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t is widely understood that the Internet is awash in
threats. The mean time for a vulnerable system to be
infiltrated once connected to the Internet is typically
measured in minutes. Consequently, most research effort

in network security has focused on protecting these end sys-
tems or mitigating the impact of their compromise. However,
the Internet architecture relies equally strongly on the correct
behavior of the intermediate routers that forward packets,
hop by hop, to their eventual destination. While it is not as
widely appreciated, these network routers are also under
attack. 

For example, at the 2005 Black Hat Briefings, Mike Lynn
demonstrated how Cisco routers can be compromised via sim-
ple software vulnerabilities. Even simpler, others have docu-
mented how combinations of social engineering and weak
passwords can and have been used to compromise thousands
of Internet routers, and there is an underground market for
trading access to them [1–4]. Finally, in their annual surveys
of the Internet network security operations community, Arbor
Networks Inc. have repeatedly documented such attacks
across a range of Internet service providers (ISPs) [5]. 

Once a router has been compromised, the standard com-
mand line interface from vendors such as Cisco and Juniper
can be used to selectively drop packets, delay them or trans-
parently “tunnel” through arbitrary-third party hosts and back
again [6, 7]. Together these capabilities are sufficient to selec-
tively eavesdrop, deny or degrade service, or construct a man-
in-the-middle attack against any host that receives service
through the router.

Thus, a number of researchers have recently explored the
problem of detecting such router compromises as revealed
from their inconsistent packet forwarding behavior. In this
article we provide a general framework for understanding this
work and then study some of the detection protocols [8–11].

Centralized Failure Detector via Active
Replication

The expected behavior of a router is predictable: traffic
enters a router and is forwarded on to the next hop toward
its destination. Thus, the behavior of a router can be veri-
fied by a failure detector via an identical replica of that
router.1 For example, in Fig. 1, a failure detector is imple-
mented with an identical replica r′ of the router r. In this
scheme the failure detector observes router r’s input traffic
and delivers an identical stream of packets to router r′. In
turn, the failure detector verifies that the output traffic
exiting router r′ is identical to that leaving router r. If there
is a discrepancy, an alarm is raised indicating that either
the monitored router is faulty or the failure detector is
faulty. This is an ideal failure detector for revealing any
anomalous forwarding behaviors. However, this approach
has a number of practical limitations that make it infeasible
to deploy at scale.

Complexity of Implementation
First of all, maintaining state consistency between a router
and its replica can be highly demanding to engineer. For
example, a router will receive routing updates that cause
its forwarding tables to be recomputed. If these forwarding
tables are not updated at the same moment on both the
router and its replica,  a temporary traffic forwarding
inconsistency may occur. Similarly, a number of active
queue management schemes make use of randomization to
drive their operation. Thus, to faithfully replicate a router’s
behavior also requires replicating its random number
stream. 
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1 This scheme is also called master-checker, active replication, or state
machine approach in the literature.
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Resource Requirement
Furthermore, to implement a replica-based failure detector,
as in Fig. 1, requires additional hardware resources — an
identical replica of each router — and additional communica-
tion channels — the passive monitors on each router’s input
and output links. These can be prohibitively expensive.

Researchers have tried to address these issues in two ways.
First, they have developed weaker but lighterweight failure
detectors via traffic validation: instead of validating the exact
traffic that transits a router, various characteristics of the traf-
fic entering and leaving various parts of the network can be
used for validation. Second, they have developed distributed
failure detectors that exploit the participation of correct
routers rather than requiring a separate monitoring infrastruc-
ture. We frame each of these approaches in turn below.

Traffic Validation
Traffic validation is the basis for detecting anomalous behav-
ior: given traffic entering a region of the network, and know-
ing the expected behavior of the routers in the network,
anomalous behavior is detected when the monitored traffic
leaving that part of the network differs significantly from what
is expected. Traffic validation can be defined in terms of con-
servation of traffic.

Conservation of Traffic
Some property of the traffic entering a region of a network must
be consistent with the same property of the traffic leaving that
part of a network. 

There are three design decisions that must be addressed to
implement such a mechanism.

