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Abstract their software on commodity operating systems; there-
, fore, the network must deliver high bandwidth without
quays data centers offer tremendous aggregate ,ban(}l'equiring software or protocol changes. Third, virtualiza
width to clusters of tens of thousands of machines technology—commonly used by cloud-based host-
H_owever, becaqse of limited port densities neven thelng providers to ef ciently multiplex customers across
highest-end switches, data center topologies typically,, gjca| machines—makes it dif cult for customers to
consist of multi-rooted trees with many equal-cost paths, 5ye gy arantees that virtualized instances of application

between any given pair of hosts. EX|st|ng. P mqltl- run on the same physical rack. Without this physical lo-
pathing protocols “S“a”Y rely on per- ow static hashing cality, applications face inter-rack network bottleneirtks
and can cause substantial bandwidth losses due to 10ng-, jitional data center topologies [2]

term collisions.
In this paper, we present Hedera, a scalable, dyf0
namic ow scheduling system that adaptively schedule
a multi-stage switching fabric to ef ciently utilize aggre
gate network resources. We describe our implementatio
using commodity switches and unmodi ed hosts, and
show that for a simulated 8,192 host data center, Heder.
delivers bisection bandwidth that is 96% of optimal and
up to 113% better than static load-balancing methods.

Applications alone are not to blame. The routing and
rwarding protocols used in data centers were designed
or very speci ¢ deployment settings. Traditionally, in
ordinary enterprise/intranet environments, communica-
flon patterns are relatively predictable with a modest
number of popular communication targets. There are
pically only a handful of paths between hosts and sec-
ondary paths are used primarily for fault tolerance. In
contrast, recent data center desigelg on the path mul-
tiplicity to achieve horizontal scaling of hosts [3, 16, 17,
1 Introduction 19, 18]. For these reasons, data center topologies are
very different from typical enterprise networks.

At a rate and scale unforeseen just a few years ago, large Some data center applications often initiate connec-
organizations are building enormous data centers thaions between a diverse range of hosts and require signif-
support tens of thousands of machines; others are moveant aggregate bandwidth. Because of limited port den-
ing their computation, storage, and operations to cloudsities in the highest-end commercial switches, data cen-
computing hosting providers. Many applications—from ter topologies often take the form of a multi-rooted tree
commodity application hosting to scienti c computingto with higher-speed links but decreasing aggregate band-
web search and MapReduce—require substaintted-  width moving up the hierarchy [2]. These multi-rooted
clusterbandwidth. As data centers and their applicationsrees have many paths between all pairs of hosts. A key
continue to scale, scaling the capacity of the network fab<hallenge is to simultaneously and dynamically forward
ric for potential all-to-all communication presents a par- ows along these paths to minimize/reduce link oversub-
ticular challenge. scription and to deliver acceptable aggregate bandwidth.
There are several properties of cloud-based applica- Unfortunately, existing network forwarding proto-
tions that make the problem of data center network de€ols are optimized to select a single path for each
sign dif cult. First, data center workloads aeepriori source/destination pair in the absence of failures. Such
unknown to the network designer and will likely be vari- static single-path forwarding can signi cantly underuti-
able over both time and space. As aresult, static resourdeze multi-rooted trees with any fanout. State of the art
allocation is insuf cient. Second, customers wish to run forwarding in enterprise and data center environments
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stripe ows across available paths using ow hashing. "l."l Wlllll'
This static mapping of ows to paths does not account M\
for either current network utilization or ow size, with
' s ST P20 ==
resulting collisions overwhelming switch buffers and de- = — = —
This paper presents Hedera, a dynamic ow schedul- M M
ing system for multi-stage switch topologies found in
constituent switches, computes non-con icting paths for
ows, and instructs switches to re-route traf ¢ accord-
utilization—bisection bandwidth—and to do so with
minimal scheduler overhead or impact on active ows. data center network topologies are hierarchical trees
We.enable the scheduling system to see bottlenecks thﬂ'bsts [2]. Such networks are interconnected by two or
switch-local schedulers cannot. three layers of switches to overcome limitations in port
on the PortLand testb(_ad [291' For both our_lmplementa;push to build larger data centers encompassing tens of
tion and large-scale simulations, our algorithms delive
. : ) &4 horizontal—rather than vertical—expansion of data cen-

hypothetical non-blocking switch—for numerous inter- ter networks [3, 16, 17]; instead of using expensive
'?] our tgsésﬁeg uphto. axX mo;'e dband(\j/w?th thar? statbe of orks will leverage a larger number of parallel paths be-
the art techniques. Hedera delivers these bangy, qq, any given source and destination edge switches,
tlogoverhea_d. f | lorithms i Thus we nd ourselves at an impasse—with network

ne requirement for our placement algorithms Is andesigns using multi-rooted topologies that have the po-
ideal conditions. Unfort.unately, due to constrajnts at themunic:ating hosts, but without an ef cient protocol to for-
end host or elsewhere in the network, measuring currenf . . qata within the network or a scheduler to appro-
w|dthTLhe ow could achlevef W'th aﬁ)pro_phrlate SCh?dUI' high degree of parallelism. To resolve these problems we
Ing. Thus, we present an ef cient algorithm to esumatepresent the architecture of Hedera, a system that exploits
under max-min fair resource aIIoc_atlon, and desc”_beldeal bisection bandwidth for a range of traf ¢ patterns.
how this algorithm assists in the design of our scheduling

uses ECMP [21] (Equal Cost Multipath) to statically

grading overall switch utilization.

data centers. Hedera collects ow information from $&&&P SLSL L S8
ingly. Our goal is to maximize aggregate network Figure 1:A common multi-rooted hierarchical tree.

By taking a global view of routing and traf ¢ demands, with small, cheap edge switches connected to the end-
We have completed a full implementation of HGderadensities available from commercial switches. With the
performance that is within a few percent of optimal thousands of machines, recent research advocates the
esting and realistic communication patterns, and delivef, ) .. o iers with higher speeds and port-densities, net-

width improvements with modest control and computa-g_oiedmulti-rooted tregtopologies (e.g. Figure 1).
accurate view of the demand of individual ows under tential to deliver full bisection bandwidth among all com-
TCP ow bandwidth may have no relation to the band- priately allocate ows to paths to take advantage of this
idealized bandwidth share that each ow would achievepath diversity in data center topologies to enable near-
techniques.

