
Modeling TCP Latency
Neal Cardwell, Stefan Savage, Thomas Anderson
fcardwell, savage, tomg@cs.washington.edu

Department of Computer Science and Engineering
University of Washington
Seattle, WA 98195 USA

Abstract—Several analytic models describe the steady-state throughput
of bulk transfer TCP flows as a function of round trip time and packet
loss rate. These models describe flows based on the assumption that they
are long enough to sustain many packet losses. However, most TCP trans-
fers across today’s Internet are short enough to see few, if any, losses and
consequently their performance is dominated by startup effects such as
connection establishment and slow start. This paper extends the steady-
state model proposed in [34] in order to capture these startup effects. The
extended model characterizes the expected value and distribution of TCP
connection establishment and data transfer latency as a function of trans-
fer size, round trip time, and packet loss rate. Using simulations, con-
trolled measurements of TCP transfers, and live Web measurements we
show that, unlike earlier steady-state models for TCP performance, our ex-
tended model describes connection establishment and data transfer latency
under a range of packet loss conditions, including no loss.

I. I NTRODUCTION

Many of today’s popular Internet applications, including the
World-Wide Web, e-mail, file transfer, Usenet news, and remote
login, use TCP as a transport protocol. As a consequence, TCP
controls a large fraction of flows, packets, and bytes that travel
over wide-area Internet paths [41, 10].

Recently researchers have proposed a number of analytic
models to characterize TCP performance in terms of round-trip
delay and packet loss rate [12, 24, 18, 27, 22, 25, 21, 34, 30,
33, 40, 9]. Beyond achieving a better understanding of the sen-
sitivity of TCP performance to network parameters, these mod-
els have helped inform the design of active queue management
schemes [13, 32] and TCP-friendly multicast protocols [6, 42].

The analytic models proposed to date can be split into two
broad classes: models for steady-state bulk transfer throughput,
and models for short flows that suffer no packet loss.

The majority of models fit in the first class; they focus
on characterizing bulk transfer throughput. While these mod-
els are very successful at predicting steady-state throughput
[5, 38], many recent studies have noted that the majority of
TCP flows traveling over the wide-area Internet are very short,
with mean sizes around 10KB and median sizes less than 10KB
[11, 4, 23, 16, 41, 10]. Because these flows are so short, they
often spend their entire lifetime in TCP’s slow start mode, with-
out suffering a single loss. Since the steady-state models assume
flows suffer at least one loss, they are undefined for this common
case.

The second class of models focuses on these short flows that
suffer no packet losses [18, 24, 35]. However, these models
do not consider delayed acknowledgments, sender or receiver
buffering limitations, alternative initial congestion windows, or
losses during connection establishment, each of which can have

a dramatic performance impact.
This paper proposes a new model for TCP performance that

integrates the results from both classes of models. In particu-
lar, we extend the steady-state results from [34] by deriving new
models for two aspects that can dominate TCP latency: the con-
nection establishment three-way handshake and slow start. Us-
ing simulation, controlled measurements, and live Web traces
we show that our new slow start model works well for TCP
flows of any length that suffer no packet losses, and the model
from [34] often works well for flows of any length that do suffer
packet losses. Thus our combined approach, which integrates
these two models, is appropriate for predicting the performance
of both short and long flows under varying packet loss rate con-
ditions. In addition, we suggest a technique for estimating the
distribution of of data transfer latencies.

The rest of this paper is organized as follows. Section II de-
scribes the new model and relates it to the models from which
it is descended. Section III compares the connection establish-
ment model with simulations and Section IV compares the data
transfer model to simulations, TCP measurements, and HTTP
traces. Finally, Section V summarizes our conclusions.

II. T HE MODEL

A. Assumptions

The extended model we develop here has exactly the same
assumptions about the endpoints and network as the steady state
model presented in [34]. The following section describes these
assumptions in detail, including a few assumptions not stated
explicitly in [34], since these details can have a large impact on
the latency of short TCP flows. Throughout our presentation of
this model we use the same terminology and notation as [34].

A.1 Assumptions about Endpoints

First, we assume that the sender is using a congestion control
algorithm from the TCP Reno family; we refer readers to [37,
2, 20] for details about TCP and Reno-style congestion control.
While we describe the model in terms of the simpler and more
common TCP Reno algorithm, it should apply just as well to
newer TCP implementations using NewReno, SACK, or FACK
[14, 28, 26]. Previous measurements suggest the model should
be even more faithful to these more sophisticated algorithms, as
they are more resilient to bursts of packet losses [27, 5].

Since we are focusing on TCP performance rather than gen-
eral client-server performance, we do not model sender or re-

ceiver delays due to scheduling or buffering limitations. Instead,
we assume that for the duration of the data transfer, the sender
sends full-sized segments (packets) as fast as its congestion win-
dow allows, and the receiver advertises a consistent flow control
window. Similarly, we do not account for effects from the Nagle
algorithm or silly window syndrome avoidance, as these can be
minimized by prudent engineering practice [17, 29].

We assume that the receiver has a “typical” delayed acknowl-
edgment implementation, whereby it sends an acknowledgment
(ACK) for everyb = 2 data segments, or whenever its delayed
ACK heartbeat timer expires, whichever happens first. Although
Linux 2.2, for example, uses a more adaptive implementation of
delayed ACKs, for very short flows this technique can be mod-
eled well with b = 1, and for longer flows the effect of this
approach is only to shave off at most one or two round trips.

