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Abstract— The responsiveness of networked applications is
limited by communications delays, making network distancean
important parameter in optimizing the choice of communications
peers. Since accurate global snapshots are difficult and expensive
to gather and maintain, it is desirable to use sampling techniques
in the Internet to predict unknown network distances from a set
of partially observed measurements.

This paper makes three contributions. First, we present a
model for representing and predicting distances in large-scale
networks by matrix factorization which can model sub-optimal
and asymmetric routing policies, an improvement on previous
approaches.

Second, we describe two algorithms — singular value decom-
position (SVD) and nonnegative matrix factorization (NMF)—for
representing a matrix of network distances as the product oftwo
smaller matrices.

Third, based on our model and algorithms, we have designed
and implemented a scalable system—Internet Distance Estimation
Service (IDES)—that predicts large numbers of network distances
from limited samples of Internet measurements. Extensive sim-
ulations on real-world data sets show that IDES leads to more
accurate, efficient and robust predictions of latencies in large-
scale networks than existing approaches.

I. I NTRODUCTION

Wide-area distributed applications have evolved consider-
ably beyond the traditional client-server model, in which a
client communicates with a single server. In content distri-
bution networks (CDN), peer-to-peer distributed hash tables
(DHT) [1], [2], [3], [4], and overlay routing [5], nodes often
have a choice of communication peers. Exploiting this choice
can greatly improve performance if relevant network distances
are known1. For example, in a CDN, an optimized client can
download Web objects from the particular mirror site to which
it has the highest bandwidth. Likewise, in DHT construction,
a peer can route lookup requests to the peer (among those that
are closer to the target in the virtual overlay network) withthe
lowest latency in the IP underlay network.

Exact knowledge of network distances, such as that obtained
from on-demand network measurements, is expensive and
time-consuming to gather and maintain, especially at scale.
Thus, a highly promising approach is to construct a model that
canpredictunknown network distances from a set of partially
observed measurements [6], [7], [8], [9], [10], [11].
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1Network distance is traditionally known as the round trip time (RTT)
between two hosts. However, in this paper, unless specified otherwise, the
definition is generalized to any type of network measurementbetween nodes,
which may or may not be symmetric.

Many previously proposed models are based on the em-
bedding of host positions in a low dimensional space, with
network distances estimated by Euclidean distances. Such
models, however, share certain limitations. In particular, they
cannot represent networks with complex routing policies,
such as sub-optimal routing2 or asymmetric routing, since
Euclidean distances satisfy the triangle inequality and are
inherently symmetric. On the Internet, such routes are quite
common [12], [13], [14], and models that do not take them
into account yield inaccurate predictions of network distances.

Our model is based onmatrix factorizationfor representing
and predicting distances in large-scale networks. The essential
idea is to approximate a large matrix whose elements represent
pairwise distances by the product of two smaller matrices.
Such a model can be viewed as a form of dimensionality
reduction. Models based on matrix factorization do not suffer
from the limitations of previous work: in particular, they
can represent distances that violate the triangle inequality, as
well as asymmetric distances. Two algorithms—singular value
decomposition (SVD) and nonnegative matrix factorization
(NMF)–are presented for learning models of this form. We
evaluate the advantages and disadvantages of each algorithm
for learning compact models of network distances. The basic
model was introduced in an earlier paper [15]. The contribu-
tions of the present paper are refinements of the model, refined
algorithms, and more thorough evaluations of the Internet
Distance Estimation Service (IDES). In particular, we address
the questions of the impact of both landmark placement and
measurement error on IDES performance.

The rest of the paper is organized as follows. Section II re-
views previous work based on the low dimensional embedding
of host positions in Euclidean space. Section III presents the
model for matrix factorization of network distances. The SVD
and NMF algorithms for learning these models from network
measurements are presented and evaluated in Section IV. Sec-
tion V proposes an architecture to estimate distances required
by an arbitrary host from low dimensional reconstructions.The
architecture is evaluated in Section VI. Finally, Section VII
summarizes the paper.