2.1 Data Center Traf c Patterns

2 Background Currently, since no data center traf ¢ traces are publicly
available due to privacy and security concerns, we gen-
The recent development of powerful distributed comput-erate patterns along the lines of traf ¢ distributions in
ing frameworks such as MapReduce [8], Hadoop [1] andoublished work to emulate typical data center workloads
Dryad [22] as well as web services such as search, efor evaluating our techniques. We also create synthetic
commerce, and social networking have led to the concommunication patterns likely to stress data center net-
struction of massive computing clusters composed ofvorks. Recent data center traf ¢ studies [4, 16, 24] show
commodity-class PCs. Simultaneously, we have wit-tremendous variation in the communication matrix over
nessed unprecedented growth in the size and complespace and time; a typical server exhibits many small,
ity of datasets, up to several petabytes, stored on tens ¢fansactional-type RPC ows (e.g. search results), as
thousands of machines [14]. well as few large transfers (e.g. backups, backend op-
These cluster applications can often be bottleneckeérations such as MapReduce jobs). We believe that the
on the network, not by local resources [4, 7, 9, 14, 16].network fabric should be robust to a range of commu-
Hence, improving application performance may hingenication patterns and that application developers should
on improving network performance. Most traditional not be forced to match their communication patterns to
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Figure 2:Examples of ECMP collisions resulting in reduced bisectiandwidth. Unused links omitted for clarity.

what may achieve good performance in a particular netof collisions caused by hashing. First, TCP owsand
work setting, both to minimize development and debug-B interfere locally at switchiAggOdue to a hash collision
ging time and to enable easy porting from one networkand are capped by the outgoing link's 1Gbps capacity to
environment to another. CoreQ Second, with downstream interferenAggland
Therefore we focus in this paper on generating traf c Agg2forward packets independently and cannot foresee
patterns that stress and saturate the network, and corthe collision atCore2for ows C andD.
paring the performance of Hedera to current hash-based In this example, all four TCP ows could have reached
multipath forwarding schemes. capacities of 1Gbps with improved forwarding; ow
A could have been forwarded ©orel, and ow D
could have been forwarded @ore3 But due to these
collisions, all four ows are bottlenecked at a rate of
0% bisection bandwidth loss.

2.2 Current Data Center Multipathing

To take advantage of multiple paths in data center topolo®00Mbps each, a 5
gies, the current state of the art is to use Equal-Cos*-
Multi-Path forwarding (ECMP) [2]. ECMP-enabled
switches are con gured with several possible forwarding
paths for a given subnet. When a packet with multiple
candidate paths arrives, it is forwarded on the one tha
corresponds to a hash of selected elds of that packet's
headers modulo the number of paths [21], splitting load
to each subnet across multiple paths. This way, a ow's
packets all take the same path, and their arrival order is
maintained (TCP's performance is signi cantly reduced
when packet reordering occurs because it interprets the
as a sign of packet loss due to network congestion).

A closely-related method is Valiant Load Balancing
(VLB) [16, 17, 34], which essentially guarantees equal-
spread load-balancing in a mesh network by bouncing
individual packets from a source switch in the mesh off
of randomly chosen intermediate “core” switches, WhiChFigure 3: Example of ECMP bisection bandwidth losses vs.
nally forward those packets to their destination switch. nymper of TCP ows per host for k=48 fat-tree.

Recent realizations of VLB [16] perform randomized

forwarding on a per- ow rather than on a per-packet ba- Note that the performance of ECMP and ow-based
sis to preserve packet ordering. Note that per- ow VLB VLB intrinsically depends on ow size and the num-
becomes effectively equivalent to ECMP. ber of ows per host. Hash-based forwarding performs

A key limitation of ECMP is that two or more large, well in cases where hosts in the network perform all-to-
long-lived ows can collide on their hash and end up on all communication with one another simultaneously, or
the same output port, creating an avoidable bottleneck awith individual ows that last only a few RTTs. Non-
illustrated in Figure 2. Here, we consider a sample com-uniform communication patterns, especially those in-
munication pattern among a subset of hosts in a multivolving transfers of large blocks of data, require more
rooted, 1 Gbps network topology. We identify two types careful scheduling of ows to avoid network bottlenecks.

Loss in Bisection Bandwidth (% from ideal’

0 5 10 15 20
Flows per host



We defer a full evaluation of these trade-offs to Sec-3.1  Switch Initialization
tion 6, however we can capture the intuition behind
performance reduction of hashing with a simple MonteTo take advantage of the path diversity in multi-rooted
Carlo simulation. Consider a 3-stage fat-tree compose#€€s, we must spread outgoing traf ¢ to or from any host
of 1GigE 48-port switches, with 27k hosts performing as evenly as possible among all the core switches. There-
a data shufe. Flows are hashed onto paths and eacfPre, in our system, a packet's path is non-deterministic
link is capped at 1GigE. If each host transfers an equa@nd chosen on its way up to the core, and is deterministic
amount of data to all remote hosts one at a time, hasketurning from the core switches to its destination edge
collisions will reduce the network's bisection bandwidth switch. Speci cally, for multi-rooted topologies, there
by an average of 60.8% (Figure 3). However, if each hosts exactly one active minimum-cost path from any given
communicates to remote hosts in parallel across 1,000 sFore switch to any destination host.
multaneous ows, hash collisions will only reduce total To enforce this determinism on the downward path,
bisection bandwidth by 2.5%. The intuition here is that if we initialize core switches with the pre xes for the IP
there are many simultaneous ows from each host, theiraddress ranges of destination pods.péd is any sub-
individual rates will be small and collisions will not be grouping down from the core switches (in our fat-tree
signi cantly costly: each link has 1,000 slots to Il and testbed, it is a complete bipartite graph of aggregation
performance will only degrade if substantially more thanand edge switches, see Figure 8). Similarly, we initialize
1,000 ows hash to the same link. Overall, Hedeman-  aggregation switches with pre xes for downward ports
plementECMP, supplementing default ECMP behavior of the edge switches in that pod. Finally, edge switches
for communication patterns that cause ECMP problemsforward packets directly to their connected hosts.
When a new ow starts, the default switch behavior

2.3 Dynamic Flow Demand Estimation is to forward it based on a hash on the ow's 10-tuple

along one of its equal-cost paths (similar to ECMP). This
Figure 2 illustrates another important requirement forpath is used until the ow grows past a threshold rate, at
any dynamic network scheduling mechanism.  Thewhich point Hedera dynamically calculates an appropri-
straightforward approach to nd a good network-wide ate placement for it. Therefore, all ows are assumed to
schedule is to measure the utilization of all links in the pe small until they grow beyond a threshold, 100 Mbps
network and move ows from highly-utilized links to in our implementation (10% of each host's 1GigE link).
less utilized links. The key question becomes WhiChF|0wsare packet streams with the same 10-tup|ggpt
ows to move. Again, the straightforward approach is to MAC, dst MAC, src IP, dst IP, EtherType, IP protocol,
measure the bandwidth consumed by each ow on conTCP src port, dst port, VLAN tag, input port>.
strained links and move a ow to an alternate path with
suf cient capacity for that ow. Unfortunately, a ow's
current bandwidth may not re ect actual demand. V.Ve3'2 Scheduler Design
de ne a TCP ow's naturaldemand to mean the rate it

would grow to in a fully non-blocking network, such that A central scheduler, possibly replicated for fail-over and
eventually it becomes limited by either the sender or rescalability, manipulates the forwarding tables of the edge
ceiver NIC speed. For example, in Figure 2, all ows and aggregation switches dynamically, based on regu-

communicate at S00Mbps, though all could communi-jar ypdates of current network-wide communication de-
cate at 1Gbps with better forwarding. In Section 4.2, wemands. The scheduler aims to assign ows to non-