Which Property of the Traffic Is to Be Validated? — Upon
receiving a packet, a router references its routing table to
determine the next hop toward the destination, and then for-
wards the packet. Thus, ideally, the traffic entering a router is
equal to the traffic leaving that router. Of course, packets
experience queuing and processing delay, and packets can be
lost due to congestion. The most precise description of traffic
is itself — the exact content of the packets. However, the stor-
age requirements to buffer all packets (as well as the band-
width consumed by resending them to implement distributed

detection, discussed later) make this approach impractical.
Instead, one can validate more concise properties that approx-
imate this ideal. Some such properties are:
• Conservation of flow validates the volume of the traffic,

thereby detecting maliciously dropped packets.
• Conservation of content validates the content of the traffic,

thereby detecting maliciously modified packets.
• Conservation of order validates the order among the packets

that constitute the traffic, thereby detecting maliciously
reordered packets.

• Conservation of timeliness validates the time behavior of the
forwarding process, thereby detecting maliciously delayed
packets.

What Traffic Is to Be Monitored? — The protocols can be cate-
gorized in various ways. Some protocols monitor a single
packet, while others monitor aggregate traffic. Some protocols
are based on active probing: they send probe packets periodi-
cally, while others deploy a passive approach that simply mon-
itors existing traffic.

What Region of a Network Is to Be Monitored? — Various
existing protocols apply conservation of traffic at different
granularities in a network, including per interface, per router
and per path segment.

A failure detector based on traffic validation can be almost
as effective as one based on active replication, but their
reduced overhead makes them far more practical. Thus, all
the detection protocols examined in this article are based on
traffic validation, each representing a slightly different point
in the design space. In practice, designing a traffic validation
mechanism includes engineering trade-offs for each design
decision above. For example, real networks occasionally lose
packets due to congestion; thus, a traffic validation mecha-
nism must distinguish between benign congestive loss and
packet losses caused by malicious actions.

Distributed Detection
Instead of a centralized failure detector, as in Fig. 1, most sys-
tems approximate this service via a distributed protocol that
relies on the participation of uncompromised routers. Under-
lying this approach is the observation that while a compro-
mised router can forward traffic any way it wishes, other
routers have an expectation of how traffic should be forward-
ed. Thus, as long as traffic traverses neighboring uncompro-
mised routers as well, there will be sufficient observations to
detect anomalous behavior. Traffic validation systems imple-
ment such a distributed failure detector by synchronizing traf-
fic information between two or more routers and then
redistributing this information to allow for detection.

Refining this model, a compromised router can be traffic
faulty by forwarding traffic in a faulty manner, as well as detec-
tion protocol faulty by behaving arbitrarily with respect to the
detection protocol. Both cases should be considered. Also,
more than one router may be compromised at a time. We
assume that there is sufficient path diversity between any two
uncompromised routers such that they can communicate with-
out traversing a compromised router. In a sense this assump-
tion is pedantic, since this assumption is needed to ensure that
the communication network is not partitioned, and it is
impossible to guarantee any network communication across a
partition.

We also assume that a host’s access router is not compro-
mised. This is a strong assumption, but necessary: if a host’s
access router is compromised, the host is partitioned from the
rest of the network, and there is no routing remedy even if an

n Figure 1. Failure detector via the active replica/state machine
approach.
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anomaly is detected. Moreover, from the standpoint of the
network such traffic originates from a compromised router,
and therefore cannot demonstrate anomalous forwarding
behavior. In effect, distributed detection protocols can only
hope to detect anomalous routing between any two pairs of
uncompromised nodes.

There is inherently some uncertainty in failure detection
since one cannot generally distinguish between a true failure
and a failure in the failure detector itself (this is true even
with the idealized active replication scheme). This abstract
limitation manifests in distributed traffic validation protocols
as well. For example, suppose router r1 collects traffic infor-
mation about packets that traverse routers r1 to r2 to r3. Based
on the information r3 collects, suppose r3 determines that
packets have been dropped between r1 and r2. Unfortunately,
r3 cannot distinguish between the case of r1 lying about what
packets it sent to r2 and r2 lying about what packets it received
from r1. Hence, there is an inherent lack of precision in deter-
mining which routers are compromised.

We have failure detectors report suspicions as path seg-
ments, where a path segment is a sequence of consecutive
routers that is a subsequence of a path.2 More specifically, a
failure detector reports a path segment if it suspects a router
in that path segment isbehaving in a faulty manner.

