality of Service (QoS) for different users. With the ad-
vent of mobile code and web hosting services, replicas of
Internet services may be hosted by distinct administrative
domains[42]. Autonomy requires that each domain be al-
lowed to specify its own availability/consistency tradeoff.

The need to build adaptive systems also argues against
static availability/consistency tradeoffs. Consider the case
of an airline reservation system. The airline determines
an optimal availability/consistency tradeoff that can maxi-
mize its profits without unduly sacrificing customer satis-
faction. However, the optimal tradeoff depends on user ac-
cess patterns, network performance and network partition
scenarios. As these factors change, the reservation system
should dynamically adjust system availability/consistency
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One partition scenario
and one access pattern
correspond to one curve.

combinations

TACT

all possible

Consistency

Availability

Bayou, Coda, Ficus, ...

Traditional Replicated Databases

Consistency Consistency

AvailabilityAvailability

Figure 1. Availability/consistency tradeoff

to achieve the optimal tradeoff. For example, as a flight gets
full, the airline may want to lower availability to tighten
consistency. In the next section, we analyze the availabil-
ity/consistency requirements of a number of Internet ser-
vices in more detail.

In this paper, we present the initial design of the
TACT (Tunable Availability/Consistency Tradeoff) toolkit
for replicated Internet services. The goal of our work is to
provide flexible availability/consistency tradeoffs for mod-
ern Internet services. TACT is a library layer between
the database replica and the application. It defines high-
level continuousmetrics for consistency, which are (lin-
early) related to the consistency observed by the Internet
service. More specifically, the consistency of a replica in
TACT is measured by three metrics:Unseen Writes, Un-
committed WritesandStaleness. Intuitively, Unseen Writes
is the number of updates not seen by a replica,Uncommit-
ted Writesis the number of unstable updates on a replica,
while Stalenessis the age of a replica relative to an up-
to-date replica image. Using our metrics for consistency,
Internet services can flexibly and dynamically specify their
own requirements for the availability/consistency tradeoff.
In Figure 1(b), given a partition scenario and workload,
applications can choose arbitrary availability/consistency
tradeoff on the spectrum. Figure 1(c) shows all possible
availability/consistency tradeoffs in TACT. Internet services
are allowed to adjust the tradeoff whenever deemed neces-
sary, for example, when a network partition occurs or when
it temporarily desires stronger consistency for more accu-
rate information. TACT can also provide different consis-
tency levels for each database replica and each database
access (read or write), enabling differentiated availabil-
ity/consistency QoS.

Consistency and availability can also be traded for per-
formance. For example, achieving strong consistency in
wide-are networks incurs significant communication over-
head. Generally speaking, higher consistency levels require
tighter synchronization and more communication on the

critical path, which result in lower system throughput and
latency. We believe that TACT can be readily used by In-
ternet services to relax consistency for higher performance.
However, for the purposes of this paper, we focus on avail-
ability/consistency tradeoffs.

This paper makes the following contributions:

� We describe the benefits of dynamically choosing
availability/consistency tradeoffs and demonstrate how
Internet services can utilize such support.

� We quantify consistency by assigning high-level con-
tinuous metrics for it. We explain how continuous con-
sistency can be meaningful for many applications, al-
though consistency is traditionally considered binary.

� The initial design of the TACT toolkit is presented,
which allows Internet services to flexibly and dynami-
cally choose availability/consistency tradeoffs, as well
as to dynamically trade consistency for performance.

� Finally, our work demonstrates how consistency can be
specified on both a per-replica and a per-user basis and
how such flexibility enables dynamic QoS for Internet
services.

In the next section, we analyze the availabil-
ity/consistency requirements of several Internet services.
We quantify consistency and assign continuous metrics for
such services in Section 3. Section 4 presents the design of
the TACT toolkit. Related work is described in Section 5.
In Section 6, we conclude and describe future work.