ows to better inform Hedera’s placement algorithms.  mytiple ows on a link that cannot accommodate their
combined natural bandwidth demands.
3 Architecture In this model, whenever a ow persists for some time
and its bandwidth demand grows beyond a de ned limit,
Described at a high-level, Hedera has a control loop ofve assign it a path using one of the scheduling algorithms
three basic steps. First, it detects large ows at the edgeélescribed in Section 4. Depending on this chosen path,
switches. Next, it estimates the natural demand of largéhe scheduler inserts ow entries into the edge and ag-
ows and uses placement algorithms to compute goodyregation switches of the source pod for that ow; these
paths for them. And nally, these paths are installed onentries redirect the ow on its newly chosen path. The
the switches. We designed Hedera to support any generaw entries expire after a timeout once the ow termi-
multi-rooted tree topology, such as the one in Figure 1nates. Note that the state maintained by the scheduler is
and in Section 5 we show our physical implementationonly soft-state and does not have to be synchronized with
using a fat-tree topology. any replicas to handle failures. Scheduler state is not re-
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Figure 4: An example of estimating demands in a network of 4 hosts. Esatnix element denotes demand per ow as a fraction of the NIC
bandwidth. Subscripts denote the number of ows from thafrse (rows) to destination (columns). Entries in parergheare yet to converge.
Grayed out entries in square brackets have converged.

quired for correctness (connectivity); rather it aids as awork (Section 2.3). Therefore, to make intelligent ow
performance optimization. placement decisions, we need to know the ows' max-
Of course, the choice of the speci ¢ scheduling algo-min fair bandwidth allocation as if they are limited only
rithm is open. In this paper, we compare two algorithms,by the sender or receiver NIC. When network limited,
Global First Fit and Simulated Annealing, to ECMP.  a sender will try to distribute its available bandwidth
Both algorithms search for ow-to-core mappings with fairly among all its outgoing ows. TCP's AIMD be-
the objective of increasing the aggregate bisection bandhavior combined with fair queueing in the network tries
width for current communication patterns, supplementto achieve max-min fairness. Note that when there are

ing default ECMP forwarding for large ows. multiple ows from a hostA to another hosB, each of
the ows will have the same steady state demand. We
4 Estimation and Scheduling now describe how to nd TCP demands in a hypotheti-

cal equilibrium state.

Finding ow routes in a general network while not ex-  The input to the demand estimator is the Setof
ceeding the capacity of any link is called theuMi-  source and destination pairs for all active large ows.
ComMoDITY FLow problem, which is NP-complete for The estimator maintains & N matrixM ; N is the
integer ows [11]. And while simultaneous ow routing number of hosts. The element in & row,j " column

is solvable in polynomial time for 3-stage Clos networks, contains 3 values: (1) the number of ows from hast
no polynomial time algorithm is known for 5-stage Clos to hostj, (2) the estimated demand of each of the ows
networks (i.e. 3-tier fat-trees) [20]. Since we do notfrom hosti to hostj, and (3) a “converged” ag that
aim to optimize Hedera for a speci ¢ topology, this pa- marks ows whose demands have converged.

per presents_practical heuristics that_ can be applied 10 & 16 jemand estimator performs repeated iterations of

range of realistic data center topologies. increasing the ow capacities from the sources and de-
creasing exceeded capacity at the receivers until the ow

4.1 Host- vs. Network-Limited Flows capacities converge; Figure 7 presents the pseudocode.

A ow can be classi ed into two categories: network Note that in each iteration of decreasing ow capacities
9 ) at the receivers, one or more ows converge until even-

Iimited_(e_.g. data trans_fer from RAM) and hOSt'"mited tually all ows converge to the natural demands. The
(e.g. limited by host disk access, processing, etc.). Aéstimation time complexity I©(Fj).

network-limited ow will use all bandwidth available ) ) o
to it along its assigned path. Such a ow is limited Figure 4 illustrates the process of estimating ow de-

by congestion in the network, not at the host NIC. A mands with asimple example. Consider 4 hositg,H 1,
host-limited ow can theoretically achieve a maximum H2 @ndHs) connected by a non-blocking topology. Sup-
throughput limited by the “slower” of the source and des-P0SeHo sends 1 ow each t¢i;, H, andH3; Hy sends
tination hosts. In the case of non-optimal scheduling? ©WS 10 Ho and 1 ow to Hz; Hz sends 1 ow each

a network-limited ow might achieve a bandwidth less © Ho andHs; andHs sends 2 ows toHi. The gure
than the maximum possible bandwidth available from theShOWs the iterations of the demand estimator. The matri-
underlying topology. In this paper, we focus on network-C€S |nd|cate_z the ow _dema_lnds d_urlng successive stages
limited ows, since host-limited ows are a symptom of of the algorithm starting with an increase in ow capac-

intra-machine bottlenecks, which are beyond the scop8Y from the sender followed by a decrease in ow capac-
of this paper. ity at the receiver and so on. The last matrix indicates the

nal estimated natural demands of the ows.

For real communication patterns, the demand matrix
for currently active ows is a sparse matrix since most
A TCP ow's current sending rate says little about its hosts will be communicating with a small subset of re-
natural bandwidth demand in an ideal non-blocking net-mote hosts at a time. The demand estimator is also

4.2 Demand Estimation



GLOBAL-FIRST-FIT(f : ow) SIMULATED -ANNEALING(n : iteration counf

1 if f .assignedhen 1 s INIT-STATE()

2 return old path assignment fdr 2 e E(s)

3 foreachp 2 Pgrq gstdo 3 S8 S;es €

4 if p:used+ f: rate< p: capacitythen 4 To n

5 p:used p:used+ f:rate 5 forT To:::0do

6 return p 6 SN NEIGHBOR(S)

7 else 7 en E(sn)

8 h =HAsH(f) 8 if ey <eg then

9 return p = Pgrq gsih) 9 S8 Sn;€s  en

10 if P(e;en;T) > RAND() then

Figure 5:Pseudocode faBlobal First Fit. GLOBAL-FIRST- 11 S Sn;e e
FIT is called for each ow in the system. 12 return sg

) L . Figure 6:Pseudocode faBimulated Annealing. s denotes
largely parallelizable, facilitating scalability. In fa©ur 1o current state with enerdy(s) = e. es denotes the best

implementation uses both parallelism and sparse matri¥nergy seen so far in stage . T denotes the temperaturey
data structures to improve the performance and memory the energy of a neighboring state .

footprint of the algorithm.

