
Resource Allocation in Federated Distributed

Computing Infrastructures

Alvin AuYoung†∗, Brent N. Chun‡, Alex C. Snoeren†, and Amin Vahdat†

† UC San Diego ‡ Intel Research Berkeley

1 Introduction

We consider the problem of allocating combinations
of heterogeneous, distributed resources among self-
interested parties. In particular, we consider this
problem in the context of distributed computing in-
frastructures, where resources are shared among users
from different administrative domains. Examples of
such infrastructures include PlanetLab [15] and com-
putational grids [7].

End-users derive utility from receiving a share of
resources. When there is an excess demand for re-
sources, it isn’t possible to completely satisfy all re-
source requests. Therefore, we argue that it is im-
portant for these infrastructures to allocate resources
in a way that maximizes aggregate end-user utility.
Such an allocation system is known as economically
efficient. Because a user’s utility function for re-
sources isn’t typically known a priori, determining
an allocation policy to maximize utility is difficult in
the presence of excess demand. As use of these in-
frastructures becomes more widespread, contention
for resources will increase, and allocating resources
in an economically efficient manner becomes more
difficult. Figure 1 shows a snapshot of resource de-
mand in PlanetLab. Due to the way resources are
distributed in PlanetLab, the rise in contention de-
creases the portion of resources received by any in-
dividual user, thereby reducing the amount of useful
work that can be completed in the system.

We argue that given the appropriate mechanisms,
end-users can cooperate to arrive at an optimal re-
source allocation in spite of excess demand. More
specifically, by allowing users to express preferences
for when and what resources are received, the sys-
tem will be able to spread out some excess demand
over time, and increase the efficiency of the system.
To this end, we present the design and early imple-
mentation of Bellagio, a distributed resource discov-

∗This material is based upon work supported under a Na-
tional Science Foundation Graduate Research Fellowship.

0

10

20

30

40

50

60

70

80

20 21 22
Av

er
ag

e C
PU

 Lo
ad

May Date

Figure 1: 5th, average and 95th percentile load average
on 220 PlanetLab nodes leading up to the May 2004 OSDI
deadline.

ery and market-based allocation system for federated
distributed computing infrastructures. In this sys-
tem, users identify resources of interest using a re-
source discovery mechanism, and express preference
for these resources over time and space in the form
of combinatorial auction bids. Resource allocation
is controlled by a centralized auctioneer. In addition,
Bellagio uses a strategy-proof design [5] that provides
incentive for end-users to reveal their true valuation
of resources.

To our knowledge, this is the first system that
supports allocation of combinations of heterogeneous
goods in a flexible and economically efficient manner.
We have implemented a prototype and validated its
performance through simulation. We plan to deploy
a complete system on the PlanetLab wide-area test
bed to gain experience with real users.

2 Related work

Proportional-share scheduling is a common approach
to provide access to local, time-shared resources.
This is an effective approach, but is insufficient if

1

employed as the only mechanism for resource shar-
ing. For example, if users were to behave in a con-
scientious manner, they would use their share of the
resources only when needed. This behavior allows
resources to be used more productively. However,
if users are self-interested, they will always consume
their share of available resources, thereby lowering
the amount of useful work performed by the system.

Market-based approaches have been applied to mo-
tivate efficient use of resources. Users have a finite
amount of virtual currency and have an incentive to
consume resources sparingly [19, 22]. The primary
limitation in this model is the difficulty in schedul-
ing a combination of resources simultaneously, which
is often desired. Co-scheduling techniques [2] have
been applied to address this problem in clusters, but
these approaches are ineffective when resources are
differentiated and spread over a wide area. More im-
portantly, this technique does not allow the end-user
to express an interest in a particular combination of
goods.

Other market-based approaches such as
Spawn [21], Popcorn [16], Tycoon [10] and Su-
perWeb [1], provide empirical evidence for the
effectiveness of market-based mechanisms in allocat-
ing resources in an economically efficient manner. In
these systems, resources are allocated in proportion
to the amount of currency spent. As resources
become more expensive (i.e. under heavier demand),
there is incentive for users to reduce consumption.
However, all of these systems rely on the scheduling
of a single good: CPU cycles. We are interested
in an environment where heterogeneous goods exist
(i.e., disk space, memory, bandwidth) and users can
express interest in particular sets of resources.