A.2 Assumptions about the Network

We model TCP behavior in terms of “rounds,” where a round
starts when the sender begins the transmission of a window of
packets and ends when the sender receives an acknowledgment
for one or more of these packets. We assume that the time to
send all the packets in a window is smaller than the duration
of a round and that the duration of a round is independent of
the window size. Note that with TCP Reno congestion control
this can only be true when the flow is not fully utilizing the path
bandwidth.

We assume that losses in one round are independent of the
losses in any other round, while losses in the same round are
correlated, in the sense that any time a packet is lost, all further
packets in that round are also lost. These assumptions are ideal-
izations of observations of the packet loss dynamics of paths us-
ing FIFO drop-tail queuing [7, 36, 44] and may not hold for links
using RED queuing [15] or paths where packet loss is largely
due to link errors rather than congestion. We assume that the
probability of packet loss is independent of window size; again,
this can only hold for flows that are not fully utilizing a link.

When modeling data transfer, we assume that packet loss hap-
pens only in the direction from sender to receiver. This assump-
tion is acceptable because low levels of ACK loss have only a
small effect with large windows, and network paths are often
much more congested in the direction of data flow than the di-
rection of ACK flow [41, 39]. Because packet loss has a far
more drastic result during connection establishment, we model
packet loss in both directions when considering connection es-
tablishment.

A.3 Assumptions about the Transfer

Though we share the assumptions of [34] about the endpoints
and network, we relax several key assumptions about the data
transfer. Namely, we allow for transfers short enough to suffer
a few packet losses, or zero losses, and thus to be dominated by
connection establishment delay and the initial slow start phase.

SYN x

SYN y, A
CK x+1

ACK y+1

Active
Opener

Passive
Opener

i Failures

j Failures

Connection
Effectively

Established

Fig. 1. TCP connection establishment example.

B. Model Overview

Our model describes two aspects of TCP performance. First,
we derive expressions for the expected value and distribution of
time required for the connection establishment handshake that
begins a TCP connection. Second, we derive an expression for
the expected latency to transfer a given amount of data and then
describe our methodology for extrapolating the distribution of
this transfer latency. Separating connection establishment la-
tency from data transfer latency allows us to apply the model
to applications that establish a single TCP connection and use it
for several independent data transfers.

C. Connection Establishment

Every successful TCP connection begins with a “three-way
handshake” in which the endpoints exchange initial sequence
numbers. Figure 1 shows an example. The initiating host, typi-
cally the client, performs anactive openby sending a SYN seg-
ment with its initial sequence number,x. The server performs
a passive open; when it receives a SYN segment it replies with
a SYN segment of its own, containing its initial sequence num-
ber,y, as well as an ACK for the active opener’s initial sequence
number. When the active opener receives this SYN/ACK packet,
it knows that the connection has been successfully established.
It confirms this by sending an ACK of the passive opener’s ini-
tial sequence number. At each stage of this process, if either
party does not receive the ACK that it is expecting within some
SYN timeout,Ts, initially three seconds [8], it retransmits its
SYN and waits twice as long for a response.

To model this process in the presence of packet loss in either
direction, we definepf as the “forward” packet loss rate along
the path from passive opener to active opener (“forward” since
this is usually the primary direction of data flow) andpr as the
“reverse” packet loss rate. LetRTT be the average round trip
delay between the two hosts.

Our model of the three-way handshake consists of the follow-
ing stages. First, the active opener transmits its SYNi � 0 times
unsuccessfully, until the(i + 1)-th SYN arrives successfully at
the passive opener. Next the passive opener will ignore further

SYNs from the active opener while it repeatedly retransmits its
SYN/ACK until it receives a response. In general it will send its
SYN/ACK j � 0 times unsuccessfully until finally the(j+1)-th
SYN/ACK arrives successfully at the active opener. For the pur-
poses of the model, we consider the connection to be established
at this point, since, in most application protocols, immediately
after sending the ACKy+1, the active opener sends a data seg-
ment to the passive opener that contains a redundant ACKy+1.

Let Ph(i; j) be the probability of having a three-way hand-
shake episode consisting of exactlyi failures transmitting
SYNs, followed by one successful SYN, followed by exactly
j failures transmitting SYN/ACKs, followed by one successful
SYN/ACK. Then

Ph(i; j) = pir � (1 � pr) � p
j
f
� (1 � pf) (1)

The latency,Lh(i; j), for this process is

Lh(i; j) = RTT +

i�1X
k=0

2kTs

!
+

j�1X
k=0

2kTs

!

= RTT + (2i � 1)Ts + (2j � 1)Ts

= RTT + (2i + 2j � 2)Ts (2)

The probability thatLh, the overall latency for a three-way
handshake episode, ist seconds or less is:

P [Lh � t] =
X

Lh(i;j)�t

Ph(i; j) (3)

Most TCP implementations abort connection establishment at-
tempts after 4-6 failures. For loss rates low enough that most
handshakes succeed before TCP gives up, it can be shown that
(4) is a good approximation for the expected handshake time:

E[Lh] = RTT + Ts

�
1� pr
1� 2pr

+
1� pf
1� 2pf

� 2

�
(4)

This model assumes the TCP implementation complies with
the TCP specification [37]. It does not model non-compliant
implementations, such as current versions of Linux 2.2, that
achieve slightly better performance by responding to retransmit-
ted SYN segments with retransmitted SYN/ACK segments.

D. Data Transfer

As defined here, a data transfer begins when an application
places data in its send buffer and ends when TCP receives an
acknowledgment for the last byte in the buffer. We assume that
during this transfer the sending application places data in the
send buffer quickly enough that the sending TCP can send as
fast as its window allows.