2. Motivating applications

The TACT toolkit is designed to support replication in
wide-area networks. Because replication is a primary ap-
proach for addressing performance, availability and fault-
tolerance issues, we expect that a wide range of Internet ser-
vices can benefit from the TACT toolkit. These Internet ser-
vices include E-commerce systems, stock-trading systems,



web servers, web caching, wide-area resource allocation,
bulletin boards, etc. We briefly describe how three partic-
ular Internet services can utilize TACT and how TACT ad-
dresses their requirements.
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Figure 2. Replicated airline reservation sys-
tem

Airline reservation system Replicated reservation servers
(Figure 2) accept user reservations and inquiries about
seat availability. Reservations can specify theexact
seats desired. Inconsistency can result in reservation
conflicts and the need to abort a reservation. Availabil-
ity is defined as the percentage of time that the system
is available, while consistency determines the percent-
age of reservations that are eventually aborted. Using
the TACT toolkit, the airline can choose a point in the
tradeoff spectrum of availability and consistency based
on application-specific characteristics, such as user ac-
cess pattern.

Stock trading system One popular model for performing
stock trades is the market-maker paradigm. Here, a re-
quest to buy or sell a stock can be directed to any of the
market-makers, who are responsible for matching buy
and sell orders. Clients desire information about the
trades performed (and requested) by market-makers
distributed across the world. They can retrieve the
trade information from any market-maker. Propagat-
ing trade information is essentially maintaining consis-
tency among database replicas. This is an Internet ser-
vice where differentiated availability/consistency QoS
is crucial, because different market-makers and clients
have different requirements for the freshness of their
data.

Web caching In read-only web caching, the time-to-live
(TTL) property has been used to bound the staleness
of cached web pages. However, we argue that in many

cases, bounding the staleness of a web page is inappro-
priate. For example, if a web page’s TTL is set to one
hour, a proxy cache has to contact the web server once
per hour even if the page has not been modified. On the
other hand, modifications can be bursty and the web
page may be completely updated within 30 minutes. In
the TACT toolkit, consistency is measured using three
metrics and the above case can be handled gracefully
by bounding one of the metrics (Unseen Writes). Fur-
thermore, the TACT toolkit allows different availabil-
ity/consistency QoS based on user/cache preferences.

3. Quantifying availability and consistency

In order to enable the Internet service to specify an arbi-
trary point in the availability/consistency tradeoff spectrum,
the TACT toolkit assigns numerical values to availability
and consistency. Availability can be well defined using a
numerical value. Consistency, on the other hand, is tradi-
tionally considered binary. A system is either “consistent”
or “inconsistent.” Recent efforts attempting to define dif-
ferent consistency levels include [3, 13, 21, 22, 23, 33, 34,
36, 38, 39, 41]. Some approaches are restricted to the case
of read-only caching, while others are either low-level or
single-dimensional and cannot reflect applications’ consis-
tency requirements (see Section 5).

In this section, we first describe the basic replication
system model we assume, then discuss the guidelines we
use in quantifying consistency. After analyzing the consis-
tency requirements of two Internet services, we present our
consistency metrics.

3.1. System model

For simplicity, in this paper we refer to the applica-
tion data as databases, though the data can actually be
stored in other formats such as files, persistent objects, etc.
The database is replicated across multipleservers. Each
server maintains a full copy of the database. Servers ac-
cept read/write requests from users. In our model, a read
or write can contain multiple primitive database read/write
operations. (In some sense, a read in our model is the ana-
log of a read-only transaction in traditional database termi-
nology, while a write is an update transaction.) In the air-
line reservation example, an inquiry about flight informa-
tion is a read, and a reservation is a write. To perform a
read/write on the database, a server accesses its local copy
of the database image through the TACT layer. On a server,
a read or write is isolated from other reads or writes dur-
ing execution. Depending on the consistency requirements
specified, a server may or may not contact other servers
when processing read/write requests.



A server may reject a read/write request to the database.
This can occur when the network is partitioned and the
server is unable to contact some other servers to attain the
desired level of consistency. In such a case, availability is
traded for consistency as required by the application.

Although we are exploiting weak consistency, we be-
lieve that eventual consistency should be preserved by the
system. In the absence of newly-introduced writes, all repli-
cas in an eventually consistent system will converge to the
same “final image.” If a system is not eventually consistent,
inconsistency is allowed to accumulate as time goes by, ulti-
mately making the replicas useless for many Internet-based
applications. Eventual consistency requires that all writes
ultimately be propagated to each server. A method is also
required for servers to determine a totalcommit orderon all
writes in the system, so that writes can eventually be applied
to the database in the same order across the system.