2With sub-optimal routing policies, the network distance between two end
hosts does not necessarily represent the shortest path in the network. Such
routing policies exist widely in the Internet for various technical, political and
economic reasons.
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II. N ETWORK EMBEDDINGS

One way to predict network distance between arbitrary
Internet end hosts is to assign each host a “position” in a
finite-dimensional vector space. This can be done at the cost
of a limited number of network measurements to a set of well-
positioned infrastructure nodes (also known aslandmark or
beaconnodes), or other peer nodes. In such a model, a pair
of hosts can estimate the network distance between them by
applying a distance function to their positions, without direct
network measurement. Most previous work on these models
has represented the host positions by coordinates in Euclidean
space and adopted Euclidean distance as the distance function.

We define the problem formally as follows. Suppose there
are N hostsH = {H1,H2, · · · ,HN} in the network. The
pairwise network distance matrix is aN ×N matrix D, such
that Dij ≥ 0 is the network distance fromHi to Hj .

A networkembeddingis a mappingH : H → R
d such that

Dij ≈ D̂ij = ‖H(Hi)−H(Hj)‖, ∀i, j = 1, . . . , N (1)

whereD̂ij is the estimated network distance fromHi to Hj

andH(Hi) is the position coordinate ofHi as ad-dimensional
real vector. We simplify the coordinate notation fromH(Hi)
to ~Hi = (Hi1, Hi2, · · · , Hid). The network distance between
two hostsHi andHj is estimated by the Euclidean distance
of their coordinates:

D̂ij = ‖ ~Hi − ~Hj‖ =

(

d
∑

k=1

(Hik −Hjk)2

)

1

2

(2)

The main problem in constructing a network embedding is
to compute the position vectors~Hi for all hostsHi from a
partially observed distance matrixD. A number of learning
algorithms have been proposed to solve this problem, which
we describe in the next section.

A. Previous work

The first work in the network embedding area was done by
Ng and Zhang [10], whose Global Network Positioning (GNP)
System embedded network hosts in a low-dimensional Eu-
clidean space. Many algorithms were subsequently proposed
to calculate the coordinates of network hosts. GNP uses a
Simplex Downhill method to minimize the sum of relative
errors:

total err =
∑

i

∑

j

|Dij − D̂ij |
Dij

(3)

The drawback of GNP is that the Simplex Downhill method
converges slowly, and the final results depend on the initial
values of the search. PIC [6] applies the same algorithm to
the sum of squared relative errors and studies security-related
issues.

Cox, Dabeket. al. proposed the Vivaldi algorithm [16],
[7] based on an analogy to a network of physical springs.
In this approach, the problem of minimizing the sum of errors
is related to the problem of minimizing the potential energy
of a spring system. Vivaldi has two main advantages: it is a
distributed algorithm, and it does not require landmark nodes.
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Fig. 1. Four hostsH1 −H4 in a simple network topology

Lim et. al. [9] and Tanget. al. [11] independently proposed
models based on Lipschitz embeddings and Principal Com-
ponent Analysis (PCA). These models begin by embedding
the hosts in anN -dimensional space, where the coordinates
of the hostHi are given by its distances(Di1, · · · , DiN ) to
N landmark nodes. This so-called Lipschitz embedding has
the property that hosts with similar distances to other hosts
are located nearby in theN -dimensional space. To reduce
the dimensionality, the host positions in thisN -dimensional
space are then projected into thed-dimensional subspace of
maximum variance by PCA. A linear normalization is used to
further calibrate the results, yielding the final host positions
~Hi ∈ R

d.

B. Limitations

Euclidean distances are inherently symmetric; they also sat-
isfy the triangle inequality. Thus, in any network embedding,

D̂ij = D̂ji ∀i, j
D̂ij + D̂jk ≥ D̂ik ∀i, j, k

First, the triangle inequality property is inconsistent with
observed network distances. On the Internet, studies indicate
that as many as 40% of node pairs of real-world data sets have
a shorter path through an alternate node[12], [11]. Second,un-
less the definition of network distances is RTT, the symmetry
property also disagrees with the observation. previous study
shows that asymmetric routing is quite common [14]; even
for the same link, the upstream and downstream capacities
may be very different [13].