This section is a brief summary of the formal specification pre-
sented in [12]. We refer readers to [12] for the derivation of the
formal specification. In short, we cast the problem as a failure
detector with completeness, accuracy, and precision properties.

Completeness

Whenever a router forwards traffic in a faulty manner:
• If all correct routers eventually suspect that a path segment

contains a faulty router, a failure detector is strong-com-
plete.

• If at least one correct router eventually suspects that a path
segment contains a faulty router, a failure detector is weak-
complete.

Accuracy
A failure detector is accurate if, whenever a correct router
suspects a path segment, there is at least one faulty router in
that path segment.

Precision
A failure detector also has a precision, which is the maximum
length of a path segment it suspects.

To be useful, a failure detector must be complete and accu-
rate, and one would prefer a smaller precision. Implementing
such distributed detection involves trade-offs among precision,
completeness, and the overhead of monitoring and communi-
cation. Various detection protocols address these design deci-
sions in different ways, as we discuss in the next section.

Compared to weak completeness, strong completeness is
more desirable since every correct router detects the fault.
Given a weak-complete detector, a strong-complete one can
be implemented, but it may not be simple and some precision
would be lost. For example, consider that a source router rs
detects a link 〈r1, r2〉 as faulty. Announcing this detection, the
other correct routers in the network have to consider the case
that rs is faulty as well. On the other hand, in some cases hav-
ing a weak-complete detector is enough for making a proper
response. For example, relying on source routing, a router
detecting a failure just computes a new route excluding the
suspected path segment. In the above example, rs may only
update its own routing table excluding the suspected 〈r1, r2〉. 

Case Studies
In this section we describe existing protocols proposed to
detect and mitigate attacks on the network data plane. We
examine both the trade-offs in their choice of traffic validation
mechanisms and the particular distributed protocols used to
disseminate this information.

Traffic Validation Per Router: WATCHERS
The most similar approximation to the failure detector in Fig.
1 is WATCHERS [8], which detects and isolates faulty routers
based on a distributed network monitoring approach. A faulty
router is defined as one that drops or misroutes packets, or
behaves in an arbitrary manner with respect to the proposed
protocol. A conservation of flow principle (CoFP) was pro-
posed to detect faulty routers. Basically, CoFP states that the
amount of traffic entering a router should be equal to the
amount of traffic leaving that router.

The traffic validator WATCHERS implements is given in Fig.
2 as a centralized service. WATCHERS validates the CoFP of
the aggregate traffic entering into each router in the network.
If the difference between the volume of the traffic entering
and leaving the router exceeds a user-defined threshold, a fail-
ure is detected and an alarm is raised. This threshold is need-
ed to avoid false positives as a result of congestive packet
losses.
WATCHERS implements this failure detector by requiring all

the neighboring routers of a router r to synchronize with each
other, count how many bytes they have received from and for-
warded to r during an agreed-upon time interval, distribute
snapshots of their counters to the others by flooding, and
finally, validate the CoFP.

If a neighbor router rn can not validate the router r, rn
announces that the link 〈rn, r〉 is suspicious, and 〈rn, r〉 is
removed from the routing fabric.

n Figure 2. Failure detector via a traffic validator per router.
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2 For example, if a network consists of the single path 〈r1, r2, r3, r4〉, 〈r2, r3〉
is a path segment, but 〈r1, r3〉 is not because r1 and r3 are not adjacent.
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In terms of our specification, WATCHERS is accurate with a
precision of 2. It is not complete as described, but can be mod-
ified to be strong-complete as explained in [13].

Generally speaking, there are two limitations of WATCHERS:
• The main drawback of WATCHERS is its restrictive threat

model: it can only detect malicious packet drops and mis-
routes. Several researchers [9–11] have subsequently devel-
oped protocols with more general traffic validation
mechanisms addressing a more comprehensive set of
attacks.

• The architects of WATCHERS noticed a completeness prob-
lem caused by “consorting faulty routers,” a problem first
described by Perlman [14]. Faulty routers are said to be
consorting if they launch a coordinated attack and cooper-
ate to hide each other’s malicious behavior. The WATCHERS
protocol addressed this issue by requiring each router to
maintain state for every neighbor and destination pair in
the network. Other protocols have addressed this problem
with a different approach: validating traffic over path seg-
ments. We discuss this next.