There are two kinds of writes in the system,uncom-
mitted writesandcommitted writes. When a server first ac-
cepts a write, the write isuncommitted, which means other
servers may or may not honor this write and the position of
this write in the commit order is not determined. The local
server applies the uncommitted writes to its database image
once they are accepted, possibly before those writes are ac-
tually propagated to other replicas. A write gets committed
when its position in the commit order is fixed.

3.2. Guidelines for quantifying consistency

In defining metrics for consistency, we believe it is cru-
cial to make them:

1. High-level. Metrics should be directly related to the
application’s view of consistency. It is especially im-
portant that a numerical value be assigned to consis-
tency that is proportional to the consistency observed
by the application. For instance, in the airline example,
the consistency observed by the application is the rate
that reservations are later aborted. Thus, if we define
some numerical value for consistency, relaxing con-
sistency from 0.9 to 0.8 should have the same effect
on the aborted reservation rate as relaxing consistency
from 0.2 to 0.1. Furthermore, to provide flexibility
in implementation and to make the metrics widely ap-
plicable, they should be implementation-independent.
The system model in which the metrics are defined
should not introduce additional restrictions.

2. Full-coverage. Metrics should measure and specify
the consistency level at any point on the availabil-
ity/consistency spectrum (from strong consistency in
traditional databases to weak consistency in optimistic
replication systems). This is necessary for TACT to

export arbitrary tradeoffs on the spectrum to the appli-
cation.

3. Multi-dimensional. Consistency has multiple dimen-
sions and cannot be captured using a single metric. For
example, in the web caching example, using a single
TTL metric to measure consistency is inaccurate in
many cases. Taking the number of modifications on
a web page into account will make the metrics much
more accurate. Thus, consistency should be quantified
across multiple dimensions and these metrics should
be both necessary and sufficient to capture the require-
ments of a broad range of applications.

3.3. Defining consistency metrics that meet applica-
tions’ needs

One goal of our work is to define a set of metrics to
quantify the consistency requirements of a wide range of
real Internet services. In this section, we derive the consis-
tency metrics used in TACT by analyzing the consistency of
several typical Internet services.

In the airline example, inconsistency comes from two
sources. First, it can come from unseen reservations. For
example, someone reserves aparticular seat on a flight on
server A, but the reservation information has not been prop-
agated to server B. If another user makes a reservation for
the same seat based on inconsistent data at B, the second
reservation will be aborted later. The more unseen reser-
vations, the higher the probability that a new reservation
will conflict with an unseen reservation, and the lower the
observed consistency level of this application. In fact, the
probability that a new reservation will be later aborted be-
cause of an unseen reservation grows linearly with the num-
ber of unseen reservations for a particular replica.

The second source of inconsistency is the “uncommit-
ted reservations” applied to the local database image. When
first accepted by a server, a reservation is “uncommitted”
because it may or may not be honored by other servers.
However, that server still applies the database update (reser-
vation) to its database image in the hope that the update
will finally get “committed” without conflicts from other
reservations. If later some server cannot honor this reserva-
tion because of an existing reservation for the seat, the new
reservation will be aborted.

Thus, the effects of uncommitted reservations on the
database may change when the system commits them. If
users base their decisions on a database image with uncom-
mitted reservations, the validity of the decision depends on
these uncommitted reservations. For example, if Jerry re-
serves the only two remaining seats of a flight, the reserva-
tion is initially uncommitted on the accepting server. Users
accessing this server will see the flight full. However, some-
time later, it is found that this reservation cannot be honored



by another server because Mary has already reserved one of
the two seats. Jerry’s purchase is then aborted since Jerry
wants to reserve two seats together. But the users access-
ing Jerry’s server lost the opportunity to reserve one of the
two seats because they saw Jerry’s uncommitted reserva-
tion. Thus, the more uncommitted writes a database replica
has applied, the larger the probability that the database im-
age will change later and the less consistent (or stable) it
is.