. ) the search space signi cantlgimulated Annealing for-
4.3 Global First Fit wards all ows destined to a particular ho&t through

In a multi-rooted tree topology, there are several possibléhe designated core switch for hast

equal-cost paths between any pair of source and dest{— 'Lhe |||'1putdto thz ailr?quthm '3 the szt of all Ia;rgeto;vsé)
nation hosts. When a new large ow is detected, (e.g. 0 bé placed, an €Ir ow gemands as estimated by

10% of the host's link capacity), the scheduler Iinearlythe demand estimatorSimulated Annealing searches

searches all possible paths to nd one whose link com.hrough a solution state space to nd a near-optimal so-

ponents can all accommodate that ow. If such a pathIUtlon (Figure 6). A functiorE de nes the energy in the

is found, then that ow is “placed” on that path: First current state. In each iteration, we move to a neighboring

a capacity reservation is made for that ow on the links _state with a cert.am_acceptance probabl!?ty depend-
on the energies in the current and neighboring states

corresponding to the path. Second, the scheduler creatdyd :
forwarding entries in the corresponding edge and aggrezzanI the cu_rrent tempera_\tu'll'e Thg temperature IS de-
reased with each iteration of tis#mulated Annealing

gation switches. To do so, the scheduler maintains thgI h d top iterai hen the t wre i
reserved capacity on every link in the network and used'90MNhM and we stop iterating when the temperature 15

that to determine which paths are available to carry new <2 Allowing the SO.Iu“On to move to a higher energy
ows. Reservations are cleared when ows expire. State allows us to avoid local minima.

Note that this corresponds to a rst t algorithm; a
ow is greedily assigned therst path that can accom-
modate it. When the network is lightly loaded, nd-
ing such a path among the many possible paths is likely
to be easy; however, as the network load increases and2. Energy functionE: The total exceeded capacity

1. States: A set of mappings from destination hosts
to core switches. Each host in a pod is assigned a
particular core switch that it receives traf ¢ from.

links become saturated, this choice becomes more dif - over all the links in the current state. Every state
cult. Global First Fit does not guarantee that all ows assigns a unique path to every ow. We use that
will be accommodated, but this algorithm performs rel- information to nd the links for which the total ca-
atively well in practice as shown in Section 6. We show pacity is exceeded and sum up exceeded demands
the pseudocode faslobal First Fit in Figure 5. over these links.

. . 3. Temperatur@ : The remaining number of iterations
4.4 Simulated Annealing before termination.
Next we describe th&imulated Annealing scheduler, 4. Acceptance probability for transition from stats
which performs a probabilistic search to ef ciently com- to neighbor stats,, with energie€ andE,.
pute paths for ows. The key insight of our approach is
to assign a single core switch for each destination host 1 if En <E

rather than a core switch for each ow. This reduces P(EnEIT)= g(E En)=T ifE, E



wherec is a parameter that can be varied. We em- | ESTIMATE-DEMANDS()

pirically determined that = 0:5 T, gives best 1 forall i;j
results for a 16 host cluster amd= 1000 Ty is :2,) do Mij O
best for larger data centers. 4 foreachh 2 H do EsTSrc(h)
5 _foreachh 2 H do EsT-DsT(h)
5. Neighbor generator functiontNGHBOR(): Swaps 675 \r,gt‘lljlfnsﬁ/lmeM i :demand changed
the assigned core switches for a pair of hosts in any
of the pods in the current stase EsT-SRc(src: host
1 d= O
. . . . . 2 Nu 0
While simulated annealing is a known technique, our |3 tgreachf 2 hsre! dsi do
contribution lies in an optimization to signi cantly re- 4 if f .convergedhen
duce the search space and the choice of appropriate eny5 d= de + f.demand
ergy and neighbor selection functions to ensure rapid 675 eIsenU hy +1
convergence to a near optimal schedule. A straightfor- | e L0 U
ward approach is to assign a core for each ow individ- |g  foreachf 2 hsre!  dsi and not f .convergedio
ually and perform simulated annealing. However this re- |10 M srer. dstdemand  es

sults in a huge search space limiting the effectiveness of
simulated annealing. The diameter of the search space
(maximum number of neighbor hops between any two foreachf 2 hsrc!  dsi
states) with this approach is equal to the number of ows frl true

EsT-DsT(dst: hos}
1
2
3
in the system. Our technique of assigning core switches | 4 dr  dr + f.demand
5
6
7
8

dr;ds;nr O

to destination hosts reduces the diameter of the search MR Nr+1
. if dr  1:0then

space to the minimum of the number of ows and the

number of hosts in the data center. This heuristic reduces

the search space signi cantly: in a 27k host data cen- |9  do

ter with 27k large ows, the search space size is reduced | 10 nR O _
by a factor 0f1012°%°  Simulated Annealing performs 11 foreachf 2 hsrc! dsi andf.rldo
better when the size of the search space and its diameter 12 if f: demand es then

. . P 13 ds ds + f:demand
are reduced [12]. With the straightforward approach, the |14 f:rl  false
runtime of the algorithm is proportional to the number of |15 else
ows and the number of iterations while our technique’s ig R, MR 1

€s -2 =S

runtime depends only on the number of iterations. . n
. . - 18  while somef: fl was set to false

We implemented both the baseline and optimized ver- |19  foreachf 2 hsrc! dsi andf .rfl do
sion of Simulated Annealing. Our simulations show 20 M srer. dstdemand  es
that for randomized communication patterns in a 8,192 |21 M. srer. dstconverged true
host data center with 16k ows, our techniques deliver
a 20% improvement in bisection bandwidth and a 10X . .
reduction in computation time compared to the baselinefFigure 7:Demand estimator for TCP owsM is the demand

These gains increase both with the size of the data centépatrix andH is the set of hostsdr denotes “converged” de-
as well as the number of ows. mand,ny is the number of unconverged owss is the com-

puted equal share rate, amgfc! dsi is the set of ows from

Initial state: Each pod has some xed downlink capac- ST to some dst. In ET'D.ST dr is the total demandds is
sender limited demand, rl is a ag for a receiver limited ow

ity frpm the core switches Which is useful _only for trgf C  andng is the number of receiver limited ows.

destined to that pod. So an important insight here is that

we should distribute the core switches among the hosts

in a single pod. For a fat-tree, the number of hosts in a\eighbor generator:A well-crafted neighbor generator
pod is equal to the number of core switches, suggestinfunction intrinsically avoids deep local minima. Com-
a one-to-one mapping. We restrict our solution searclplying with the idea of restricting the solution search
space to such assignments, i.e. we assign cores not gpace to mappings with near-uniform mapping of hosts
individual ows, but to destination hosts. Note that this in a pod to core switches, our implementation employs
choice of initial state is only used when t&émulated  three different neighbor generator functions: (1) swap
Annealing scheduler is run for the rst time. We use an the assigned core switches for any two randomly chosen
optimization to handle the dynamics of the system whichhosts in a randomly chosen pod, (2) swap the assigned
reduces the importance of this initial state over time.  core switches for any two randomly chosen hosts in a




randomly chosen edge switch, (3) randomly choose an | Algorithm Complexity Timez Sspage _
edge or aggregation switch with equal probability and | Global First-Fit O((k=2)%) O(|<3 +JF))
swap the assigned core switches for a random pair of |_Simulated Annealing | O(favq) | O(k” + jFj)
hosts that_ use the chosgn edge or aggregation SWIt(.:h T'Pable 1:Time and Space Complexity Global First Fit and
reach their currently assigned core switches. Our neighg

b f . domlv ch b h I%l-limulated Annealing. k is the number of switch portg; j is
or generator function randomly chooses between the e total number of large ows, arfdyg is the average number

described techniques with equal probability at runtimeyt arge ows to a host. Thée factor is due to in-memory link-

for each iteration. Using multiple neighbor generatorstate structures, and tjij factor is due to the ows' state.
functions helps us avoid deep local minima in the search

spaces of individual neighbor generator functions.