We decompose the data transfer latency,E[T], for d data seg-
ments into four aspects: the initial slow start phase, the resulting
packet loss (if any), the transfer of any remaining data, and the
added delay from delayed acknowledgments. We begin by cal-
culating the amount of data we expect to send in the initial slow
start phase before encountering a packet loss or finishing the

data transfer. From this we can deduce the time spent in slow
start, the final congestion window in slow start, and thus the ex-
pected cost of loss recovery, if any. Then we use the steady-state
throughput from [33] to approximate the cost of sending the re-
maining data, if any. Finally, we add any extra cost from delayed
ACKs. We discuss each of these aspects in turn.

D.1 Initial Slow Start

We assume that the transfer is either the first transfer of a con-
nection, or a later transfer on a connection that has experienced
no losses yet. Under these circumstances, TCP begins in slow
start mode, where it quickly increases its congestion window,
cwnd, until it detects a packet loss.
E[Tss], the expected latency for the initial slow start phase,

depends on the structure of the slow start episode. There are two
important cases. In the first case, the sender’scwnd grows con-
tinuously until it detects a packet loss. In the second case, the
sender’scwnd is eventually bounded by a maximum window,
Wmax, imposed by sender or receiver buffer limitations. To de-
termine which case is appropriate, we need to calculateE[dss],
the number of data segments we expect the sender to send before
losing a segment. From this we can deduceE[Wss], the window
we would expect TCP to achieve at the end of slow start, were
there no maximum window constraint. IfE[Wss] � Wmax,
then the window limitation has no effect, andE[Tss] is simply
the time for a sender to sendE[dss] in the exponential growth
mode of slow start. On the other hand, ifE[Wss] > Wmax then
E[Tss] is the time for a sender to slow start up tocwnd = Wmax

and then send the remaining data segments at a rate ofWmax

segments per round.
First we calculateE[dss], the number of data segments we

expect to send in the initial slow start phase before a loss occurs
(not including the lost segment). Letp be the data segment loss
rate. If p = 0, we expect to be able to send alld segments in
slow start, soE[dss] = d. On the other hand, ifp > 0, and we
assume that the loss rate is independent of sender behavior, then

E[dss] =

d�1X
k=0

(1� p)k � p � k

!
+ (1� p)d � d

=
(1 � (1 � p)d)(1 � p)

p
+ 1 (5)

Next we deduce the time spent in slow start. During slow
start, as always, each round the sender sends as many data seg-
ments as itscwnd allows. Since the receiver sends one ACK for
everyb-th data segment that it receives, each round the sender
will get approximatelycwnd=b ACKs. Because the sender is in
slow start, for each ACK it receives, it increases itscwnd by one
segment. Thus, if we usecwndi to denote the sender’s conges-
tion window at the beginning of roundi and, following [1], use
 to denote the rate of exponential growth ofcwnd during slow
start , we have:

cwndi+1 = cwndi + cwndi=b

= (1 + 1=b) � cwndi

= � cwndi (6)

If a sender starts with an initialcwnd of w1 segments, then
ssdatai, the amount of data sent by the end of slow start round

i, can be closely approximated by a geometric series as

ssdatai = w1 +w1 � + w1 �
2 + � � �+ w1 �

i�1 (7)

= w1 �
i � 1

 � 1
(8)

Solving for i, the number of slow start rounds to transfer
ssdatai segments of data, we arrive at:

i = log

�
ssdatai(� 1)

w1
+ 1

�
(9)

From (7) and (9) it follows thatWss(d), the window TCP
achieves after sendingd segments in unconstrained slow start,
is

Wss(d) = w1 �

�
d(� 1)

w1
+ 1

�
� �1

=
d(� 1)

+
w1

(10)

Given typical parameters of = 1:5 and1 � w1 � 3, equa-
tion (10) implies thatWss(d) � d

3 . Put another way, to reach
any congestion window,w, a flow needs to send approximately
3w. Interestingly, this implies that to reach full utilization for a
bandwidth-delay product like 1.5Mbps� 70ms= 13KBytes, a
TCP flow will need to transfer 39KBytes, a quantity larger than
most wide-area TCP flows transfer. From this it is easy to see
why many Internet flows spend most of their lifetimes in slow
start, as observed in [3].

From (5) and (10) we can calculate the window size we would
expect to have at the end of slow start, if we were not constrained
byWmax:

E[Wss] =
E[dss](� 1)

+
w1

(11)

so we can now determine whether we expectcwnd to be con-
strained byWmax during slow start.

If E[Wss] > Wmax then slow start proceeds in two phases.
First,cwnd grows up toWmax; from (10) the flow will send

d1 =
Wmax � w1

 � 1
(12)

segments during this phase. From (9), this will take

r1 = log

�
Wmax

w1

�
+ 1 (13)

rounds. During the second phase, the flow sends the remaining
data at a rate ofWmax packets per round, which will take

r2 =
1

Wmax
(dss � d1) (14)

rounds.
Combining (12), (13), and (14) for the case where when

E[Wss] > Wmax, and using (9) for the simpler case where
E[Wss] � Wmax, the time to sendE[dss] data segments in
slow start is approximately

E[Tss] =

8>>><
>>>:

RTT �
�
log

�
Wmax

w1

�
+ 1+

1
Wmax

�
E[dss]�

Wmax�w1
�1

��
whenE[Wss] > Wmax

RTT � log
�
E[dss](�1)

w1
+ 1
�

whenE[Wss] �Wmax

(15)