In addition to these limitations, low-dimensional embed-
dings of host positions cannot always model distances in
networks where there are pairs of nodes that do not have a
direct path between them, even if the distances are symmetric
and satisfy the triangle inequality. Figure 1 illustrates asimple
network topology in which four hosts in different autonomous
systems are connected with unit distance to their neighbors.
An intuitive two-dimensional embedding is also shown. In
the given embedding, the estimated distances areD̂14 =
D̂23 =

√
2, but the real distances areD14 = D23 = 2. It is

provable that there exists no Euclidean space embedding (of
any dimensionality) that can exactly reconstruct the distances
in this network. Similar cases arise in networks with tree-like
topologies.
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III. D ISTANCE MATRIX FACTORIZATION

The limitations of previous models lead us to consider a
different framework for compactly representing network dis-
tances. Suppose that two nearby hosts have similar distances
to all the other hosts in the network. In this case, their corre-
sponding rows in the distance matrix will be nearly identical.
More generally, there may be many rows in the distance matrix
that are equal or nearly equal to linear combinations of other
rows. Recall from linear algebra that anN ×N matrix whose
rows are not linearly independent has rank strictly less than N

and can be expressed as the product of two smaller matrices.
With this in mind, we seek an approximate factorization of
the distance matrix, given by:

D ≈ XY T ,

whereX andY areN × d matrices withd≪ N . From such
a model, we can estimate the network distance fromHi to
Hj by D̂ij = ~Xi · ~Yj , where ~Xi is the ith row vector of the
matrix X and ~Yj is thejth row vector of the matrixY .

More formally, for a network with distance matrixDij , we
define adistance matrix factorizationas two mappings

X : H → R
d,

Y : H → R
d,

and an approximate distance function computed by

D̂ij = X(Hi) · Y (Hj).

As shorthand, we denoteX(Hi) as ~Xi andY (Hi) as ~Yi, so
that we can write the above distance computation as:

D̂ij = ~Xi · ~Yj =

d
∑

k=1

XikYjk. (4)

Note that in contrast to the model in section II, which maps
each host to one position vector, our model associatestwo
vectors with each host. We call~Xi theoutgoing vectorand~Yi

the incoming vectorfor Hi. The estimated distance fromHi

to Hj is simply the dot product between the outgoing vector
of Hi and the incoming vector ofHj .

Applying this model of network distances in distributed
applications is straightforward. For example, consider the
problem of mirror selection. To locate the closest server among
several mirror candidates, a client can retrieve the outgoing
vectors of the mirrors from a directory server, calculate the
dot product of these outgoing vectors with its own incoming
vector, and choose the mirror that yields the smallest estimate
of network distance (i.e., the smallest dot product).

Our model for representing network distances by matrix
factorization overcomes certain limitations of models based
on low dimensional embeddings. In particular, distances com-
puted in this way are not constrained to satisfy the triangle
inequality. The main assumption of our model is that many
rows in the distance matrix are linearly dependent, or nearly
so. This is likely to occur whenever there are clusters of
nearby nodes in the network which have similar distances to
distant nodes. In this case, the distance matrixD will be well
approximated by the product of two smaller matrices.

IV. D ISTANCE RECONSTRUCTION

In this section we investigate how to estimate outgoing
and incoming vectors~Xi and ~Yi for each hostHi from the
distance matrixD. We also examine the accuracy of models
that approximate the true distance matrix by the product of
two smaller matrices in this way.

The distance matrixD can be viewed3 as storing N

row-vectors inN -dimensional space. Factoring this matrix
D ≈ XY T is essentially a problem in linear dimensionality
reduction, whereY storesd basis vectors andX stores the
linear coefficients that best reconstruct each row vector ofD.
We present two algorithms for matrix factorization that solve
this problem in linear dimensionality reduction.

A. Singular value decomposition

An N × N distance matrixD can be factored into three
matrices by its singular value decomposition (SVD), of the
form:

D = USV T ,

whereU andV areN ×N orthogonal matrices andS is an
N ×N diagonal matrix with nonnegative elements (arranged
in decreasing order). LetA = US

1

2 and B = S
1

2 V , where
S

1

2

ii =
√

Sii. It is easy to see thatABT = US
1

2 (V S
1

2 )T =
US

1

2 S
1

2 V T = D. Thus SVD yields an exact factorization
D = ABT , where the matricesA and B are the same size
asD.

We can also use SVD, however, to obtain an approximate
factorization of the distance matrix into two smaller matrices.
In particular, suppose that only a few of the diagonal elements
of the matrix S are appreciable in magnitude. Define theN×d

matrices:

Xij = Uij

√

Sjj , (5)

Yij = Vij

√

Sjj , (6)

wherei = 1 . . .N andj = 1 . . . d. The productXY T is a low-
rank approximation to the distance matrixD; if the distance
matrix is itself of rankd or less, as indicated bySjj = 0
for j > d, then the approximation will in fact be exact. The
low-rank approximation obtained from SVD can be viewed as
minimizing the squared error function

∑

i

∑

j

(Dij − ~Xi · ~Yj)
2 (7)

with respect toXi ∈ R
d and Yj ∈ R

d. Eqs. (5) and (6)
compute theglobal minimumof this error function.