Calculation of energy function: The energy function 4.5 Comparison of Placement Algorithms

for a neighbor can be calculated incrementally based ofy;ith Giobal First Fit. a large ow can be re-routed im-

the energy in the current state and the cores that werg,qgiately upon detection and is essentially pinned to its
swapped in the neighbor. We need not recalculate exrageryed links. Whereaimulated Annealing waits for
ceeded capacities for all links. Swapping assigned coreg,q next scheduling tick, uses previously computed ow

for a pair of hosts only affects those ows destined {0 55 cements to optimize the current placement, and deliv-
those two hosts. So we need to recalculate the differencgs eyen petter network utilization on average due to its

in the energy function only for those speci c links in- probabilistic search.
volved and update the value of the energy based on the We chose th&lobal First Fit andSimulated Anneal-

energy in the current state. Thus, the time to calculat§,y aigorithms for their simplicity; we take the view that
the energy only depends on the number of large 0WSyqre complex algorithms can hinder the scalability and
destined to the two affected hosts. ef ciency of the scheduler while gaining only incremen-
tal bandwidth returns. We believe that they strike the
right balance of computational complexity and delivered
performance gains. Table 1 gives the time and space

d h eted thei ¢ h complexities of both algorithms. Note that the time com-
ones would have completed their transfers. We have img o,y of Global First Fitis independent Gf j, the num-

plemented an optimization where we set the initial state, . ;¢ large ows in the network, and that the time com-
to the best state from the previous scheduling phase. Thiﬁlexity of Simulated Annealing is independent ok.

allows Fhe route—pla_cement of existir)g, cc_mtinuing OWS * More to the point, the simplicity of our algorithms
to be disrupted as little as possible if their current path%akes them both well-suited for implementation in hard-
can still support their bandwidth requirements. Further,Ware such as in an FPGA, as they consist mainly of sim-
the initial state that is used when tBenulated Anneal- le a’rithmetic Such an irrylplementation would substan-
'ng sgheduler:. rst starts up becomes less relevant OveEally reduce the communication overhead of crossing the
time due to this optimization. network stack of a standalone scheduler machine.

. o Overall, whileSimulated Annealing is more concep-
Sea_rch .spacg.Th_e key .charactenstl(.: Bimulated An- tually involved, we show in Sec. 6 that it almost always
qeall_ng IS assigning unique core switches pased on (.jesc')utperformsGIobaI First Fit, and delivers close to the
tination hosts in a pod, crucial to reducing the S'.Zeoptimal bisection bandwidth both for our testbed and in
of the search space. However, there are communic

. X . _ 6}é\rger simulations. We believe the additional conceptual
tion patterns where an optimal solution necessarily re-

. . L o _ complexity of Simulated Annealing is justi ed by the
quires a single Qestlnatlon h.OSt to receive incoming traf'bandwidth gains and tremendous investment in the net-
N th_rough muIt!pIe core switches. While we omit the work infrastructure of modern data centers.
details for brevity, we nd that, at least for the fat tree
topology, all communication patterns can be handled if:

i) the maximum number of large ows to or from a host 4.6  Fault Tolerance

is at mostk=2, wherek is the number of ports in the
network switches, or ii) the minimum threshold of each
large ow is set to2=k of the link capacity. Given thatin
practice data centers are likely to be built from relatively
high-radix switches, e.gk, 32, our search space opti-
mization is unlikely to eliminate the potential for locagin
optimal ow assignments in practice.

Dynamically changing ows: With dynamically chang-
ing ow patterns, in every scheduling phase, a few ows
would be newly classi ed as large ows and a few older

Any scheduler must account for switch and link failures
in performing ow assignments. While we omit the de-
tails for brevity, our Hedera implementation augments
the PortLand routing and fault tolerance protocols [29].
Hence, the Hedera scheduler is aware of failures us-
ing the standard PortLand mechanisms and can re-route
ows mapped to failed components.



5 Implementation

To test our scheduling techniques on a real physical
multi-rooted network, we built as an example the fat-: &
tree network described abstractly in prior work [3]. In @ T P

addition, to understand how our algorithms scale Withi &S @
network size, we implemented a simulator to model theé@ 35 @@ A
behavior of large networks with many ows under the > >
control of a scheduling algorithm.

Figure 8: System Architecture. The interconnect shows the
data-plane network, with GigE links throughout.

5.1 Topology

For the rest of the paper, we adopt the following termi-network is organized as a simple star topology. The cen-
nology: for a fat-tree network built frotk-port switches, ~ tral switch is a Quanta LB4G 48-port GigE switch. The
there are& pods each Consisting of two |ayers; lower pod scheduler machine has a dual-core 2.4 GHz Intel Pen-
switches édgeswitches), and the upper pod switches tium CPU and 2GB of RAM.

(aggregationswitches). Each edge switch manages
(k=2) hosts. Thek pods are interconnected l§ik=2)>
coreswitches.

One of the main advantages of this topology is the highThe switches in the tree all run OpenFlow [27], which
degree of available path diversity; between any giverallows access to the forwarding tables for all switches.
source and destination host pair, there @=2)? equal- OpenFlow implementations have been ported to a va-
cost paths, each corresponding to a core switch. Notajety of commercial switches, including those from Ju-
however, that these paths are not link-disjoint. To takeniper, HP, and Cisco. OpenFlow switches match incom-
advantage of this path diversity (to maximize the achiev-ng packets to ow entries that specify a particular action
able bisection bandwidth), we must assign ows non-such as duplication, forwarding on a speci c port, drop-
con icting paths. A key requirement of our work is to ping, and broadcast. The NetFPGA OpenFlow switches
perform such scheduling with no modi cations to end- have 2 hardware tables: a 32-entry TCAM (that accepts
host network stacks or operating systems. Our testbedariable-length pre xes) and a 32K entry SRAM that
consists of 16 hosts interconnected using a fat-tree obnly accepts ow entries with fully quali ed 10-tuples.
twenty 4-port switches, as shown in Figure 8. When OpenFlow switches start, they attempt to open a

We deploy a parallel control plane connecting all secure channel to a central controller. The controller can
switches to a 48-port non-blocking GigE switch. We em-query, insert, modify ow entries, or perform a host of
phasize that this control network is not required for theother actions. The switches maintain statistics per ow
Hedera architecture, but is used in our testbed as a dend per port, such as total byte counts, and ow dura-
bugging and comparison tool. This network transportgions. The default behavior of the switch is as follows: if
only traf c monitoring and management messages to andn incoming packet does not match any of the ow en-
from the switches; however, these messages could aldoies in the TCAM or SRAM table, the switch inserts a
be transmitted using the data plane. Naturally, for largenew ow entry with the appropriate output port (based
networks of thousands of hosts, a control network couldon ECMP) which allows any subsequent packets to be
be organized as a traditional tree, since control traf cdirectly forwarded at line rate in hardware. Once a ow
should be only a small fraction of the data trafc. In grows beyond the speci ed threshold, the Hedera sched-
our deployment, the ow scheduler runs on a separatauler may modify the ow entry for that ow to redirect it
machine connected to the 48-port switch. along a newly chosen path.