D.2 The First Loss
For some TCP flows, the initial slow start phase ends with the

detection of a packet loss. Since slow start ends with a packet
loss if and only if a flow has at least one loss, the probability of
this occurrence is:

lss = 1� (1 � p)d (16)

There are two ways that TCP detects losses: retransmission
timeouts (RTOs) and triple duplicate ACKs. [34] gives a deriva-
tion of the probability that a sender in congestion avoidance will
detect a packet loss with an RTO, as a function of packet loss
rate and window size. They denote this probability byQ(p; w):

Q(p;w) = min

�
1;

(1 + (1� p)3(1� (1� p)w�3))

(1 � (1� p)w)=(1 � (1� p)3)

�
(17)

The probability that a sender will detect a loss via triple dupli-
cate ACKs is simply1�Q(p; w). AlthoughQ(p; w) was derived
under the assumption that the sender is in congestion avoidance
mode and has an unbounded amount of data to send, our expe-
rience has shown that it is equally applicable to slow start and
senders with a limited amount of data. This is largely because
Q(p; w) is quite insensitive to the rate of growth ofcwnd, and
senders with a limited amount of data are already at high risk
for RTOs because they will usually have small windows. In
practice, we suspect that the fast recovery strategy used by the
sender has a far greater impact; senders using SACK, FACK,
or NewReno should be able to achieve the behavior predicted
by Q(p; w), while Reno senders will have difficulty achieving
this performance when they encounter multiple losses in a sin-
gle round [26, 27].

The expected cost of an RTO is also derived in [34]:

E[ZTO] =
G(p)T0

1� p
(18)

whereT0 is the average duration of the first timeout in a se-
quence of one or more successive timeouts, andG(p) is given
by:

G(p) = 1 + p+ 2p2 + 4p3 + 8p4 + 16p5 + 32p6 (19)

The expected cost of a fast recovery period depends on the
number of packets lost, the fast recovery strategy of the sender’s
TCP implementation, and whether the receiving TCP imple-
mentation is returning selective acknowledgment (SACK) op-
tions. In the best case, where there is a single loss or the sender
can use SACK information, fast recovery often takes only a sin-
gle RTT ; in the worst case, NewReno will require oneRTT
for each lost packet. Our experience indicates that which of
these possibilities actually occurs is usually not important to the
model’s predictions, so, as in the model of [34], for the sake of
simplicity, we assume that fast recovery always takes a single
RTT .

Combining these results, the expected cost for any RTOs or
fast recovery that happens at the end of the initial slow start
phase is:

Tloss = lss �
�
Q(p;E[Wss]) �E[ZTO]+

(1 �Q(p;E[Wss])) �RTT) (20)

D.3 Transferring the Remainder

In order to approximate the time spent sending any data re-
maining after slow start and loss recovery, we estimate the
amount of remaining data and apply the steady-state model from
[34].

The amount of data left after slow start and any following loss
recovery is approximately

E[dca] = d� E[dss] (21)

This is only an approximation, because the actual amount of
data remaining will also depend on where in the window the loss
occurs, how many segments are lost, the size of the congestion
window at the time of loss,Wmax, and the recovery algorithm.
However, since the model seems accurate in most cases even
with this simplification, for the sake of simplicity we use Equa-
tion (21).

When there areE[dca] > 0 segments left to send, we approxi-
mate the time to transfer this data using the steady-state through-
put model from [33]. This model gives throughput, which we
will denoteR(p;RTT; T0;Wmax), as a function of loss rate,p,
round trip time,RTT , average RTO,T0, and maximum window
constraint,Wmax:

R =

8>>>>>><
>>>>>>:

1�p
p

+
W (p)

2
+Q(p;W (p))

RTT (b
2
W (p)+1)+

Q(p;W (p))G(p)T0
1�p

if W (p) < Wmax

1�p
p

+
Wmax

2
+Q(p;Wmax)

RTT (b
8
Wmax+

1�p
pWmax

+2)+
Q(p;Wmax)G(p)T0

1�p

otherwise

(22)

whereQ(p; w) is given in (17),G(p) is given in (19), andW (p)
is the expected congestion window at the time of loss events
when in congestion avoidance, also from [33]:

W (p) =
2 + b

3b
+

r
8(1 � p)

3bp
+

�
2 + b

3b

�2
(23)

Using these results for the expected throughput, we approxi-
mate the expected time to send the remaining data,E[dca] > 0,
as

E[Tca] = E[dca]=R(p;RTT; T0;Wmax) (24)

Using a model for steady-state throughput to characterize the
cost of transferring the remaining data introduces several errors.

First, when the sender detects a loss in the initial slow start
phase, itscwnd will often be much larger than the steady-state
averagecwnd. Combining (10) and the analysis of [27], the
sender will have to detect roughlylog2

1=3pp
3=(2bp)

loss indica-

tions to bringcwnd from its value at the end of slow start,1=3p,
to its steady state value,

p
3=(2bp). For loss rates of 5% and

higher, the sender exits slow start at nearly the steady-state win-
dow value, so the error in our approach should be small. For
loss rates of 0.1% and below, it can take three or more loss indi-
cations – corresponding to megabytes of data – to reach steady
state, so our approach will often overestimate the latency of such
transfers.

Another source of error derives from the fact that (22) does
not model slow start after retransmission timeouts (RTOs). For
loss rates above 1%, the error this introduces should be small,
since for these loss rates congestion avoidance has throughput
that is similar to that of slow start after RTOs. For lower loss
rates, RTOs should be uncommon. However, when they occur,
their long delays may overwhelm the details ofcwnd growth.

Finally, RTO durations vary widely. Using an average RTO to
model the duration of a specific short TCP flow will introduce
significant error.