Matrix factorization by SVD is related to principal compo-
nent analysis (PCA) [17] on the row vectors. Principal com-
ponents of the row vectors are obtained from the orthogonal
eigenvectors of their correlation matrix; each row vector can
be expressed as a linear combination of these eigenvectors.

3Note thatD does not have to be a square matrix of pairwise distances.
It can be the distance matrix from one set ofN hostsH to another set of
N ′ hostsH′, which may or may not overlap with each other. In this case,
X ∈ R

N×d contains the outgoing vectors forH andY ∈ R
d×N

′

contains
the incoming vectors forH′. For simplicity, though, we consider the case
N = N ′ in what follows.
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The diagonal values ofS measure the significance of the
contribution from each principal component. In previous work
on embedding of host positions by PCA, such as ICS [9]
and Virtual Landmark [11], the firstd rows of the matrixU
were used as coordinates for the hosts, while discarding the
information in the matricesS andV . By contrast, our approach
usesU , S andV to compute outgoing and incoming vectors
for each host.

We use the topology in Figure 1 as an example to show
how the algorithm works. The distance matrix is

D =

2

6

4

0 1 1 2

1 0 2 1

1 2 0 1

2 1 1 0

3

7

5

We obtain the SVD result as

U =

2

6

6

6

4

−0.5 0
1√
2

0.5

−0.5 −

1√
2

0 −0.5

−0.5 1√
2

0 −0.5

−0.5 0 −

1√
2

0.5

3

7

7

7

5

, S =

2

6

4

4 0 0 0

0 2 0 0

0 0 2 0

0 0 0 0

3

7

5

V =

2

6

6

6

4

−0.5 0 −

1√
2

−0.5

−0.5 1√
2

0 0.5

−0.5 −

1√
2

0 0.5

−0.5 0
1√
2

−0.5

3

7

7

7

5

Note thatS44 = 0. Therefore, an exactd = 3 factorization
exists with:

X =









−1 0 1
−1 −1 0
−1 1 0
−1 0 −1









, Y =









−1 0 −1
−1 1 0
−1 −1 0
−1 0 1









One can verify in this case that the reconstructed distance
matrix XY T is equal to the original distance matrixD.

B. Non-negative matrix factorization

Non-negative matrix factorization (NMF) [18] is another
form of linear dimensionality reduction that can be appliedto
the distance matrixDij . The goal of NMF is to minimize
the same error function as in Eq. (7), but subject to the
constraint thatX andY are non-negative matrices. In contrast
to SVD, NMF guarantees that the approximately reconstructed
distances are nonnegative:̂Dij ≥ 0. The error function for
NMF can be minimized by an iterative algorithm. Compared to
gradient descent and the Simplex Downhill method, however,
the algorithm for NMF converges much faster and does not
involve any heuristics, such as choosing a step size. The only
constraint on the algorithm is that the true network distances
must themselves be nonnegative,Dij ≥ 0; this is generally
true and holds for all the examples we consider. The algorithm
takes as input initial (random) matricesX andY and updates
them in an alternating fashion. The update rules for each
iteration are:

Xia ← Xia

(DY )ia

(XY T Y )ia

Yja ← Yja

(XT D)aj

(XT XY T )aj

It is known that these update rules converge monotonically to
stationary points of the error function, Eq. (7). Our experience
shows that two hundred iterations suffice to converge to a local
minimum.

One major advantage of NMF over SVD is that it is
straightforward to modify NMF to handle missing entries in
the distance matrixD. For various reasons, a small number
of elements inD may be unavailable. SVD can proceed with
missing values if we eliminate the rows and columns inD

that contain them, but doing so will leave the corresponding
host positions unknown.

NMF can cope with missing values if we slightly change the
update rules. SupposeM is a binary matrix whereMij = 1
indicatesDij is known andMij = 0 indicatesDij is missing.
The modified update rules are:

Xia ← Xia

∑

k DikMikYka
∑

k(XY T )ikMikYka

(8)

Yja ← Yja

∑

k(XT )akDkjMkj
∑

k(XT )ak(XY T )kjMkj

(9)

These update rules converge to local minima of the error
function,

∑

ij Mij |Dij − ~Xi · ~Yj |2.