Fixed-price schemes [20, 23] deal with heteroge-
neous goods by calculating a market-clearing price
for each resource based on historical data of the de-
mand. (The goal of these schemes is to clear the
market, which is different from maximizing aggregate
end-user utility). We believe that providing the end-
users the most benefit should be the priority of the
system rather than maximizing resource utilization.

Market-based approaches in computational grid
environments such as Nimrod/G [4] allow users to
specify the types of resources needed and negotiate
with the system for the use of a particular set of re-
sources at a particular price. This requires the system
to perform complex tasks such as price negotiation
and resource discovery for a potentially large number
of resources. This is particularly difficult if every user
wishes to obtain a combination of resources.

Other approaches often used in computational
grids like GRAM [9] and Condor [11] have no notion

of economic efficiency when allocating resources, and
provide no incentive for users to consume resources
sparingly.

3 Deployment

Bellagio is intended to serve as a resource discovery
and resource allocation system for distributed com-
puting infrastructures. The first platform on which
we intend to deploy Bellagio is PlanetLab, an overlay
network of 440 machines hosted by 195 sites across
the world. The sites are mainly research institutions
from over 25 countries.

The purpose of PlanetLab is to encourage devel-
opment of new, disruptive technologies to the Inter-
net. It serves as a wide-area testbed for academic
researchers, and eventually will be a deployment plat-
form for distributed services. The value of PlanetLab
as a testbed derives mainly from the global distribu-
tion of machines; academic researchers are able to
test new network services under real-world network
conditions. As a deployment platform, it can allow
individual sites to use global resources to support a
distributed client base.

Applications run on a slice of PlanetLab resources.
A slice is a share of resources on a set of PlanetLab
machines chosen by the application. Currently, each
PlanetLab machine runs a Linux-based operating sys-
tem and supports mechanisms that allow centralized
administration of the individual machines. Admin-
istration is able to monitor the health and status of
each machine, manage user accounts and distribute
cryptographic keys on all PlanetLab machines.

PlanetLab machines support the notion of propor-
tional share scheduling, where each slice is guaran-
teed 1

nth of a machine’s resources. Admission control
is performed to limit shares of a machine to no less
than 1

1000 (i.e. no more than 1000 simultaneous slices
can run on a machine). Otherwise, there is no con-
straint on what resources an application’s slice can
bind to.

4 Bellagio architecture

Our environment can be modeled as a virtual market-
place where users spend virtual currency in exchange
for combinations of system resources. We expect to
be able to extend this model to an economic exchange
where users can act as both producers and consumers
of resources to exchange any good (resources or vir-
tual currency) for other goods. In the current ar-
chitecture, users receive a virtual currency budgets
based on their resource contribution to the system.

2

Many of the challenges in designing a resource allo-
cation system are mirrored in economics as economics
researchers try to create mechanisms to enforce par-
ticular long-term market characteristics. This moti-
vates the use of a market-based design for Bellagio.

Economic markets can be broadly categorized into
two types: commodities markets and auctions. An
auction is a much more appealing model for a mar-
ket when the seller of a resource does not know the
buyers’ valuation for it. This is especially important
because we expect demand to fluctuate rapidly at
times. Requiring end-users to submit bids alleviates
the system from having to determine the value (price)
of combinations of goods, which can be an expensive
computational task.

As a result of adopting a combinatorial auction
model for our marketplace, we have designed Bellagio
around the following components: resource discovery
and resource market.

4.1 Resource discovery

Distributed resource discovery allows end users to
identify available resources. This is particularly im-
portant when resources are heterogeneous. Bella-
gio uses SWORD [13] to perform resource discovery.
SWORD is a distributed resource discovery service
that is currently deployed on PlanetLab to allow users
to locate particular resources matching various cri-
teria. For example, users can search for resources
based on resource-specific attributes (e.g., machines
with low CPU load and large amounts of free mem-
ory), inter-resource attributes (e.g., machines with
low inter-node latency), and logical (e.g., machines
within a specific administrative domain) or physical
attributes (e.g., geographic location). Along with
each of these attributes, SWORD allows users to
specify a utility function, which specifies the extent to
which the user allows the attributes to deviate from
the specified values.

SWORD returns a set of resources and how closely
they match the user’s specified utility functions. The
end-user can perform multiple queries to determine
different sets of resources and her valuation for the
different sets. Additional queries can be performed
to establish interdependent attributes between the re-
sources.