D.4 Delayed Acknowledgments

Delayed acknowledgments comprise the final component of
TCP latency that we consider in our model. There are a number
of circumstances under which delayed acknowledgments can
cause relatively large delays for short transfers. The most com-
mon delay occurs when the sender sends an initialcwnd of 1
MSS. In this case the receiver waits in vain for a second seg-
ment, until finally its delayed ACK timer fires and it sends an
ACK. In BSD-derived implementations this delay is uniformly
distributed between 0ms and 200ms, while in Windows 95 and
Windows NT 4.0 this delay is distributed uniformly between
100ms and 200ms. Delayed ACKs may also lead to large de-
lays when the sender sends a small segment and then the Nagle
algorithm prevents it from sending further segments [17, 29],
or when the sender sends segments that are not full-sized, and
the receiver implementation waits for two full-sized segments
before sending an ACK.

For our simulations and measurements, when senders use an
initial cwnd of 1 MSS we model the expected cost of the first de-
layed ACK, which we denoteE[Tdelack], as the expected delay
between the reception of a single segment and the delayed ACK
for that segment – 100ms for BSD-derived stacks, and 150ms
for Windows.

D.5 Combining the Results
To model the expected time for data transfer, we use the sum

of the expected delays for each of the components, including
(15), (20), (24), and the delayed ACK cost:

E[T] = E[Tss] + E[Tloss] + E[Tca] +E[Tdelack] (25)

E. Modeling Distributions

The model as given in (25) is a prediction of latency given
the particular parameters experienced by a particular flow. In
our experience, for a set of transfers of the same size over the
same high bandwidth-delay path, the most important determi-
nants of overall latency are the number of losses, the average
timeout duration, and the cost of delayed ACKs. As a result, to
approximate the distribution of latency for a set of flows, one
can consider the range of possible loss rates and delayed ACK
costs, and estimate the likelihood of each scenario, along with
the latency expected with that scenario. In section IV-A.2 we ap-
ply this method to simulations using a Bernoulli loss model and
delayed ACK costs uniformly distributed between 0 and 200ms.

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1e+06

0.0001 0.001 0.01 0.1 1

B
an

dw
id

th
 (

by
te

s/
se

c)

Frequency of Loss Indications (p)

Proposed (2 KB)
Proposed (64 KB)

Proposed (256 KB)
Proposed (1024 KB)

[PFTK98]
[MSMO97]

Fig. 2. Comparing the throughput predicted by the steady state models to the
throughput predicted by our proposed model for varying transfer sizes. Here
MSS = 1460 bytes,RTT = 100 ms,w1 = 1 segment, = 1:5, T0 = 1
sec,Wmax = 10 MBytes.

F. Comparison with Earlier Models

Our proposed model, (25), is a generalization of two previous
approaches. In the case where there are no packet losses, (25)
reduces to (15), a model for the time to sendd segments in slow
start mode. This special case corresponds closely to the simpler
models derived in [18, 24]. In the case whered is very large, the
total time given by (25) is dominated by (24), the time to transfer
data after the first loss. In this case, the behavior corresponds
very closely with the underlying throughput model, (22), from
[34].

Figure 2 explores the relationship between our proposed
model and the models of [27] and [34]. It gives the through-
put predicted by the proposed model, (25), for each of several
transfer sizes, as well as the steady-state throughputs predicted
by the expression

p
3=4�MSS=(RTT

p
p), from [27], and (22),

from [34]. As mentioned earlier, when there is at least one ex-
pected loss, our proposed model agrees closely with [34], which
has been shown to work well for flows that suffer even a few
losses [5]. On the other hand, when there are no losses, the pro-
posed model predicts that short flows suffer because they do not
have time to reach a steady-statecwnd, whereas long flows will
do well because theircwnd grows beyond its steady-state value.

III. V ERIFYING THE CONNECTION ESTABLISHMENT

MODEL

Figure 3 compares the mean and distribution of connection
establishment times given by (3) and the mean given by the
approximate model (4) to the mean and distribution for 1000
ns [31] simulations withRTT = 70 ms and Bernoulli packet
losses withpf = 0:3 andpr = 0:2. These simulations used the
FullTCP implementation, modeled closely after the 4.4BSD
TCP implementation. Both the model and the approximation fit
well. Results are similar for other scenarios with bothpf andpr
well below 0.5.

Figure 4 summarizes the performance of the full and approx-

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

C
um

ul
at

iv
e

F
ra

ct
io

n

Time (sec)

Simulated CDF
Modeled CDF

Simulated mean
Modeled mean

Approximate Model

Fig. 3. Distribution and mean of connection establishment times from the model
(3), the approximate model (4), and 1000ns simulations withpf = 0:3,
pr = 0:2.

0

2

4

6

8

10

12

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

T
im

e
(s

ec
)

Forward loss rate

Simulated
Modeled

Approximate Model

Fig. 4. Expected connection establishment latency fromns simulations (1000
trials at each loss rate), the model (3), and the approximate model (4).

imate model, comparing them against 1000ns trials in scenar-
ios with pr = 0:0 and0 � pf � 0:45. The full model fits
well across these simulations, but the approximate model di-
verges sharply aspf approaches 0.5, where its assumption of
unbounded wait times fails.