C. Evaluation

We evaluated the accuracy of network distance matrices
modeled by SVD and NMF and compared the results to
those of PCA from the Lipschitz embeddings used by Virtual
Landmark [11] and ICS [9]. We did not evaluate the Simplex
Downhill algorithm used in GNP because while its accuracy
is not obviously better than Lipschitz embedding, it is much
more expensive, requiring hours of computation on large data
sets [11]. Accuracies were evaluated by the modified relative
error,

relativeerror=
|Dij − D̂ij |

min(Dij , D̂ij)
(10)

where the min-operation in the denominator serves to increase
the penalty for underestimated network distances.

1) Data sets: We used the following five real-world data
sets in simulation. Parts of the data sets were filtered out
to eliminate missing elements in the distance matrices (since
none of the algorithms except NMF can cope with missing
data).

The network distances in the data sets are round-trip time
(RTT) between pairs of Internet hosts. RTT is symmetric be-
tween two end hosts, but it does violate the triangle inequality
and also give rise to other effects (described in Section II-B)
that are poorly modeled by network embeddings in Euclidean
space.4

• NLANR : The NLANR Active Measurement Project [19]
collects a variety of measurements between all pairs
of participating nodes. The nodes are mainly at NSF
supported HPC sites, with about 10% outside the US.

4Note that the proposed model can be applied to any type of network mea-
surement between nodes, such as one-way latency, loss rate,and bandwidth,
but we have only experimentally validated the model for RTT.Validation on
data sets that use different metrics as the distances is still an open problem
and will be considered in our future work.
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The data set we used was collected on January 30, 2003,
consisting of measurements of a110× 110 clique. Each
host was pinged once per minute, and network distance
was taken as the minimum of the ping times over the day.

• GNP andAGNP: The GNP project measured minimum
round trip time between 19 active sites in May 2001.
About half of the hosts are in North America; the rest
are distributed globally. We used GNP to construct a
symmetric19 × 19 data set and AGNP to construct an
asymmetric869× 19 dataset.

• P2PSim: The P2Psim project [20] measured a distance
matrix of RTTs among about 2000 Internet DNS servers
based on the King method [21]. The DNS servers were
obtained from an Internet-scale Gnutella network trace.

• PL-RTT : Obtained from PlanetLab pairwise ping project
[22]. We chose the minimum RTT measured at 3/23/2004
0:00 EST. A169×169 full distance matrix was obtained
by filtering out missing values.
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Fig. 2. Cumulative distribution of relative error by SVD over various data
sets,d = 10

2) Simulated Results:Figure 2 illustrates the cumulative
density function (CDF) of relative errors of RTT reconstructed
by SVD whend = 10, on 5 RTT data sets. The best result is
over GNP data set: more than 90% distances are reconstructed
within 9% relative error. This is not too surprising because
the GNP data set only contains 19 nodes. However, SVD also
works well over NLANR, which has more than 100 nodes:
about 90% fraction of distances are reconstructed within 15%
relative error. Over P2PSim and PL-RTT data sets, SVD
achieves similar accuracy results: 90 percentile relativeerror
is 50%. We ran the same tests on NMF and observed similar
results. Therefore, we chose NLANR and P2PSim as two
representative data sets for the remaining simulations.

Figure 3 compares the reconstruction accuracy of three
algorithms: matrix factorization by SVD and NMF, and PCA
applied to the Lipschitz embedding. The algorithms were
simulated over NLANR and P2PSim data sets. It is shown
that NMF has almost exactly the same median relative errors
as SVD on both data sets when the dimensiond < 10.
Both NMF and SVD yield much more accurate results than
Lipschitz: the median relative error of SVD and NMF is more
than 5 times smaller than Lipschitz whend = 10. SVD is

slightly better than NMF whend is large. The reason for this
may be that the algorithm for NMF is only guaranteed to
converge to local minima. Considering that the hosts in the
data sets come from all over the Internet, the results show
that matrix factorization is a scalable approach to modeling
distances in large-scale networks. In terms of maintaininga
low-dimensional representation,d ≈ 10 appears to be a good
tradeoff between complexity and accuracy for both SVD and
NMF.