Because resources are dynamic, and can exhibit
changing temporal characteristics, it might not be
useful for users to bid on specific resources using the
results of the resource discovery mechanism. Instead,
the intended use of the resource discovery mechanism
is to express abstract resource specifications. Bella-
gio uses SWORD to translate these abstract resource

specifications into concrete candidate resource sets.
Users express preferences for resource specifications
using the bidding language.

4.2 Resource market

Users express preferences for resources using a bid-
ding language, and resources are allocated by running
a period auction.

Bids in Bellagio are expressed in units of virtual
currency. Each participating site has a bank account
which maintains a balance of virtual currency avail-
able to authorized users of the participating site. As
mentioned, we assume the existence of an authentica-
tion infrastructure that can authenticate bids, trans-
fer resource capabilities and verify account balances.
Bids from a participating site are only accepted as
long as the balance in the associated site’s account is
large enough to pay the bid price.

The design of the bidding languages determines the
possible bids that can be made and how easily they
can be expressed by the user. The trade-off between
different bidding languages is the expressiveness of
the language (how many types of bids can be ex-
pressed) versus the space complexity in representing
these bids. Previous work in combinatorial auction
bidding languages [3, 12, 18] has examined this prob-
lem and found certain bidding languages to be more
expressive and space-efficient than others.

The difficulty in designing a bidding language is
the tradeoff between the expressiveness the bidding
language, and the amount of work that must be per-
formed to satisfy complex bids. In our initial im-
plementation, we use the XOR [12]language to de-
fine our bidding language, as it seems like an intu-
itive language that can be understood easily by end-
users, and we do not expect the cases requiring a
large amount of space for bid expression to be com-
mon. We evaluate the efficacy of resolving bids in
this language in our evaluation of the system.

A bid consists of sets of resources to bid for, a time
period for which they are desired, and the amount of
virtual currency to associate with the bid. Auctions
are cleared every hour. Resources can be bound for
no longer than 64 hours, and no longer than a week
in advance.

Formally, bids are constructed as follows:

b = (s0, s1, d, {q1, q2, ...}, {r1, r2, ...}, v)

where we define the variables as follows:
A set of auctions for which to consider this bid

T = {1, 2, 3..., 168}, a duration for the resource reser-
vation, D = {1, 2, 3, ..64}, and a set of resources
N = {r1, ...}. A bid is defined as b1 ⊕ b2 ⊕bi,

3

where each bi is a bid as previously constructed.
s0, s1 ∈ T defines a range of possible start times,
d ∈ D, {r1, r2, ...} is a resource set, constructed by
the resource discovery mechanism, where ri ∈ N , and
qi ≥ 1 is the minimum total number of resource ri

required. v is the value of the bid as defined by the
virtual currency in the system.

As mentioned earlier, the resource discovery mech-
anism may be used to find a specific set of resources,
or it may be used to formulate a set of abstract re-
sources by specifying a set of resource attributes. Be-
fore bids are resolved, Bellagio uses the resource dis-
covery mechanism to populate the abstract resources
in the bid with appropriate resource sets. This is
especially important when resources are highly dy-
namic. The resource allocation would thus be per-
formed with the most current set of resource at-
tributes.

Our resource market allows the allocation of com-
plex combinations of goods. Because users are self-
interested, they may still be motivated to acquire
more resources than they need. While providing a
limited budget of virtual currency might limit this
behavior, we provide general strategy-proof mech-
anisms [5] to provide desired behavior in our sys-
tem. Strategy-proof mechanisms are based on the
economic theory of mechanism design, which pro-
vides users incentive to behave in a particular way.
For our purposes, this behavior is to reveal their true
value for a resource, thereby allowing the system to
maximize economic efficiency by allocating resources
to the users who actually value them the most, and
for the appropriate price. We describe the mecha-
nisms used to allocate resources and provide strategy-
proofness to Bellagio.

We employ SHARE [6] for resource allocation,
mainly because it supports the exchange of het-
erogeneous resources. SHARE allocates resources
by clearing a combinatorial auction. The winner-
determination problem in a combinatorial auction is
known to be NP-complete [18]. However, there exist
approximation algorithms for winner determination
in a combinatorial auction [17, 24]. We are investi-
gating this use of different approximation algorithms
to clear these auctions. The experimental algorithms
are described in detail by Chun et al.