IV. V ERIFYING THE DATA TRANSFERMODEL

A. Simulations

A.1 Flows Without Loss

For simulated TCP flows that do not suffer packet loss, the
expression (15) describes TCP behavior very closely, as Fig-
ure 5 shows. This figure depicts the simulated and modeled la-
tency for 2,376 TCP transfers simulated inns . In each sim-
ulation, aFullTCP sender transfers data over a 1Gbit link
to a FullTCP receiver. The link buffers were provisioned to
prevent packet loss. The trials consisted of the cross-product
of w1 = f2; 3; 4g segments, = f1:5; 2g (with and with-

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

M
od

el
ed

 T
ra

ns
fe

r
T

im
e

(R
T

T
)

Simulated Transfer Time (RTT)

Modeled Time
Simulated Time

Fig. 5. The simulated latency for 2,376 TCP data transfers that experienced no
packet loss, compared with the modeled latency from (25) (or, equivalently,
(15)).

0

100000

200000

300000

400000

500000

600000

1e-05 0.0001 0.001 0.01 0.1 1

B
an

dw
id

th
 (

by
te

s/
se

c)

Frequency of Loss Indications (p)

Simulated
Proposed
[PFTK98]

[MSMO97]

Fig. 6. Scatter plot of simulated performance with model predictions over-
laid. These were 64 KByte transfers withMSS = 1460 bytes,Wmax of
4MBytes,w1 = 1 segment, = 1:5, RTT = 100 ms,T0 = 519 ms,
pf = 0:05 andpr = 0.

out delayed ACKs),d = f1; 2; 4; : : :1024g segments,MSS =
f536; 1460; 4312g bytes,Wmax = f8; 32; 128; 512g segments,
andRTT = f16; 64; 256gms. The model agrees quite closely
with the simulations; the average error is 0.69RTTs, and the
average relative error is 22%. The three outliers at 37, 72, and
143RTTs correspond to trials with a window of just 8 seg-
ments, where throughput was hurt because the 200ms delayed
ACK timer of the recipient was mis-aligned with the 256ms
RTT ACK-clocking employed by the sender.

A.2 Flows Suffering Losses

Figures 6 and 7 illustrate how well [34] and (25) match the
performance of flows that suffer moderate-to-high levels of loss.
Figure 6 shows a scatter plot depicting the bandwidth and loss
rate experienced by each of the 100 simulatedFullTCP flows,
with the model predictions overlaid. Each flow transferred

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4

C
um

ul
at

iv
e

F
ra

ct
io

n

Time (sec)

Simulated CDF
Simulated (Mean)

[PFTK98]
Proposed

Proposed CDF

Fig. 7. The distribution and mean of latencies from the experiment described in
Figure 6.

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

1e-05 0.0001 0.001 0.01 0.1 1

B
an

dw
id

th
 (

by
te

s/
se

c)

Frequency of Loss Indications (p)

Simulated
Proposed
[PFTK98]

[MSMO97]

Fig. 8. Scatter plot of simulated performance with model predictions over-
laid. These were 1 MByte transfers withMSS = 1460 bytes,Wmax of
4MBytes,w1 = 1 segment, = 1:5, RTT = 100 ms,T0 = 450 ms,
pf = 0:001 andpr = 0.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6

C
um

ul
at

iv
e

F
ra

ct
io

n

Time (sec)

Simulated CDF
Simulated (Mean)

[PFTK98]
Proposed

Proposed CDF

Fig. 9. The distribution and mean of latencies from the experiment described in
Figure 8.

0

0.2

0.4

0.6

0.8

1

0 20000 40000 60000 80000 100000 120000

T
ra

ns
fe

r
T

im
e

(s
ec

)

Data Transferred (Bytes)

Measured
Proposed (Slow Start) (15)

Proposed (Full) (25)
[PFTK98]

Fig. 10. Measured and modeled latencies for 403 transfers from the University
of Washington to the UC-Davis.

64KBytes over a path with synthetically-generated Bernoulli
losses with an average loss rate ofpf = 0:05 andpr = 0. The
proposed model, (25) fits the trials that experience no packet
loss, while both [34] and (25) provide a reasonable fit to those
trials that do experience loss. Figure 7 shows the distribution of
latencies for these trials. Both [34] and (25) capture the average
latency, and the modeled distribution, derived using the tech-
nique described in Section II-E, provides a reasonable charac-
terization of the distribution of latencies. There is considerable
variance in the latency in this case, with 25% of flows complet-
ing in half the average time, and 25% of flows taking half again
as long as the average time. In our experience, this technique
yields a good approximation to the latency distribution when-
ever there are enough packet losses for [34] to provide a good fit
for the average latency.

Figures 8 and 9 provide the corresponding view of long trans-
fers (1 MByte) over paths with low loss rates. The proposed
model, (25), captures the average latency as well as the latency
experienced by the half of flows that see no loss. However, nei-
ther [34] nor (25) predicts the performance seen by flows that
experience a single loss, as these flows enter congestion avoid-
ance with acwnd far larger than the steady-state value. We have
preliminary results characterizing the dynamics ofcwnd as it
converges to the steady-state value after slow start. It should be
possible to capture aspects of the behavior of these long flows
that suffer only a few losses by using an approach along these
lines.