V. D ISTANCE PREDICTION

The simulation results from the previous section demon-
strate that pairwise distances in large-scale networks arewell
modeled by matrix factorization. In this section we present
the Internet Distance Estimation Service (IDES)— a scalable
and robust service based on matrix factorization to estimate
network distances between arbitrary Internet hosts.

A. Basic architecture

We classify Internet hosts into two categories: landmark
nodes and ordinary hosts. Landmark nodes are a set of well-
positioned distributed hosts. The network distances between
each of them is available to theinformation serverof IDES.
We assume that landmarks can measure network distances to
others and report the results to the information server. The
information server can also measure the pairwise distances
via indirect methods without landmark support,e.g. by the
King method [21] if the metric is RTT. An ordinary host is
an arbitrary end node in the Internet, which is identified by a
valid IP address.

Suppose there arem landmark nodes. The first step of IDES
is to gather them × m pairwise distance matrixD on the
information server. Then, we can apply either SVD or NMF
algorithm overD to obtain landmark outgoing and incoming
vectors ~Xi and ~Yi in d dimensions,d < m, for each hostHi.
As before, we useX andY to denote thed×m matrices with
~Xi and ~Yi as row vectors. Note that NMF can be used even
whenD contains missing elements.

Now suppose an ordinary hostHnew wants to gather
distance information over the network. The first step is to
calculate its outgoing vector~Xnew and incoming vector~Ynew.
To this end, it measures the network distances to and from the
landmark nodes. We denoteDout

i as the distance to landmark
i, andDin

i as the distance from landmarki to the host. Ideally,
we would like the outgoing and incoming vectors to satisfy
Dout

i = ~Xnew · ~Yi andDin

i = ~Xi · ~Ynew. The solution with the
least squares error is given by:

~Xnew = argmin
~U∈Rd

m
∑

i=1

(Dout

i − ~U · ~Yi)
2 (11)

~Ynew = argmin
~U∈Rd

m
∑

i=1

(Din

i − ~Xi · ~U)2 (12)

The global minima of these error functions, computed by
simple matrix operations, have the closed form:

~Xnew = (DoutY )(Y T Y )−1 (13)
~Ynew = (DinX)(XT X)−1 (14)
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Fig. 3. Reconstruction error comparison of SVD, NMF and Lipschitz over NLANR and P2PSim data set

Eqs. (13–14) assume that the optimizations are unconstrained.
Alternatively, one can impose nonnegativity constraints on
~Xnew and~Ynew; this will guarantee that the predicted distances
are themselves nonnegative (assuming that the landmark dis-
tance matrix was also modeled by NMF). The least squared
error problems in Eqs. (11–12) can be solved with nonnegativ-
ity constraints, but the solution is somewhat more complicated.
Our simulation results did not reveal any significant difference
between the prediction accuracies of least squares solutions
with and without non-negativity constraints; thus, in what
follows, we focus on the simpler unconstrained solutions in
Eqs. (13–14).

1

11

1

0.5 0.5

L2

L1

L3

L4H1 H2

Fig. 4. Four landmark nodesL1 − L4 and two ordinary hostsH1, H2

interconnected by a simple network topology

We give a simple example of this procedure in Figure 4. The
network is an enlarged version of the network in Figure 1,
with the four original nodes serving as landmarks and two
new nodes introduced as ordinary hosts. The first step is
to measure inter-landmark distances and calculate landmark
incoming and outgoing vectors. We used SVD to factor the
landmark distance matrix in this example. The result is the
same as the example in section IV:

X =









−1 0 1
−1 −1 0
−1 1 0
−1 0 −1









, Y =









−1 0 −1
−1 1 0
−1 −1 0
−1 0 1









Note that SVD can be substituted by NMF and the following

steps are identical.
Second, we measure the distance vectors for the ordinary

hosts:Dout = Din = [0.5 1.5 1.5 2.5] for ordinary hostH1.
According to Eqs. (13 – 14),~XH1

= [−1.5 0 1], ~YH1
=

[−1.5 0 − 1]. Similarly, we obtain the distance vector ofH2

as [2.5 1.5 1.5 0.5], and calculate its outgoing and incoming
vectors: ~XH2

= [−1.5 0 − 1], ~YH2
= [−1.5 0 1]. One can

verify that distances between ordinary hosts and landmarksare
exactly preserved. The distance between two ordinary hostsis
not measured, but can be estimated as~XH1

· ~YH2
= ~XH2

·
~YH1

= 3.25, while the real network distance is 3.