SHARE uses the threshold rule [14] to determine
payments. The threshold rule is similar to the pay-
ment rule used in second-price auctions. In these auc-
tions, the payment for a winning bid of a good is set
at the price of the second-highest bid for that good.
The key result of this payment rule is that it forces
users to reveal their true value for goods when bid-
ding. Since it is a bidder’s dominant strategy to bid

her exact valuation for a good, rational bidders will
always bid truthfully, allowing SHARE to allocate re-
sources in a way that maximizes economic efficiency.
See [14] for more details.

Once the payment amount for each winning bid
has been determined by the threshold rule, the user’s
bank account is charged by the appropriate amount,
and resource bindings are performed by returning re-
source capabilities in the form of tickets to the win-
ning bidders using a system such as SHARP [8]. Ac-
cess to all resources in Bellagio is guarded by re-
source capabilities. A resource capability represents
the right for an application to use a resource, and an
application must present the resource capability to
the resource in order to use it.

5 Implementation

This section describes our initial implementation of
Bellagio. In addition to describing the user interface
and algorithms for auction clearing, we discuss a set
of open issues in defining appropriate policies for our
system, and describe our initial approach in dealing
with them.

5.1 User interface

Bellagio provides a Web-based interface as well as a
command-line interface to perform resource discovery
queries and construct bids. The Web-interface runs
from a cluster of Linux machines and uses PHP as
a front-end, and a PostgresSQL database as a back-
end. The database contains account balances for vir-
tual currency and manages user authentication. The
command-line interface is provided to support the
use of automated agents to perform bid placement
and currency management. The interface uses XML-
RPC to communicate with the centralized Bellagio
server. In a live deployment, the authentication in-
frastructure will have to be integrated with that of
the distributed computing infrastructure.

Each user of Bellagio is given an account. In the
account, a user can view the results or previous re-
source discovery queries, bids, and upcoming auction-
clearing periods.

Specifications for the resource sets used in previ-
ous resource discovery queries can be stored in the
user account. In addition, the Web interface for Bel-
lagio provides a hook into the SWORD Web interface
to allow direct resource discovery queries. Resource
attributes provided by SWORD are available in Bel-
lagio to create resource specifications.

Once resource specifications are created, they can
be used to construct bids. Like resource specifica-

4

tions, bids can be stored for later use. To place a
bid, the user specifies a resource specification (or per-
haps a set of resource specifications), acceptable start
times, duration and bid amount. Once a bid is placed,
it cannot be withdrawn once the auction-clearing pe-
riod begins.

Multiple bids can be placed, but bids that over-
withdraw an account are not considered. For exam-
ple, if a user submits two bids, and the amount of
each bid is for the complete account balance, one bid
will be ignored once the other is satisfied. Bids that
are invalid are discarded by the auction-clearing al-
gorithm.

To illustrate, we present an example of an experi-
ment wishing to analyze the effectiveness of a defense
against distributed denial-of-service (DDoS) attack.

This user is interested in acquiring fractional shares
on a large number of machines that are scattered
across the country to simulate DDoS attackers. She
would like to obtain 100 such attacker machines, but
would be satisfied with at least 50. She is also inter-
ested in a set of 20 high-bandwidth machines to serve
as proxies and 20 to server as Web servers (victims).
She would also be satisfied with 10 of each.

First, to define a resource specification for attack-
ers, she uses SWORD provides an attribute for a ma-
chine’s geographic network coordinates. She provides
100 distinct geographic network coordinates as an at-
tribute, thereby requesting a machine that is within
some distance of each coordinate. Furthermore, she
can also require the constraint that no more than two
nodes reside within the same PlanetLab site. Using
the bandwidth attribute of SWORD, she can simi-
larly define a resource specification for the proxies
and the Web servers.

The experiment is to run over the course of two
days, starting any time in the next two weeks. And
because she is OK with either 50 or 100 nodes, she
uses the bidding language to express her valuation for
each. In this example, she wishes to bid her entire
virtual currency balance on the desired resource set,
but would also be willing to pay half of that amount
for half of the resources. This is illustrated in Table 1.

At the end of an auction, users are notified with the
outcome of their bid. If a bid is satisfied, the appro-
priate resource capabilities are available for download
from the user account in the form of an XML doc-
ument [8]. In addition, an e-mail notice is sent to
the user (an e-mail address is required when register-
ing for Bellagio, notifying them of the outcome of the
bid(s).