B. Controlled Internet Measurements

In order to examine how well our proposed model, (25), fits
TCP behavior in the Internet, we performed a number of TCP
transfers from a Linux 2.0.35 sender at the University of Wash-
ington to other Internet sites. Figure 10 shows an example.
It depicts the latency of 403 transfers of varying sizes to the
University of California at Davis, together with the predictions
from (25) and [34], using the average packet loss rate across
all trials. Since the average loss rate was only 0.02%, and as a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1 -0.5 0 0.5 1

C
um

ul
at

iv
e

F
ra

ct
io

n

Error (RTT)

Proposed Model

Fig. 11. The error,(modeled�measured)=RTT , between the proposed model,
(25), and the HTTP measurements, for all 33,208 flows (97%) that suffered
no packet losses. Note that this isRTT -normalized error, so the model is
within 1RTT of the actual time for 85% of flows.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1 -0.5 0 0.5 1

C
um

ul
at

iv
e

F
ra

ct
io

n

Relative Error

Proposed Model
[PFTK98]

[MSMO97]

Fig. 12. The relative error between the models and the HTTP measurements,
for all 357 flows (1%) that suffered triple duplicate ACKs but no RTOs.

consequence most flows suffered no losses, (25) fits quite well,
whereas [34] does not.

C. Live HTTP Measurements

In order to undestand how well the various TCP models de-
scribe typical TCP data transfers, we compared them to a set
of HTTP traces. These traces consist of client-side packet-level
traces of 34,318 TCP flows transporting single HTTP GET op-
erations made fromwget web clients at three well-connected
U.S. universities – the University of Washington-Seattle, the
University of California-Berkeley, and Duke University – to
50 web servers spread throughout the US. Twenty-five of the
servers were chosen from the web’s most popular sites, as de-
termined by the analysis of web proxy logs [19]. The remain-
ing 25 servers were chosen at random from Yahoo!’s database
of web sites [43]. Each HTTP GET operation fetched the
index.html object from the given site; the average size of

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1 -0.5 0 0.5 1

C
um

ul
at

iv
e

F
ra

ct
io

n

Relative Error

Proposed Model
[PFTK98]

[MSMO97]

Fig. 13. The relative error between the models and the HTTP measurements,
for all 753 flows (2%) that suffered RTOs.

these objects was 13.5KBytes.
For each flow, we extracted the total data transfer time, de-

fined as the period starting when the first data segment arrived
at the client and ending when last data segment arrives at the
client, minus the delay due to delayed ACKs. We also extracted
the MSS, the initial window size, and estimated theRTT using
the receiver-oriented techniques described in [1]. We estimate
the number of fast retransmit events by observing data segments
arriving after corresponding triple-duplicate ACKs. We estimate
the number and average duration of timeouts by using several
heuristics, including the arrival of duplicate data segments, the
arrival of data segments that fill a sequence space hole more than
200ms old, and the arrival of in-order data segments that arrive
after an idle period of one second or more.

We split these flows into three classes, based on the character
of the losses they suffered. For each flow, we examine the er-
ror between the measured latency and the predictions made by
the models from [27], [34], and (25), using the actuald, MSS,
Wmax, w1, RTT , p, andT0 observed by that flow.

Figure 11 shows theRTT -normalized error in latency pre-
dictions, (modeled� measured)=RTT , for those flows that
suffered no packet loss. We show only the proposed model,
(25), since the models from [27] and [34] are undefined for
p = 0. More than 85% of the model’s predictions are within
oneRTT of the actual transfer times. Turning to the relative er-
ror, (modeled�measured)=measured, the median relative error
for these cases is .16, meaning for 50% of flows that suffered no
loss, (25) is within 16% of the actual transfer latency.

Figure 12 shows the relative error in latency predictions for
those flows that suffered losses but were able to recover from
all losses using fast retransmit and fast recovery. All three mod-
els provide similar predictions. Similarly, Figure 13 shows the
relative error in latency predictions for the flows that suffered re-
transmission timeouts. The [27] model fits poorly, as it assumes
that timeouts do not occur. The (25) and [34] models also have
significant error. Note that, once again, in the presence of packet
loss, (25) and [34] provide similar predictions.

V. CONCLUSION

In this paper we presented new models for TCP connection
establishment and TCP slow start. We used these models to ex-
tend the steady-state model from [34], which assumes at least
one packet loss, to characterize the latency of TCP flows that
suffer no packet losses. Using simulation and measurement, we
found that the connection establishment model seems promis-
ing, and that the new, extended data transfer model characterizes
flows of varying lengths under varying loss conditions.

Furthermore, we described a technique for estimating the dis-
tribution of latencies for TCP transfers and showed simulations
suggesting that this method can approximate the often wide dis-
tribution of data transfer latencies under a range of conditions.

ACKNOWLEDGMENTS

We would like to thank Arnold Kim for suggesting a tech-
nique to derive (4), Sally Floyd and Neil Spring for providing
comments on earlier drafts of this paper, Jitendra Padhye for
providing analysis scripts, Robert Morris for providing traces,
and John Zahorjan and Anna Karlin for providing advice and
encouragement.

REFERENCES

[1] Mark Allman and Vern Paxson. On estimating end-to-end network path
properties. InSIGCOMM ’99, August 1999.

[2] Mark Allman, Vern Paxson, and W. Stevens. TCP congestion control. RFC
2581, April 1999.

[3] Hari Balakrishnan, Venkata Padmanabhan, Srinivasan Seshan, Randy H.
Katz, and Mark Stemm. TCP behavior of a busy Internet server: Analysis
and improvements. InINFOCOM ’98, April 1998.

[4] Hari Balakrishnan, Mark Stemm, Srinivasan Seshan, and Randy H. Katz.
Analyzing stability in wide-area network performance. InSIGMETRICS
’97, June 1997.

[5] Juerg Bolliger, Thomas Gross, and Urs Hengartner. Bandwidth modelling
for network-aware applications. InINFOCOM ’99, March 1999.

[6] J. Bolot and T. Turletti. Experience with rate control mechanisms for
packet video in the Internet.Computer Communications Review, 28(1),
January 1998.