5.3 OpenFlow Control

5.2 Hardware Description 5.4 Scheduling Frequency

The switches in the testbed are 1U dual-core 3.2 GHOur scheduler implementation polls the edge switches
Intel Xeon machines, with 3GB RAM, and NetFPGA 4- for ow statistics (to detect large ows), and performs
port GigE PCI card switches [26]. The 16 hosts are 1Udemand estimation and scheduling once every ve sec-
guad-core 2.13 GHz Intel Xeon machines with 3GB ofonds. This period is due entirely to a register read-
RAM. These hosts have two GigE ports, the rst con- rate limitation of the OpenFlow NetFPGA implementa-
nected to the control network for testing and debuggingtion. However, our scalability measurements in Section 6
and the other to its NetFPGA edge switch. The controlshow that a modestly-provisioned machine can schedule



tens of thousands of ows in a few milliseconds, and that Since our simulator does not model individual pack-
even at the 5 second polling rate, Hedera signi cantlyets, it does not capture the variations in performance of
outperforms the bisection bandwidth of current ECMP different packet sizes. Another consequence of this deci-
methods. In general, we believe that sub-second and paion is that our simulation cannot capture inter- ow dy-
tentially sub-100ms scheduling intervals should be poshamics or buffer behavior. As a result, it is likely that
sible using straightforward techniques. TCP Reno/New Reno would perform somewhatrse
than predicted by our simulator. In addition, we model
TCP ows as unidirectional although real TCP ows in-
5.5 Simulator volve ACKs in the reverse direction; however, for 1500
byte Ethernet frames and delayed ACKs, the bandwidth
Since our physical testbed is restricted to 16 hosts, weonsumed by ACKs is about 2%. We feel these trade-offs
also developed a simulator that coarsely models thare necessary to study networks of the scale described in
behavior of a network of TCP ows. The simulator this paper.
accounts for ow arrivals and departures to show the We ran each simulation for the equivalent of 60 sec-
scalability of our system for larger networks with dy- onds and measured the average bisection bandwidth dur-
namic communication patterns. We examine our differ-ing the middle 40 seconds. Since the simulator does not
ent scheduling algorithms using the ow simulator for capture inter- ow dynamics and traf ¢ burstiness our re-
networks with as many as 8,192 hosts. Existing packetsults are optimistic (simulator bandwidth exceeds testbed
level simulators, such ass-2 are not suitable for this measurements) for ECMP based ow placement because
purpose: e.g. a simulation with 8,192 hosts each sendingesulting hash collisions would sometimes cause an en-
at 1Gbps would have to proce8$ 10" packets for tire window of data to be lost, resulting in a coarse-
a 60 second run. If a per-packet simulator were used tgrained timeout on the testbed (see Section 6). For the
model the transmission of 1 million packets per seconccontrol network we observed that the performance in
using TCP, it would take 71 hours to simulate just thatthe simulator more closely matched the performance on
one test case. the testbed. Similarly, foGlobal First Fit and Simu-

Our simulator models the data center topology as dated Annealing, which try to optimize for minimum
network graph with directed edges. Each edge has a xedontention, we observed that the performance from the
capacity. The simulator accepts as input a communicasimulator and testbed matched very well. Across all the
tion pattern among hosts and uses it, along with a speciresults, the simulator indicated better performance than
cation of average ow sizes and arrival rates, to gener- the testbed when there is contention between ows.
ate simulated traf c. The simulator generates new ows
with an exponentially distributed length, with start times )
based on a Poisson arrival process with a given mearf EVvaluation
Destinations are based upon the suite in Section 6.

The simulation proceeds in discrete time ticks. At This section describes our evaluation of Hedera using our

each tick, the simulation updates the rates of all ows intefStbet(:] and S|mulat1tor. -Lhe ggaila_of tht_ese lt)estz 'S.(;(t)hdetter:'
the network, generates new ows if needed. Periodicallymlne € aggregate achieved bisection bandwidih wi

it also calls the scheduler to assign (new) routes to ows.Varnous traf ¢ patterns.

When calling theSimulated Annealing andGlobal First

Fit schedulers, the simulgtor rst calls the demand esti-g 1  Benchmark Communication Suite
mator and passes along its results.

When updating ow rates, the simulator models TCP In the absence of commercial data center network traces,
slow start and AIMD, but without performing per-packet for both the testbed and the simulator evaluation, we rst
computations. Each tick, the simulator shuf es the ordercreate a group of communication patterns similar to [3]
of ows and computes the expected rate increase for eacRccording to the following styles:
ow, constrained by available bandwidth on the ow's (1) Stride(): A host with indexx sends to the host
path. If a ow is in slow start, its rate is doubled. If itis Wwith index(x + i)mod(num _hosts).
in congestion avoidance, its rate is additively increased (2) Staggered ProfEdgeP, PodP)A host sends to
(using an additive increase factor of 15 MB/s to simulateanother host in the same edge switch with probability
a network with an RTT of 100s). If the ow's path  EdgeR and to its same pod with probabiliBodP, and to
is saturated, the ow's rate is halved and bandwidth isthe rest of the network with probabilit-EdgeP - PodP
freed along the path. Each tick, we also compute the (3) Random: A host sends to any other host in the
number of bytes sent by the ow and purge ows that network with uniform probability. We include bijective
have completed sending all their bytes. mappings and ones where hotspots are present.
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Figure 9: Physical testbed benchmark suite results for the threengutethods vs. a non-blocking switch. Figures indicate
network bisection bandwidth achieved for staggered, estatid randomized communication patterns.