5.2 Resource market

The initial implementation of the resource market use
a greedy approximation algorithms to clear the com-
binatorial auction. The approximation algorithm re-
duces the amount of time needed to compute a set of
winners at the potential cost of a less efficient alloca-
tion. It calculates the value of a bid by diving the bid
amount by the product of duration and number of re-
sources, and performs allocations in decreasing order
of bid values. Ties are broken by giving preference to
resource sets that are more specific. The algorithm
scales well in practice, requiring no more than a few
minutes to resolve any auction. There is work on pro-
viding another approximation algorithm, formulated
as a solver for a mixed-integer programming problem
(MIP), requires more time, but can arrive at solutions
that are closer to optimal for particular sets of bids.
Currently this algorithm does not scale well across an
increasing number of bids and resources, so we defer
development of this algorithm to future work.

Bellagio clears auctions once per hour, with the
possibility to reserve resources for almost three days.
This is likely an important parameter to control upon
deployment as it represents a tradeoff between usabil-
ity (how long experiments can hope to run) and how
far in advance users can plan their experiments.

5.3 Policies

One benefit of the auction model used by Bellagio is
that we decouple the economic policy from the mech-
anisms used to enforce it. Resource capabilities are
the means to obtain resource shares, and virtual cur-
rency is the means to obtain resource capabilities.
By controlling the distribution of wealth in the vir-
tual economy, Bellagio can control the share of re-
sources received by individual participants over arbi-
trarily long time-scales.

In order to control the distribution of wealth among
users, there are two policies that Bellagio must deter-
mine: how to earn virtual currency, and how to limit
wealth.

In order to obtain resources, users must obtain
virtual currency. One possibility is to back virtual
currency by real currency. An alternative is to al-
low users to earn virtual currency by contributing
resources to the shared resource pool. This has the
advantage of also providing an incentive to contribute
resources to the infrastructure. However, there are
several potential limitations with this method. First,
it is difficult to measure the contribution of a resource
relative to another. For example, donating four ma-
chines with 3-GHz, hyper-threading processors might
be more valuable than donating four machines with

5

s0 s1 d {q1, q2, ...} {r1, r2, ...} v (virtual currency)
0 168 48 {100, 20, 20} {attackers, proxies, servers} all
0 168 48 {50, 10, 10} {attackers, proxies, servers} all · 1

2

Table 1: Example bid for the DDoS defense example. Each row represents a clause in an XOR bid. all represents
the entire balance of virtual currency.

dual 33-MHz processors. One method for valuation
of a contributed resource might be to measure the
amount of demand for a particular resource. Unfortu-
nately this opens up many opportunities for potential
collusion since a user would then be able to artificially
inflate the value of his contribution by consuming it
when it would have otherwise been idle or by con-
vincing a friendly party to consume those resources
in preference to otherwise equivalent resources.

To relieve the burden of having to divide revenue
earned from resources to the parties whose resources
where used, we have initially adopted the model that
Bellagio owns all shared resources and divides up rev-
enue according to some predefined allocation policy.
A user’s contribution to the federated system can be
measured out-of-band. The downside of this is that it
requires an agreed-upon currency distribution policy
by participating users, but we assume a fair policy
can eventually be discovered through practice. The
virtual nature of the currency allows sufficient lati-
tude in discovering an agreeable distribution policy.

Assuming the existence of a currency distribution
policy, we can assume that all participating sites re-
ceive periodic deposits of virtual currency in their
bank accounts. This can become dangerous if a few
parties decide to save currency for long periods of
time in order to amass a disproportionate amount of
wealth. Any amount of strategy-proof design can-
not prevent such a user from dominating control over
all resources since he can over bid with little conse-
quence.

To address this issue, we bound the amount of vir-
tual currency that can be accumulated in a bank ac-
count. The potential side effect of both approaches is
a bound that is too high or too low. A cap that is too
high will allow parties to amass particular amounts of
wealth, and a cap that is too low will disproportion-
ately punish the wealthier users, thereby mitigating
the effects of differentiated currency distribution.

As with real-world economic policy, the level of in-
flation must be constantly monitored. By observing
long-term resource distribution patterns among the
users, the system can adapt the currency cap appro-
priately. While we hope that long-term distribution
of resources among users in Bellagio is stable, the
effects of different currency policies is likely to be un-

clear. We have described two policies which Bella-
gio can control in order to control the distribution of
wealth should the observed behavior deviate from the
desired behavior.

6 Evaluation

The main performance requirements for Bellagio are
that it be efficient, fair, and usable.