B. Optimization

The basic architecture requires an ordinary host to measure
network distances to all landmarks, which limits the scalability
of IDES. Furthermore, if some of the landmark nodes experi-
ence transient failures or a network partition, an ordinaryhost
may not be able to retrieve the measurements it needs to solve
Eqs. (13–14).

To improve the scalability and robustness of IDES, we
propose a relaxation to the basic architecture: an ordinaryhost
Hnew only has to measure distances to a set ofk nodes with
pre-computed outgoing and incoming vectors. Thek nodes can
be landmark nodes, or other ordinary hosts that have already
computed their vectors. Suppose the outgoing vectors of those
k nodes are~X1, ~X2, · · · , ~Xk and the incoming vectors are
~Y1, ~Y2, · · · , ~Yk. We measureDout

i and Din
i as the distance

from and to theith node, for alli = 1, · · · , k. Calculating the
new vectors~Xnew and ~Ynew for Hnew is done by solving the
least squares problems:

~Xnew = argmin
~U∈Rd

k
∑

i=1

(Dout

i − ~U · ~Yi)
2 (15)

~Ynew = argmin
~U∈Rd

k
∑

i=1

(Din

i − ~Xi · ~U)2 (16)

The solution is exactly the same form as described in Eq. (13)
and Eq. (14). The constraintk ≥ d is necessary (and usually
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sufficient) to ensure that the problem is not singular. In
general, larger values ofk lead to better prediction results,
as they incorporate more measurements of network distances
involving Hnew into the calculation of the vectors~Xnew and
~Ynew.

We use the topology in Figure 4 again to demonstrate how
the system works. As in the basic architecture, the first step
is to measure inter-landmark distances and calculate landmark
outgoing and incoming vectors. Secondly, the ordinary host
H1 measures the distances toL1, L2 andL3 as [0.5 1.5 1.5].
By Eq. (13) and Eq. (14), the vectors are~XH1

=[-1.5 0 1],
~YH1

=[-1.5 0 -1]. Note that we did not measure the distance
betweenH1 andL4, but it can be estimated as~XH1

· ~YL4
=[-

1.5 0 1]·[-1 0 1]= 2.5, which is in fact the true distance.
Finally, the ordinary hostH2 measures the distances toL2,
L4 andH1 as [1.5 0.5 3]. Because all of them already have
pre-computed vectors,H2 can compute its own vectors by
Eq. (13) and Eq. (14). The results are~XH2

=[-1.4 0.1 -0.9],
~YH2

=[-1.4 -0.1 0.9]. The distances between ordinary hostH2

andL1/L3 are not measured directly, but can be estimated as
~XH2
·~YL1

=[-1.4 0.1 -0.9]·[-1 0 -1]= 2.3 and ~XH2
·~YL3

=[-1.4
0.1 -0.9]·[-1 -1 0]= 1.3.

H1 H2
L1

L2

L1

L3

L4

1.5/1.5

1.5/1.5

0.5/0.5

1.5/1.5

0.5/0.5
3/3

2.5/2.5

1.5/1.3

2.5/2.3

H1

L2

L3

L4

Fig. 5. Learning outgoing and incoming vectors for two ordinary hosts.
Solid lines indicate that real network measurement is conducted. Each edge
is annotated with (real network distance / estimated distance).

This example illustrates that even without measurement to
all landmarks, the estimated distances can still be accurate.
In this example, most of the pairwise distances are exactly
preserved; the maximum relative error is 15% when predicting
the distance betweenH2 and L2. In the example, the load
is well distributed among landmarks. As shown in Figure 5,
distances toL2 are only measured twice during this estimation
procedure. Such a scheme allows IDES to scale to a large
number of ordinary hosts and landmarks. It is also robust
against partial landmark failures.

C. Landmark selection

The system performance depends on the positioning of the
landmarks. Ill-positioned landmarks can significantly reduce
the accuracy of estimated network distances. For example, as
a worst case, imagine that all the landmarks are very close to
each other. Then the pairwise distance matrixD will be close
to the zero matrix, and modelingD by matrix factorization
will not capture any information about long-range distances
or the global network topology. Given a set of nodes and
their pairwise network distances, we propose the following
four landmark selection algorithms and evaluate them in the
next section.