We consider these mappings for networks of differentability gures. Note that for stride patterns (common
sizes: 16 hosts, 1,024 hosts, and 8,192 hosts, correspont- HPC computation applications), the heuristics con-
ingtok = f4;16;32g. sistently compute the correct ow-to-core mappings to

ef ciently utilize the fat-tree network, whereas the per-

formance of static hash quickly deteriorates as the stride
6.2 Testbed Benchmark Results length increases. Furthermore, for certain patternsethes

heuristics also marginally outperform the commercial
We ran be!’\chma_\rk tests as follows: 16 hosts open S,OCk%ftS-port switch used for our control network. We sus-
sinks f_or incoming traf ¢ and measure th? INCOMING hact this is due to different buffers/algorithms of the Net-
bar_ldW|dth consta_mtly. The h_osts in succession then sta PGAs vs. the Quanta switch.
their ows according to the sizes and destinations as de- Upon closer examination of the performance usin
scribed above. Each experiment lasts for 60 seconds and P P g

i ) . acket captures from the testbed, we found that when
uses TCP ows; we observed the average bisection bands . . )
. ! here was contention between ows, an entire TCP win-
width for the middle 40 seconds.

dow of packets was often lost. So the TCP connection
We compare the performance of the scheduler on th@vas idle until the retransmission timer red (R@ =

fat-tree network to that of the same experiments 0nZOOms). ECMP hash based ow placement experienced
the control network. The control network connects a”over 5 times the number of retransmission timeouts as
16_hosts using a non-blogkmg 48-port gigabit I_E'_[hernet[he other schemes. This explains the overoptimistic per-
switch and represents an ideal network. In addition, W& mance of ECMP in the simulator as explained in Sec-

include a static .hash-bas_ed ECMP scheme, wherg tht"?on 5 since our simulator does not model retransmission
forwarding path is determined by a hash of the deSt'naiimeouts and individual packet losses

tion host IP address.

Figure 9 shows the bisection bandwidth for a variety
of randomized, staggered, stride and hotspot communi§. 3 Data Shuf e
cation patterns; our experiments saturate the links us-
ing TCP. In virtually all the communication patterns ex- We also performed an all-to-all in-memory data shuf e
plored,Global First Fit andSimulated Annealing signif-  in our testbed. A data shuf e is an expensive but neces-
icantly outperform static hashing (ECMP), and achievesary operation for many MapReduce/Hadoop operations
near the optimal bisection bandwidth of the networkin which every host transfers a large amount of data to
(15.4Gb/s goodput). Naturally, the performance of thesevery other host participating in the shuf e. In this exper-
schemes improves as the level of communication localiment, each host sequentially transfers 500MB to every
ity increases, as demonstrated by the staggered prolother host using TCP (a 120GB shuf e).



ECMP | GFF SA Control Number of Hosts

Shuf e time (s) 438.44 | 335.50 | 335.96| 306.37 SA lterations 16 1,024 | 8,192
Host completion (s)| 358.14 | 258.70 | 261.96| 226.56 1000 78.73 | 74.69 | 72.83
Bisec. BW (Gbps) | 2.811 | 3.891 | 3.843 4.443 50000 78.93 | 75.79 | 74.27
Goodput (MB/s) 20.94 | 28.99 | 28.63 33.10 100000 78.62 | 75.77 | 75.00
500000 79.35| 75.87 | 74.94

Table 2: A 120GB shuf e for the placement heuristics in our 1000000 79.04 | 75.78 | 75.03
testbed. Shown is total shuf e time, average host-compfeti 1500000 78.71| 75.82 | 75.13
time, average bisection bandwidth and average host goodput 2000000 78.17 | 75.87 | 75.05
Non-blocking | 81.24 | 78.34 | 77.63

Table 3: Percentage of nal bisection bandwidth by varying

T 800 | the Simulated Annealing iterations, for a case of random
§ KON | SURI o] P destinations, normalized to the full network bisection.s@l
T 640 ! i : ! 1 shown is the same load running on a non-blocking topology.
£ T i
= R i
@ 480f o i 1
5 Lot ;
8 320l ) “. We compare our algorithms against a hypothetical non-
& blocking switch for the entire data center and against
5 N . static ECMP hashing. The performance of ECMP wors-
S 160- . on-blocking J . L
g Simulated Annealing ens as the probability of local communication decreases.
=z irst-Fit ======« .. .
Global Firstfit ==~ This is because even for a completely fair and perfectly
0 1 1 1 1 1 . - .. . .
0 10 20 20 0 50 oc uniform hash_ functpn_, collisions in path asm_gnments
Seconds do happen, either within the same switch or with ows

at a downstream switch, wasting a portion of the avail-
Figure 11:Network bisection bandwidth vs. time for a 1,024 gple bandwidth. A global scheduler makes discrete ow
host fat-tree and a random bijective traf ¢ pattern. placements that are chosen by design to reduce overlap.

In most of these different communication patterns, our

The shufe results in Table 2 show that centralized 9Ynamic placement algorithms signi cantly outperform
ow scheduling performs considerably better (39% bet- Static ECMP hashing. Figure 11 shows the variation over
ter bisection bandwidth) than static ECMP hash-basedime of the bisection bandwidth for the 1,024 host fat-tree
network.Global First Fit andSimulated Annealing per-

routing. Comparing this to the data shuf e performed in ) ) i
form fairly close to optimal for most of the experiment.

VL2 [16], which involved all hosts makingimultaneous
transfers to all other hosts (versus the sequential tresisfe
in our work), we see that static hashing performs bette
when the number of ows is signi cantly larger than the

number of paths; intuitively a hash collision is less likely To explore the parameter spaceSiulated Annealing
to introduce signi cant degradation when any imbalanceWe show in Table 3 the effect of varying the number of it-

is averaged over a large number of ows. For this reasong aions at each scheduling period for a randomized, non-
in addition to the delay of the Hedera observatlon/routebijective communication pattern. This table con rms our

computation control loop, we believe that traf ¢ work-
loads characterized by many small, short RPC-like ows
would have limited benet from dynamic scheduling,
and Hedera's default ECMP forwarding performs load-

palancmg ef ciently in this case. Hence, by threshold- proaches the best result found Bimulated Annealing
ing our scheduler to only operate on larger ows, Hederaafter the rst few iterations

performs well for both types of communication patterns. The table also shows the percentage of nal bisection

bandwidth for a random communication pattern as num-
6.4 Simulation Results ber of hosts and ows increases. This supports our be-
lief that Simulated Annealing can be run with relatively
few iterations in each scheduling period and still achieve
In Figure 10 we show the aggregate bisection bandwidtltomparable performance over time. This is aided by re-
achieved when running the benchmark suite for a simmembering core assignments across periods, and by the
ulated fat-tree network with 8,192 hosts (whien32).  arrival of only a few new large ows each interval.

r6.4.2 Quality of Simulated Annealing

initial intuition regarding the assignment quality vs. the
number of iterations, as most of the improvement takes
place in the rst few iterations. We observed that the
performance oSimulated Annealing asymptotically ap-

6.4.1 Communication Patterns
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Figure 10:Comparison of scheduling algorithms for different traf atgerns on a fat-tree topology of 8,192-hosts.

k | Hosts | Large ows | Runtime (ms) 1,024 hosts 8,192 hosts

16 | 1024 1024 1.45 Iterations| f =3,215| f =6,250 || f =25k | f =50k
16 | 1024 5000 4.14 1000 2.997 5.042 6.898 11.573
32| 8192 8192 2.71 5000 12.209 20.848 19.091 | 32.079
32 | 8192 25000 9.23 10000 23.447 40.255 32912 | 55.741
32| 8192 50000 26.31

48 | 27648 27648 6.91 Table 5:Runtime (ms) vs. number @imulated Annealing
48 | 27648 100000 51.30 iterations for different number of ows.