We measure efficiency as how well client resource
requests are mapped into resource bindings, and how
quickly these mappings can be assigned. This metric
can be thought of as how well aggregate user utility
is maximized, where utility is defined as the value
a resource binding has to a particular user. In eco-
nomic terms, this is known as maximizing social wel-
fare. The system also needs to be able to compute
a resource allocation reasonably fast in order to be
useful.

Fairness describes the variation in individual user
utility provided by the system. The system should
allocate resources such that the long-term utility of
any individual user follows a pre-defined value rel-
ative to the utility of other individual users in the
system. Furthermore, this long-term utility should
not be adversely affected by the behavior of other
participants in the system. A simple example of this
is in Condor [11], where the system’s scheduling pol-
icy protected light users were against starvation from
heavy users.

Usability describes how well end-user actions are
translated into resource bindings. This also describes
the flexibility of the system, with respect to the gran-
ularity across time and space with which end-users
can express their resource requests.

We have conducted initial experiments using data
from PlanetLab workload traces and synthetic work-
loads. Of course, we expect to truly gain understand-
ing of the system’s behavior from experience in a live
deployment with real users, particularly about the
usability of the system.

6

Demand s0 s1 d {q1..} {r1..} v

Light 0 3 1 25 any all
Heavy 0 3 1 50 any all

⊕
0 3 1 25 any all · 1

4

Table 2: Parameters for users in the experiment during
periods of varying demand. We simulate heavy demand
by doubling resource requests from all bids. any refers to
any machine, and all refers to the entire balance of virtual
currency. The two bids heavy-demand are clauses in an
xor bid.

6.1 Experiments

We present an initial evaluation of Bellagio through
a set of experiments designed to test the scalability
and long-term behavior of the system.

6.1.1 Scalability

The main computational bottlenecks in Bellagio are
the resource discovery algorithm in SWORD and the
auction-clearing algorithm in SHARE. Both of these
bottlenecks scale well with a reasonable number of
users (bids) and resources.

Because the resource discovery algorithm in
SWORD is distributed, it scales well to a large num-
ber of resources and client query rates. An analysis
of SWORD indicates that the performance of the re-
source discovery algorithm requires less than 10 sec-
onds on average to respond to a query for a query
rate of 1800 queries per five minutes [13].

The performance of auction clearing depends on
the auction-clearing algorithm being used. An analy-
sis of the various heuristic algorithms shows that the
greedy algorithm employed by Bellagio scales easily
to a thousand bids and resources.

6.1.2 Efficiency

The following experiment illustrates how Bellagio
handles during varying levels of demand.

The experiment consists of two auction-clearing pe-
riods for 120 resources. The first period is intended
to simulate a system with light demand, and the sec-
ond period simulates a system with heavy demand.
Heavy demand is simulated by doubling the quantity
of resources requested ({q1}) in each bid. For sim-
plicity, we assume that all resources are homogeneous
and that all users express similar interests.

Given a situation with excess resource demand, we
expect users to be able to tailor their applications
to receive a smaller resource shares. We define five

users for our experiment, each with equal amounts of
virtual currency with preferences (bids) summarized
in Table 2.

Heavy DemandLight Demand

 User E

 User D

 User C

 User B

 User A

Figure 2: Utility derived by each user as a function of
resource shares without Bellagio. Higher utility is repre-
sented by a dark-shaded box, and lighter shades represent
less utility.

Heavy DemandLight Demand

 User E

 User D

 User C

 User B

 User A

Figure 3: Utility derived by each user as a function of
resource shares with Bellagio.

In Figures 2 and 3, we plot the utility derived from
each of the five users based on the resources they
receive. In this experiment, we define an application’s
utility by its bid amount. Higher utility is represented
by dark boxes, and lower utility is represented by
lighter boxes.

Figure 2 illustrates a scenario similar to Figure 1,
where access to resources is controlled merely by some
form of proportional share. In this scenario, each user
receives her full allotment of resources during periods
of light demand. However, when resource consump-
tion increases, each user receives approximately 20
machines (resources). From Table 2, we see that they
derive a utility of 0.25 for this resource set. Despite
being able to tolerate the use of fewer resources, users
have no incentive to slow down or delay resource con-
sumption because they have no guarantee that other

7

users will also scale back usage. Therefore, each user
receives this utility for the duration of excess demand.