In the electronic stock-trading example, consistency
determines what percentage of performed trades are ob-
served by a client. Inconsistency arises from new trades
executed at other market-makers, not seen by this client’s
market-maker. The “amount” of inconsistency is the num-
ber of unseen trades. Thus consistency is continuous in
this example and can be quantified as the number of unseen
trades. Another dimension of consistency in this application
is the staleness of a replica. For example, one replica has all
transaction information up to the last minute, while another
replica has transaction information up to the last five min-
utes. The less stale a replica, the stronger the consistency.

From these and other Internet services, such as E-
commerce, web caching, wide-area resource allocation,
electronic bulletin boards and email, we define consistency
to be three-dimensional:

consistency of a replica =

(UnseenWrites; UncommittedWrites; Staleness)

Unseen WritesThe number of writes that have been ac-
cepted by the system but have not been seen by a
replica at timet. These are the unseen reservations
in the airline reservation example and unseen trades in
the stock-trading example. Intuitively,Unseen Writes
is the “distance” between the current database image
and the “final image,” when the system reaches even-
tual consistency. It is usually expensive for a replica
to know itsUnseen Writesexactly, since this requires
global information.

Uncommitted WritesThe number of uncommitted writes
that this replica has applied to its current database im-
age before timet. These are the uncommitted reser-
vations in the airline reservation example.Uncommit-
ted Writesmeasures how unstable a database replica is.
Since the effects of uncommitted writes may change,
the more uncommitted writes a replica has applied, the
less stable the database image.

StalenessThe difference between the current time and the
acceptance time of the oldest write that has not seen by
this replica. This is the staleness of a market-maker’s
database replica in the stock-trading example.

By specifying limits forUnseen Writes, Uncommitted
Writes and Staleness, each database replica can select its

desired consistency level. If all three metrics are limited
to zero, the system is one-copy serializable. When none of
the metrics is bounded, TACT achieves the other end of the
availability/consistency spectrum. In such a case, the sys-
tem provides the consistency level same as that in optimistic
replication systems.

It should be noted that end users do not deal with the
three metrics directly. Application programmers express the
application-specific consistency using these metrics and ex-
port the consistency level to end users. For example, in the
airline case, a client will see the consistency level as “your
reservation has at most 1% probability of being aborted”.

4. TACT toolkit design

In this section, we discuss how the TACT toolkit
achieves tunable availability/consistency tradeoffs, lever-
aging several existing techniques in optimistic replica-
tion systems[18, 19, 20, 24, 31, 40] and interactive
groupware[5].

4.1. Replica reconciliation and write commitment

Each server maintains a write log for the server’s
database image, which is the “update history” of the image.
An update or a write in our system is essentially a proce-
dure, which checks the database state before performing a
set of database writes [21, 22, 31, 40].

We use anti-entropy sessions[11, 18, 31] to reconcile
replicas and to ensure eventual consistency. During anti-
entropy sessions, the writes, rather than the whole database
image, are propagated among servers. Anti-entropy ses-
sions are categorized intovoluntary anti-entropy sessions
andcompulsory anti-entropy sessions. A server may per-
form voluntary anti-entropy sessions with other servers as
often as it desires. Voluntary anti-entropy sessions have no
effect on the correctness of our system, but they do affect
performance. Compulsory anti-entropy sessions are per-
formed by a server when it desires to achieve a particular
consistency level. If a compulsory anti-entropy session fails
because of network partitions, accesses to the replica will be
denied.

Each server maintains a Lamport logical clock[25]. For
each client write operation, a server assigns its current log-
ical clock time to the write as itsaccept stamp. A write
also carries the identification of the accepting server. The
tuple (accept stamp, server-id) determines thecommit or-
der, for all writes in the system. Write W1 precedes Write
W2 in the commit order if and only if W1’s accept stamp
is smaller than W2’s accept stamp; or W1 and W2’s ac-
cept stamps are the same but W1’s server-id is smaller than
W2’s server-id. Figure 3 illustrates a simplified replicated
Internet service with two servers A and B. The writes in the
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Figure 3. An Internet service with two replicas

write log are denoted by their accept stamps and accepting
servers. Server A has accepted three writes. Before these
three locally-accepted writes, server B propagates a write
(5, B) to A, so there are four writes in A’s write log. The
commit order is the write log order in the consistent “final
image”(Figure 3), i.e., the database image when the system
reaches eventual consistency.