Traffic Validation per Path Segment Nodes: HSER
Avramopoulos et al. [9] present a protocol called Highly
Secure and Efficient Routing (HSER), a combination of source
routing, hop-by-hop authentication, a priori reserved buffers,
sequence numbers, timeouts, end-to-end reliability mecha-
nisms, and fault announcements. While none of these individ-
ual mechanisms is novel by itself, it is the combination of
them that delivers Byzantine robustness and detection.

The traffic validator HSER implements is given in Fig. 3 as a
centralized service. HSER validates the conservation of content
property of a single packet that is monitored along the path
from the source to the destination. If any router along the
path discovers that its neighbor has lost or altered the
packet, a failure is detected and an alarm is raised.
HSER implements its failure detector by requiring

each router along the path to compute a fingerprint
for the monitored packet, keep a timeout, and finally,
validate the conservation of content property with its
neighbors. Upon receiving a packet, the router first
validates the authenticity and forwards the packet to
the next hop toward the destination. After forwarding
the packet, the router sets a timeout to the worst case
round-trip time to the destination from itself. If the
authenticity of the packet is not verified or the time-
out expires, the router generates a fault announce-
ment, including its neighbor and itself, to send back
to the source.
HSER relies on source routing to act on its findings.

Thus, upon receiving a fault announcement, the
source router computes a new route to the destina-

tion excluding the detected link
from its routing fabric.

In terms of our specification,
HSER is weak-complete —since only
the source detects a failure — and
accurate with a precision of 2. Other
protocols based on this approach
are presented in [12, 15, 16].

However, the overhead of this
approach is quite high, since for
every source and destination pair,
all of the routers along the path
must participate in the detection
protocol. To mitigate this over-
head, other researchers proposed
two complementary optimizations:

• Give up precision by only validating at the end routers of a
path segment (i.e., a contiguous sequence of routers on the
path), in which case none of the intermediate routers along
the path participates in detection. However, it also becomes
impossible to isolate faults to a finer granularity than the
length of the path segment being monitored.

• Give up accuracy by generating a sampling schedule and
only sampling the chosen packets at end routers of the path
segment. While this method significantly decreases over-
head, attacks on unsampled packets cannot be detected.

Traffic Validation Per Path Segment Ends: SecTrace
SecTrace [10] was developed to be a practical tool for
securely tracing the path of traffic from a source toward a
particular destination. It proceeds hop by hop similar to
traceroute: at each round, the source validates the traffic
between itself and an intermediate router toward the destina-
tion.

The traffic validator SecTrace implements is given in Fig.
4 as a centralized service. SecTrace validates the conserva-
tion of content property of the aggregate or sampled traffic3

between the source router and an intermediate router. If the
source detects a discrepancy in the traffic, a failure is detected
and an alarm is raised.
SecTrace implements such a failure detector distributed in

the network by requiring only the end routers of the moni-
tored path segment to synchronize with each other and to
compute fingerprints for the traffic between themselves for an
agreed-upon time interval. At the end of a round, the corre-
sponding intermediate router sends back the information it
has collected and the identity of the next expected router
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n Figure 3. Failure detector via a traffic validator per path-segment nodes.
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toward the destination. Upon receiving this information, the
source router validates the conservation of content property:
if the source validates the traffic, it initiates another Sec-
Trace round with the next intermediate router toward the
destination; otherwise, the source detects a failure.

For example, in Fig. 4 a path segment of 〈r1, r2, r3, r4〉 is
monitored during the given traffic validation round, and only
the source r1 and the corresponding intermediate router r4
implement the distributed failure detector. If r1 detects a dis-
crepancy in the traffic, a failure is detected and an alarm is
raised. Either one of the intermediate routers {r2, r3} is traffic
faulty, introducing discrepancy into the monitored traffic, or
the failure detector, which is implemented by r1 and r4, is
detection protocol faulty: at least one of {r1, r4} is faulty.

In terms of our specification, SecTrace is weak-complete
— since only the source detects a failure — and accurate with
a precision of k, where k is the length of the monitored path
segment.