Figure 3 illustrates how Bellagio handles resource
contention. During period of light demand, Bellagio
can satisfy all resource requests, as before. When re-
source contention increases, Bellagio can spread out
resource requests in order to maximize the aggregate
utility of the users. Bellagio assigns resources to each
user that provides each user a time share in which she
receives her full request of resources. This illustrates
the potential benefit of allowing resource demand to
be spread out over time to reduce the impact of re-
source contention.

6.1.3 Fairness

To measure the long-term behavior of resource distri-
bution, we conduct an experiment with a set of five
users with varying currency distributions, bidding for
some portion of 100 resources. As before, the exper-
iment consists of two periods: one of light demand,
and one of heavy demand. At each auction-clearing
period, all users submit a bid consisting of their en-
tire balance of virtual currency. During the period of
light demand, two users bid for some small set of re-
sources that do not surpass the number of resources
available in the system (same quantity as 2. Dur-
ing the period of heavy demand, bidders double the
amount of resources requested. In addition, the three
previously inactive bidders begin bidding during this
period.

The results are in Figure 4.
During under-demand, only user 1 and user 5 are

bidding, and since there is an under-demand for re-
sources in this scenario, each bidder’s resource re-
quest is completely satisfied.

For the latter time steps, there is contention for the
resources. The bids are made using the entire balance
of virtual currency, and for a duration of 1 time pe-
riod. Initially the wealthier users are able to obtain
more resources, but as the other users accrue more
currency, they are eventually able to obtain their
share of resources. As we can see from the figure,
the distribution of resource winnings during periods
of excess demand are proportional to the distribution
of virtual currency. The distribution of resource win-
nings is less pronounced, however, for closer currency
rates. We see this behavior in user 1 and user 2, who
have similar currency rates.

As a result, Bellagio can use an appropriate cur-
rency distribution policy to protect light users against
starvation from heavy users, as in Condor, but there
is added flexibility in determining the actual propor-
tion of resources being distributed to each user.

7 Future Work

Bellagio provides incentive for users to spread out re-
source demand in order to reduce some amount of
resource contention. It exports an intuitive interface
using a familiar economic model and hopefully will
increase both the utilization of distributed resources
as well as end-user utility. However, the performance
of the system cannot be fully understood until a live
deployment. We expect the method of resource reser-
vation and details of the virtual economy to evolve as
more end-users use the system.

As mentioned earlier, we plan to deploy this sys-
tem on PlanetLab and gain experience from having
real applications and workloads on the system. We
are particularly interested in the extent to which the
bidding language constrains the types of co-allocation
that can be performed, and the effectiveness of virtual
currency policies in spreading out resource demand
over time.

Furthermore, we would like to be able to extend
the model of a resource marketplace to a resource ex-
change. In this environment, users act as both pro-
ducers and consumers of goods, where they can ex-
change resources or virtual currency to other users,
and the auctioneer will simply act as the facilitator of
exchanges to keep track of resource consumption and
currency balance. The difficulty in implementing this
is in the incentive design. As mentioned earlier, the
payment rule in Bellagio provides incentive for users
to bid truthfully for resources. In economic theory,
this rule only applies to auctions and does not hold
in economic exchanges.

References
[1] A. Alexandrov, M. Ibel, K. Schauser, , and C. Scheiman.

Superweb: Research issues in java-based global comput-
ing. Concurrency: Practice and Experience, June 1997.

[2] A. Arpaci-Dusseau, D. Culler, and A. Mainwaring.
Scheduling with implicit information in distributed sys-
tems. In Proceedings of the 1998 ACM SIGMETRICS
joint international conference on Measurement and mod-
eling of computer systems, pages 233–243. ACM Press,
1998.

[3] C. Boutilier. Bidding languages for combinatorial auc-
tions. In In Proceedings of the 17th International Joint
Conference on Artificial Intelligence, pages 1211–1217,
2001.

[4] R. Buyya, D. Abramson, , and J. Giddy. Nimrodg: An ar-
chitecture of a resource management and scheduling sys-
tem in a global computational grid. In In Proceedings of
the 4th International Conference on High Performance
Computing in Asia-Pacific Region, pages 283–289, May
2000.

[5] D.C. Parkes C. Ng and M. Seltzer. Strategyproof Com-
puting: Systems infrastructures for self-interested parties.