In a pair-wise anti-entropy session, a server B propa-
gates to another server A all writes in its write log not seen
by A. Writes are propagated according to the partial order
defined by accept stamps. Sending writes in this way en-
ables us to use alogical time vectorto summarize the writes
seen by each server. The logical time vector has an entry for
each server in the system. For server A, the followingcov-
erage propertyis preserved between its logical time vector
and the writes it has seen. If the logical time vector entry
corresponding to server B ist, then A has seen all writes
accepted by server B with accept stamp less thant. For ex-
ample, in Figure 3, server A’s logical time vector is (24, 5),
which means it has seen all writes accepted by A with time
stamp less than or equal to 24 and all writes accepted by B
with time stamp smaller than or equal to 5.

At the start of an anti-entropy session, B obtains A’s
logical time vector to learn the writes seen by A. Server
B can then scan its own write log and send all writes not
covered by A’s logical time vector. At the end of the anti-
entropy session, B sends its logical time vector to A, al-
lowing A to update its own logical time vector by taking a
pair-wise maximum of the two logical time vectors.

We use awrite commit algorithmto enable each server
to independently commit writes on its own. Each server
may have its own policy about when to invoke this algo-
rithm and commit writes in its write log. Intuitively, a server
can commit an uncommitted write if it is certain that no pre-
ceding writes are missing from its log. Our commit order is
the total order determined by the tuple (accept stamp, server
id). Thus if a server can determine that it has seen all writes

that bear accept stamps less than a particular logical time,
it can safely commit those writes. The minimal entry in a
server’s logical time vector is called thecommit line. With
the coverage property, a server is sure that it has seen all
writes with accept stamps less than or equal to a commit line
t. For example, in Figure 3, A’s commit line is5, meaning
that A can commit all writes with accept stamps less than
or equal to5. A server commits all such writes in its write
log by reordering them according to the commit order. Dur-
ing the reordering process, rollback of the write log may be
necessary. Note that the commit order preserves causality,
since it is determined by logical time.

4.2. Dynamically tunable consistency levels

We achieve application-desired levels of consistency by
bounding the inconsistency in the system. The application
specifies the desired consistency level by setting limits for
the three consistency metrics, allowing TACT to bound in-
consistency in terms of these metrics.

We use a “push” approach to boundUnseen Writes, re-
quiring cooperation among all servers in the system. Each
server (e.g., A) maintains anunseen writes bound vector.
The vector has an entry for every server (e.g., B) in the sys-
tem. Each entry is an upper bound on the number of writes
that A can accept without B seeing these writes. We bound
Unseen Writesby requiring each server to check these up-
per bounds before accepting a new write. If a new write will
violate the upper bound, the server must first perform com-
pulsory anti-entropy sessions with other servers to reduce
their Unseen Writes. In Figure 4, server A has accepted
three writes unseen by server B. If server A’sunseen writes
bound vector(not shown in the figure) entry for B is three,
then before A can accept another new write, it must per-
form compulsory anti-entropy with B to bound B’sUnseen
Writes.

This unseen writes bound vectorprovides flexibility



"Final Image"
Consistent

x: 3

(5, B): x=2

(11, A): x=1

(14, A): y=1

(20, B): y=2

(23, A): x=3

y: 2
x: 3

(5, B): x=2

(11, A): x=1

(14, A): y=1

(23, A): x=3

(5, B): x=2

(20, B): y=2

y: 1
x: 2
y: 2

committed
write

uncommitted
write

Server A Server B
Logical Time Vector:

Unseen Writes: 1
Uncommitted Writes: 3

Logical Time Vector:
   (0, 21)
Unseen Writes: 3
Uncommitted Writes: 2

   (24, 5)

Figure 4. Unseen Writesand Uncommitted Writes
of replica A and replica B

because the entries on different replicas for a particular
server do not have to be identical. A server may believe up-
dates from a particular replica to be particularly important
and set a smallerunseen writes bound vectorentry on that
server. Since boundingUnseen Writesrequires cooperation
from other servers, a replica cannot adjustUnseen Writes
by itself. To enforce a smaller limit forUnseen Writes, a
replica must use a consensus algorithm to ensure that other
servers agree to enforce this new limit for this replica.