[7] J. Bolot and A. Vega-Garcia. Control mechanisms for packet audio in the
Internet. InINFOCOM ’96, March 1996.

[8] R. Braden. Requirements for Internet hosts – communication layers. RFC
1122, October 1989.

[9] Claudio Casetti and Michela Meo. A new approach to model the stationary
behavior of TCP connections. InINFOCOM 2000, March 2000.

[10] K. Claffy, Greg Miller, and Kevin Thompson. The nature of the beast:
Recent traffic measurements from an Internet backbone. InProceedings
of INET ’98, July 1998.

[11] Carlos R. Cunha, Azer Bestavros, and Mark E. Crovella. Characteristics
of WWW client-based traces. Technical Report BU-CS-95-010, Boston
University, July 1995.

[12] Sally Floyd. Connections with multiple congested gateways in packet-
switched networks, part 1: One-way traffic.Computer Communications
Review, 21(5), October 1991.

[13] Sally Floyd and Kevin Fall. Promoting the use of end-to-end congestion
control in the Internet.IEEE/ACM Transactions on Networking, August
1999.

[14] Sally Floyd and Tom Henderson. The NewReno modification to TCP’s
fast recovery algorithm. RFC 2582, April 1999.

[15] Sally Floyd and Van Jacobson. Random early detection gateways for con-
gestion avoidance.IEEE/ACM Transactions on Networking, 1(4), August
1993.

[16] Steven D. Gribble and Eric A. Brewer. System design issues for Internet
middleware services: Deductions from a large client trace. InUSITS ’97,
December 1997.

[17] John Heidemann. Performance interactions between P-HTTP and TCP
implementations.Computer Communications Review, 27(2), April 1997.

[18] John Heidemann, Katia Obraczka, and Joe Touch. Modeling the perfor-
mance of HTTP over several transport protocols.IEEE/ACM Transactions
on Networking, 5(5), October 1997.

[19] http://www.100hot.com/ .
[20] Van Jacobson. Congestion avoidance and control.SIGCOMM ’88, August

1988.
[21] Anurag Kumar. Comparative performance analysis of versions of TCP in

a local network with a lossy link.IEEE/ACM Transactions on Networking,
6(4), August 1998.

[22] T.V. Lakshman and Upamanyu Madhow. The performance of TCP/IP
for networks with high bandwidth-delay products and random loss.
IEEE/ACM Transactions on Networking, June 1997.

[23] Bruce A. Mah. An empirical model of HTTP network traffic. InINFO-
COM ’97, April 1997.

[24] Jamshid Mahdavi. TCP performance tuning.http://www.psc.edu/
networking/tcptune/slides/ , April 1997.

[25] Sam Manthorpe.Implications of the Transport Layer for Network Dimen-
sioning. PhD thesis, Ecole Polytechnique Federale de Lausanne, 1997.

[26] M. Mathis and J. Mahdavi. Forward acknowledgement: Refining TCP
congestion control. InSIGCOMM ’96, August 1996.

[27] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The macroscopic behavior
of the TCP congestion avoidance algorithm.Computer Communications
Review, 27(3), July 1997.

[28] Matt Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn Romanow. TCP
Selective Acknowledgement options. RFC 2018, April 1996.

[29] Greg Minshall, Yasushi Saito, Jeffrey C. Mogul, and Ben Verghese. Ap-
plication performance pitfalls and TCP’s Nagle algorithm. InWorkshop
on Internet Server Performance, May 1999.

[30] Archan Misra and Teunis Ott. The window distribution of idealized TCP
congestion avoidance with variable packet loss. InINFOCOM ’99, March
1999.

[31] UCB/LBNL/VINT network simulator - ns (version 2).
[32] Teunis J. Ott, T. V. Lakshman, and Larry H. Wong. SRED: Stabilized

RED. In INFOCOM ’99, March 1999.
[33] Jitendra Padhye, Victor Firoiu, and Don Towsley. A stochastic model of

TCP Reno congestion avoidance and control. Technical Report 99-02,
University of Massachusetts, 1999.

[34] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose. Modeling
TCP throughput: A simple model and its empirical validation. InSIG-
COMM ’98, September 1998.

[35] Craig Partridge and Timothy J. Shepard. TCP/IP performance over satel-
lite links. IEEE Network, pages 44–49, September/October 1997.

[36] Vern Paxson. End-to-end Internet packet dynamics. InSIGCOMM ’97,
September 1997.

[37] Jon Postel, Editor. Transmission Control Protocol — DARPA Internet
Program Protocol Specification. RFC 793, September 1981.

[38] Lili Qiu, Yin Zhang, and S. Keshav. On individual and aggregate TCP per-
formance. Technical Report TR99-1744, Cornell University, May 1999.

[39] Stefan Savage. Sting: a TCP-based network measurement tool. InUSITS
’99, October 1999.

[40] http://www.ens.fr/˜mistral/tcpworkshop.html , Decem-
ber 1998.

[41] Kevin Thompson, Gregory J. Miller, and Rick Wilder. Wide-area Internet
traffic patterns and characteristics.IEEE Network, 11(6), November 1997.

[42] L. Vivisano, L. Rizzo, and J. Crowcroft. TCP-like congestion control for
layered multicast data transfer. InINFOCOM ’98, April 1998.

[43] Yahoo! Inc. Random Yahoo! Link.http://random.yahoo.com/
bin/ryl .

[44] Maya Yajnik, Sue Moon, Jim Kurose, and Don Towsley. Measurement
and modelling of the temporal dependence in packet loss. InINFOCOM
’99, March 1999.