8

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Excess Resource Demand

pe
rc

en
tag

e o
f b

id
s w

on
 (r

un
ni

ng
 av

er
ag

e)

time (bid slots)

Distribution of Resource Winnings

user1 ($1/hr)
user2 ($2/hr)
user3 ($4/hr)
user4 ($8/hr)

user5 ($16/hr)

Figure 4: Percentage of resource requests satisfied for parties with different currency rates. The y-axis is expressed
as a percentage of total resources won, taken as a weighted average over the previous 10 time slots. The point where
excess-demand begins is labeled in the plot. The latter time-steps represent over-demand for system resources. The
currency rate for each party is labeled in the plot.

In 1st Workshop on Economics of Peer-to-Peer Systems,
Berkeley, CA, June 2003.

[6] B. Chun, C. Ng, J. Albrecht, D. Parkes, and A. Vah-
dat. Computational resource exchanges for distributed
resource allocation, 2004.

[7] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of
the grid: Enabling scalable virtual organizations. Inter-
national Journal of SuperComputer Applications, 15(3),
2001.

[8] Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat.
Sharp: an architecture for secure resource peering. In
Proceedings of the nineteenth ACM symposium on Op-
erating systems principles, pages 133–148. ACM Press,
2003.

[9] K. Czajkowski and I. Foster and C. Kesselman and N.
Karonis and S. Martin and W. Smith and and S. Tuecke.
A resource management architecture for metacomputing
systems. In Workshop on Job Scheduling Strategies for
Parallel Processing, 1998.

[10] K. Lai, B. Huberman, and L. Fine. Tycoon: A distributed
market-based resource allocation system. Technical Re-
port cs.DC/0404013, Hewlett Packard, 2004.

[11] M. Litzkow, M. Livny, , and M. Mutka. Condor - A Hunter
of Idle Workstations. In Proceedings of the 8th Inter-
national Conference of Distributed Computing Systems,
pages 104–111, June 1988.

[12] N. Nisan. Bidding and allocation in combinatorial auc-
tions. In In Proceedings of the 2nd ACM Conference on
Electronic Commerce, pages 1–12, 2000.

[13] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vah-
dat. Scalable wide-area resource discovery. Technical Re-
port UCB//SD-04-1334, UC Berkeley and UC San Diego,
2004.

[14] D. Parkes, J. Kalagnanam, and M. Eso. Achieving
budget-balance with vickrey-based payment schemes in
exchanges. In Proceedings of Internation Joint Confer-
ence on Artificial Intelligence, pages 1161–1168, 2001.

[15] L. Peterson, D. Culler, T. Anderson, and T. Roscoe. A
blueprint for introducing disruptive technology into the
internet, 2002.

[16] O. Regev and N. Nisan. The popcorn market - an on-
line market for computational resources. In Proceedings
of the first international conference on Information and
computation economies, pages 148 – 157, 1998.

[17] T. Sandholm, S. Suri, A. Gilpin, and D. Levine. CABOB:
A fast optimal algorithm for combinatorial auctions. In
Proceedings of the International Joint Conference on Ar-
tificial Intelligence, pages 1102–1108, 2001.

[18] T. Sandholm, S. Suri, A. Gilpin, and D. Levine. Winner
determination in combinatorial auction generalizations.
In In Proceedings of the First International Joint Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS), pages 69–76, 2002.

[19] I. Stoica, H. Abdel-Wahab, and A. Pothen. A microeco-
nomic scheduler for parallel computers. In Proceedings of
the Workshop on Job Scheduling Strategies for Parallel
Processing, pages 200–218. Springer-Verlag, 1995.

[20] N. Stratford and R. Mortier. An economic approach to
adaptive resource management. In Workshop on Hot Top-
ics in Operating Systems, pages 142–147, 1999.

[21] C. Waldspurger, T. Hogg, B. Huberman, and J. Kephar.
Spawn: A distributed computational economy. In IEEE
Transactions on Software Engineering, pages 103 – 117,
1992.

[22] C. Waldspurger and E. Weihl. Stride scheduling: Deter-
ministic proportional- share resource management. Tech-
nical report, Massachusetts Institute of Technology, 1995.

9

[23] R. Wolski, J. Plank, J. Brevik, and T. Bryan. Analyzing
market-based resource allocation strategies for the com-
putational grid, 2001.

[24] E. Zurel and N. Nisan. An efficient approximate allocation
algorithm for combinatorial auctions. In Proceedings of
the 3rd ACM conference on Electronic Commerce, pages
125–136. ACM Press, 2001.

10