The metricUncommitted Writescan be bound using
our write commit algorithm. Whenever deemed necessary,
a server may invoke this algorithm to reduce the number of
uncommitted writes in its write log. If necessary, the server
will pull writes from other servers by performing compul-
sory anti-entropy sessions to advance its logical time vector
and commit line. For the example depicted in Figure 4, a
read request to server A might specify a consistency level
of Uncommitted Writes � 2. In order to process this
request, server A performs anti-entropy session with server
B to pull writes. In this way, server A can commit some
writes andUncommitted Writesis reduced to one. The re-
sult of such an anti-entropy session is illustrated in Figure
5.

To bound theStalenessof a replica, each server main-
tains areal time vector. This vector is similar to the logical
time vector, except that real time instead of logical time is
used. A similar coverage property is preserved between the
writes a server has seen and the real time vector. If A’s real
time vector entry corresponding to B ist, then A has seen
all writes accepted by B before real timet. To boundStale-
nesswithin l, a server checks whethercurrent time�t < l

holds for each entry in the real time vector. (We assume that
server clocks are loosely synchronized.) If the inequality
does not hold for some entries, the server performs com-
pulsory anti-entropy session with the corresponding servers
and advances its real time vector.
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Figure 5. Unseen Writesand Uncommitted Writes
after an compulsory anti-entropy session
from B to A

A benefit of our design is that replicas can provide dif-
ferent consistency QoS for different clients/accesses. The
consistency level of a read or write access is defined to be
the consistency level of the replica at the time of access. If
a replica desires stronger consistency than its current con-
sistency level for some access, it can temporarily enforce
smaller limits forUnseen Writes, Uncommitted Writesand
Staleness.

4.3. Trading consistency with availability (perfor-
mance)

In our algorithm, a server maintains consistency by
performing compulsory anti-entropy sessions with other
servers. The set of servers it needs to contact upon receiving
each user request is directly determined by the consistency
level. The larger the limits forUnseen Writes, Uncommit-
ted WritesandStaleness, the less frequent the compulsory
anti-entropy sessions and the fewer servers that need con-
tacting upon each access. Thus, given a network partition
with fixed scope and duration, the weaker the consistency
level, the larger the probability that a server is able to per-
form the required compulsory anti-entropy sessions and an
access will be accepted, which means higher system avail-
ability.

At the two extremes of the availability/consistency
spectrum, TACT demonstrates the behavior of the voting
algorithm[16] (with read quorum being1 and write quo-
rum beingn) and the behavior of the optimistic replication
systems[31, 40], respectively. (As Figure 1 shows, the end
points of the curve in (b) corresponds to the two points in
(a).)

As another effect of our consistency algorithm, when
an application relaxes its consistency requirements, the fre-
quency of compulsory anti-entropy sessions decreases. The



latency perceived by an access is decreased through reduc-
ing required communication on the critical path.

5. Related work

We first describe previous research on the two extreme
end points of the availability/consistency tradeoff spec-
trum. In the traditional replicated transactional database
model, strong consistency (one-copy serializability) is con-
sidered necessary for correctness. In this context, voting
algorithms[16], missing writes algorithm[12], virtual par-
tition algorithms[1, 2] and class conflict analysis[37] have
been proposed to increase availability in the presence of net-
work partitions. Coan et. al.[9] proved that the achievable
database availability under network partitions has a tight up-
per bound. At the other end of the spectrum are optimistic
systems such as Bayou[31, 40], Ficus[19], Rumer[20] and
Coda[35]. In these systems, availability is explicitly favored
over strong consistency. Bayou provides limited support
(session guarantees[13, 38, 39]) for applications to increase
the consistency level observed by users, while Ficus, Rumer
and Coda have no such mechanism. However, Bayou’s ses-
sion guarantees are effective largely when a client switches
from one server A to another server B, ensuring that B’s
consistency level is, in some predefined sense, no “weaker”
than A’s consistency. Session guarantees provide little as-
surance about the consistency level of a server itself. For
example, a user cannot limit the staleness of the local copy
of the meeting room schedule.

Researchers have also tried to define numerical metrics
for consistency. The time-to-live (TTL) property in web
caching is probably the simplest metric to bound inconsis-
tency. Timed consistency[41] and delta consistency[36] ex-
plore weakened consistency along the dimension of stale-
ness. Both consistency models were proposed to address
the lack of timing in traditional consistency models such as
sequential consistency, while in TACT, we concentrate on
the consistency requirements of real Internet services and
summarize consistency using three concrete metrics.