48 | 27648 250000 199.43

Table 4:Demand estimation runtime. inx Virtex-5 can implement up to 200 parallel process-
ing cores to process this matrix. We estimate that such a
con guration would have a computational latency of ap-
proximately 5 ms to perform demand estimation even for

Since the demand estimation is performed once petrhe case of 250,000 large ows.

scheduling period, its runtime must be reasonably small _ _ _
so that the length of the control loop is as small as pos6-4.4 Complexity of Simulated Annealing

sible. We studied the runtime of demand estimation for, \ 12110 5 \we show the runtime &fimulated Anneal-

different traf c matrices in data centers of varying sizes. ing for different experimental scenarios. The runtime of
Table 4 shows the runtimes of the demand estimatogimyated Annealing is asymptotically independent of
for different input sizes. The reported runtimes are forihe number of hosts and only dependent on the number
runs of the demand estimator using 4 parallel threadgf ows. The main takeaway here is the scalability of
of execution on a modest quad-core 2.13 GHz machingyr simulated Annealing implementation and its poten-
Even for a large data center with 27,648 hosts andig) for practical application; for networks of thousands

250,000 large ows (average of nearly 10 large Ows per of hosts and a reasonable number of ows per host, the
host), the runtime of the demand estimation algorithm isgjm1ated Annealing runtime is on the order of tens of

only 200 ms. For more common scenarios, the runtimegyjjliseconds, even for 10,000 iterations.
is approximately 50-100ms in our setup. We expect the

scheduler machine to be a fairly high performance ma-
chine with more cores, thereby still keeping the runtimeB'A"5 Control Overhead

well under 100ms even for extreme scenarios. To evaluate the total control overhead of the centralized

The memory requirement for the demand estimatorscheduling design, we analyzed the overall communica-
in our implementation using a sparse matrix representation and computation requirements for scheduling. The
tion is less than 20 MB even for the extreme scenariccontrol loop includes 3 components—all switches in the
with nearly 250,000 large ows in a data center with network send the details of large ows to the scheduler,
27k hosts. In more common scenarios, with a reasonablghe scheduler estimates demands of the ows and com-
number of large ows in the data center, the entire dataputes their routes, and the scheduler transmits the new
structure would tin the L2 cache of a modern CPU.  placement of ows to the switches.

Considering the simplicity and number of operations We made some assumptions to analyze the length of
involved, an FPGA implementation can store the sparsé¢he control loop. (1) The control plane is made up of
matrix in an off-chip SRAM. An FPGA such as the Xil- 48-port GigE switches with an average 1€latency per

6.4.3 Complexity of Demand Estimation



Flows per host formance. Miurzet al. exploit fat-tree networks by mul-
Hosts | 1 > 10 tipathing using tagged-VLANs and commodity PCs [28].
1,024 | 100.2 | 100.9 | 101.7 Centralized router control to enforce routing or access
8192 1 10141 106.8 | 113.5 control policy has been proposed before by the 4D archi-
27,648| 104.6] 1228 1455 tecture [15], and projects like Tesseract [35], Ethane [6],
and RCP [5], similar in spirit to Hedera's approach to
centralized ow scheduling.

Much work has focused on virtual switching fab-
switch. (2) The format of messages between the switchescs and on individual Clos networks in the abstract,
and the controller are based on the OpenFlow protocobut do not address building an operational multi-level
(72B per ow entry) [27]. (3) The total computation switch architecture using existing commodity compo-
time for demand estimation and scheduling of the ows nents. Turner proposed an optimal non-blocking virtual
is conservatively assumed to be 100 ms. (4) The last hopircuit switch [33], and Smiljanic improved Turner's load
link to the scheduler is assumed to be a 10 GigE link.balancer and focused on the guarantees the algorithm
This higher speed last hop link allows a large number ofcould provide in a generalized Clos packet-switched net-
switches to communicate with the scheduler simultanework [32]. Oki et al. design improved algorithms for
ously. We assumed that the 10 GigE link to the controllerscheduling in individual 3-stage Clos switches [30], and
can be fully utilized for transfer of scheduling updates. Holmburg provides models for simultaneous and incre-

Table 6 shows the length of the control loop for vary- mental scheduling of multi-stage Clos networks [20].
ing number of large ows per host. The values indi- Geoffray and Hoe er describe a number of strategies
cate that the length of the control loop is dominated byto increase bisection bandwidth in multistage intercon-
the computation time, estimated at 100 ms. These rerection networks, speci cally focusing on source-routed,
sults show the scalability of the centralized schedulingper-packet dispersive approaches that break the ordering
approach for large data centers. requirement of TCP/IP over Ethernet [13].

Table 6:Length of control loop (ms).

7 Related Work 8 Conclusions

There has been a recent ood of new research proThe mostimportant nding of our work is that in the pur-
posals for data center networks; however, none satissuit of ef cient use of available network resources, a cen-
fyingly addresses the issue of the network's bisectiontral scheduler with global knowledge of active ows can
bandwidth. VL2 [16] and Monsoon [17] propose us- signi cantly outperform the state-of-the-art hash-based
ing per- ow Valiant Load Balancing, which can cause ECMP load-balancing. We limit the overhead of our ap-
bandwidth losses due to long-term collisions as demonproach by focusing our scheduling decisions on the large
strated in this work. SEATTLE [25] proposes a single ows likely responsible for much of the bytes sent across
Layer 2 domain with a one-hop switch DHT for MAC the network. We nd that Hedera's performance gains
address resolution, but does not address multipathingare dependent on the rates and durations of the ows
DCell [19] and BCube [18] suggest using recursively-in the network; the bene ts are more evident when the
de ned topologies for data center networks, which in- network is stressed with many large data transfers both
volves multi-NIC servers and can lead to oversubscribeavithin pods and across the diameter of the network.
links with deeper levels. Once again, multipathing is not In this paper, we have demonstrated the feasibility of
explicitly addressed. building a working prototype of our scheduling system
Researchers have also explored scheduling ows irfor multi-rooted trees, and have shown tlgitulated
a multi-path environment from a wide-area context.Annealing almost always outperformGlobal First Fit
TeXCP [23] and MATE [10] perform dynamic traf c en- and is capable of delivering near-optimal bisection band-
gineering across multiple paths in the wide-area by usingvidth for a wide range of communication patterns both
explicit congestion noti cation packets, which require as in our physical testbed and in simulated data center net-
yet unavailable switch support. They empltigtributed  works consisting of thousands of nodes. Given the low
traf ¢ engineering, whereas we leverage the data centecomputational and latency overheads of our ow place-
environment using a tightly-coupled central schedulerment algorithms, the large investment in network infras-
FLARE [31] proposes multipath forwarding in the wide- tructure associated with data centers (many millions of
area on the granularity obwlets (TCP packet bursts); dollars), and the incremental cost of Hedera's deploy-
however, it is unclear whether the low intra-data centerment (e.g., one or two servers), we show that dynamic
latencies meet the timing requirements of owlet bursts ow scheduling has the potential to deliver substantial
to prevent packet reordering and still achieve good perbandwidth gains with moderate additional cost.
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