However, this accuracy is predicated on the assumption
that malicious actions are consistent over time and not Byzan-
tine. For example, in Fig. 4, if r1 could not validate the traffic
with r4, it would detect 〈r3, r4〉 as faulty. The reasoning behind
this approach is that r1 was able to validate the same traffic up
to the upstream neighbor r3 in the previous validation round,
so either r3 or r4 must be faulty, introducing traffic discrepan-
cy. However, if faulty routers can modify their behavior, this
assumption violates the accuracy property. For example,
assume that router r2 is faulty, but only alters traffic after r1
completes a validation round with r3. Consequently, 〈r3, r4〉
would be identified as faulty, while both r3 and r4 are correct.
To address this problem, the authors propose to give occa-
sional indications of SecTrace activity, such as by continuous-
ly sending round initialization packets pretending to monitor
the traffic, while in reality doing nothing.

Finally, they propose three different countermeasures in
response to a detected failure:
•The source tries to route the traffic around the detected link

using source routing.
•The source notifies the downstream routers, expecting them

to make the appropriate routing adjustments avoiding the
suspected routers.

•The source alerts the administrator of the suspected
routers.
Other protocols based on this approach are presented

in [12, 17–21].

Traffic Validation per Interface: Protocol χ
Unfortunately, it is quite challenging to attribute a missing
packet to a malicious action because modern IP networks
routinely drop packets when the load temporarily exceeds
a router’s buffering capacity. Almost all detection proto-
cols have tried to address this problem using a user-
defined threshold. Unfortunately, using such a threshold
will necessarily create unnecessary false positives or mask
highly focused attacks. One exception is Protocol χ [11],
which dynamically infers the number of congestive packet
losses that will occur based on measured traffic rates and
buffer sizes. Once the ambiguity from congestion is
removed, subsequent packet losses can be attributed to
malicious actions based on one of the previous traffic vali-
dation mechanisms.

The traffic validator Protocol χ implements is given
in Fig. 5 as a centralized service. Protocol χ validates
the conservation of timeliness property for aggregate traf-
fic entering each interface of a router in the network. If a
packet loss occurs when the monitored interface’s queue
is not predicted to be full, a failure is detected and an

alarm is raised.
Protocol χ implements such a failure detector distributed

in the network by requiring each neighbor of a router to syn-
chronize with each other, compute a fingerprint with a time-
stamp for each packet that passes through the interface Q
during an agreed-upon time interval, distribute these informa-
tion among the other neighboring routers, and finally, validate
the conservation of timeliness property of the traffic by simu-
lating the behavior of the monitored interface queue.

If a neighbor router rn detects that router r drops a packet
when the corresponding queue is not full, rn announces that
link 〈rn, r〉 is suspicious, and 〈rn, r〉 is removed from the routing
fabric.

In terms of our specification, Protocol χ is strong-com-
plete and accurate with a precision of 2.
Protocol χ can be extended to address the problem of

adjacent consorting faulty routers by monitoring every output
interfaces of the neighbors k hops away and disseminating the
traffic information to all neighbors within diameter hops.
However, this approach can also add significant additional
communications overhead when networks are densely con-
nected (as described in [12]). The detection protocol in [22] is
also based on this approach.

Conclusion
In this article we have described a general framework for
understanding the literature on detecting malicious routers
via packet forwarding behavior. We have described how
traffic validation is the basis for all such schemes, and dis-
tributed per-router validation is a simple approximation to
an idealized detector. However, due to the threat of con-
sorting faulty routers (i.e., multiple routers on a path have
been compromised), practical systems are limited to vali-
dating path segments rather than individual routers. Within
this approach there is a trade-off between precision and
overhead — depending on the span of a segment — and
most protocols have chosen to explore the lower overhead
part of this design space. Finally, all protocols are subject
to noise due to congestive packet loss, which is difficult to
distinguish from malicious dropping. While per-interface

n Figure 5. Failure detector via a traffic validator per interface.
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techniques can differentiate between these conditions, it
comes at the expense of high overhead. For in-depth analy-
sis of these protocols and further issues, the readers are
referred to [23]. 

In a short time there have been significant advances in this
domain, and while none of these protocols has yet been
deployed in a production network, they are quickly becoming
cheap enough and precise enough to be a viable option
against router-oriented attacks.
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