Pu et. al.[33, 34] use low-level consistency metrics,
which are informally the number of conflicting reads and
writes. These metrics measure the “mutual inconsistency”
observed by multiple reads in a query transaction, while we
concentrate on the consistency level observed by each read.
For example, a replica with three unseen writes may ac-
tually execute a query transaction with zero conflict with
update transactions. Inquasi-copycaching[3], Alonso et.al.
proposed four “coherency conditions”: delay condition, fre-
quency condition, arithmetic condition and version condi-
tion. Version condition is very similar to ourUnseen Writes

metric. However, the coherency conditions and system de-
sign are limited to the context of read-only caching rather
than general-purpose read/write replication.

The notion ofUnseen Writesis also related to thek-
completenessconcept in the SHARD system[26]. Krish-
nakumar and Bernstein[21, 22] propose the concept of an
“N-ignorant” system, where a transaction runs in parallel
with at most N conflicting transactions. This looks similar
to our Unseen Writesmetric, but there are actually subtle
differences between boundingUnseen Writeswithin N and
providing N-ignorance (the latter is stronger). Furthermore,
the definition of N-ignorance does not allow different N’s
for different replicas. The authors concentrate on possible
database final states, while we investigate how Internet ser-
vices’ consistency requirements are continuous and can be
quantified with our metrics. Availability is not explicitly
addressed in [21, 22]. In two recent papers[8, 29], metrics
similar toUnseen WritesandStalenessare used to measure
database freshness. However, no design is proposed to pro-
vide guaranteed freshness levels by bounding the metrics.

Fox and Brewer[15] argue that strong consistency (one-
copy serializability[4]) and one-copy availability[32] can-
not be achieved simultaneously in the presence of network
partitions. In the context of the Inktomi search engine, they
show how to trade harvest for yield. Harvest measures the
fraction of the data reflected in the response, while yield is
the probability of completing a request. In TACT, we con-
centrate on consistency among service replicas, but a simi-
lar “harvest” concept can also be defined using our consis-
tency metrics. For example, boundingUnseen Writeshas
similar effects as guaranteeing a particular harvest.

Olston and Widom[28] address tunable perfor-
mance/precision tradeoff issue in the context of aggrega-
tion inquiries over numerical database records. As com-
pared to their systems, our consistency metrics and design
are presented in a more general context and are applicable
to non-numerical data and accesses other than aggregation
inquiries.

In Fluid Replication[27], clients are allowed to dy-
namically create service replicas to improve performance.
Their study on when and where to create a service replica
is complementary to our study on availability and consis-
tency issues among replicas. Similar to Ladin’s system[24],
Fluid Replication supports three discrete consistency levels:
last-writer, optimistic and pessimistic. TACT can achieve
both optimistic and pessimistic consistency levels, as in
fluid replication. Varying frequency of reconciliation in
fluid replication allows applications to adjust the strength
of last-writer and optimistic consistency. Bounding stale-
ness in TACT has similar effects. However, as discussed
earlier, staleness alone cannot fully capture application-
specific consistency requirements.



6. Conclusions

In this paper, we argue for the importance of dynam-
ically choosing availability/consistency tradeoffs for repli-
cated Internet services. We show that consistency is con-
tinuous rather than binary for many Internet services. We
derive three high-level consistency metrics,Unseen Writes,
Uncommitted Writesand Staleness, directly from real In-
ternet services. These metrics are (linearly) related to the
consistency observed by end users. We present the ini-
tial design of the TACT toolkit, which allows Internet ser-
vices to flexibly and dynamically choose their availabil-
ity/consistency tradeoffs.

We are currently working on a simulator to further val-
idate our consistency metrics and toolkit design. Next we
plan to build a prototype of TACT, and several sample In-
ternet services that utilize our toolkit. With these sample
services, we intend to show:

1. Our consistency metrics capture the consistency re-
quirements of Internet services.

2. Applications can utilize TACT to dynamically trade
consistency for availability (performance) based on
changing client, network and service characteristics.
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