• random
We randomly choose landmarks by uniformly sampling
(without replacement) from the set of all candidate nodes.
In this scheme, each node has the same probability to be
chosen as a landmark, and no information about pairwise
distances is required.

• k-means
The k-means algorithm [23] is a well- known iterative
procedure for detectingk clusters in multivariate data.
We adapt the algorithm to find clusters in the space
of host nodes; the host nodes closest to the cluster
centroids are then chosen as landmark nodes. Since only
distances between host nodes are initially specified, it
is necessary to represent the host nodes as points in
a vector space before applying thek-means algorithm.
We choose the Lipschitz embedding method: each node
Hi is represented by theN -dimensional vector whose
elements are its distances(Di1, · · · , DiN ) to the other
nodes in the network. Note that Euclidean distances in
this representation do not preserve the distances originally
specified by the matrixD, as discussed in section II.

• spectral clustering
Spectral clustering [24] is another well-known clustering
procedure. Unlike k-means, it can cluster objects directly
based on their pairwise distances, without requiring an
intermediate vector space representation. Moreover, the
main step of spectral clustering is an eigenvector com-
putation, not an iterative optimization with potentially
spurious local minima, as in k-means. In general, spectral
clustering is more robust than k-means, but also more
computationally expensive. We use the algorithm in [24]
to assign nodes tok different clusters and choose the
nodes closest to each cluster centroid as landmark nodes.

• maximum distance
Finally, we use a simple greedy heuristic to identify
landmarks whose summed pairwise distances are approx-
imately maximized. (An optimal algorithm would be NP-
hard.) Our algorithm works as follows: (1) initially, we
choose one node at random as the first landmark; (2) from
the remaining nodes, we choose the node with maximum
average distance to the existing landmarks as the next
landmark; (3) we repeat step (2) until enough landmarks
have been chosen.
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VI. EVALUATION

In this section we evaluate IDES, using SVD and NMF
algorithms to learn models of network distances, and compare
them to the GNP [10] and ICS [9] systems.

The experiments were performed on a Dell Dimension
4600 with Pentium 4 3.2GHz CPU, 2GB RAM. The GNP
implementation was obtained from the official GNP software
release written in C. We implemented IDES and ICS exactly
as described in [9] in MatLab 6.0. Please refer to Section II-A
for details of the GNP and ICS systems.

We identify four evaluation criteria:

• Efficiency
We measure efficiency by the total running time required
by a system to build its model of network distances
between all landmark nodes and ordinary hosts.

• Accuracy
The prediction error betweenDij and D̂ij should be
small. We use the modified relative error function in Eq.
(10) to evaluate accuracy, which is also used in GNP and
Vivaldi. Note that predicted distances are computed be-
tween ordinary hosts that have not conducted any network
measurements of their distance. Predicted distance errors
are different than reconstructed distance errors (where
actual network measurements are conducted). Evaluations
based on other proposed error functions [25] will be
considered in our future work.

• Scalability
The storage requirements areO(d) for models based on
network embeddings (with one position vector for each
host) and matrix factorizations (with one incoming and
outgoing vector for each host). In large-scale networks,
the number of hostsN is very large. The condition
d≪ N allows the model to scale, assuming that reason-
able accuracy of predicted distances is maintained. Also,
to support multiple hosts concurrently, it is desirable
to distribute the load—for instance, by only requiring
distance measurements to partial sets of landmarks.

• Robustness
A robust system should be resilient against host failures,
temporary network partitioning, and measurement errors.
In particular, partial failure of landmark nodes should
not prevent the system from building models of network
distances.

A. Efficiency and accuracy

We use three data sets for evaluating accuracy and effi-
ciency.

• GNP: 15 out of 19 nodes in the symmetric data set were
selected as landmarks. The rest of the 4 nodes and the
869 nodes in the AGNP data set were selected as ordinary
hosts. Prediction accuracy was evaluated on869×4 pairs
of hosts.

• NLANR: 20 out of 110 nodes were selected randomly
as landmarks. The remaining 90 nodes were treated as
ordinary hosts. The prediction accuracy was evaluated on
90× 90 pairs of hosts.

data set IDES/SVD IDES/NMF ICS GNP
GNP 0.10s 0.12s 0.02s 1min 19s

NLANR 0.01s 0.02s 0.01s 4min 44s
P2PSim 0.16s 0.17s 0.03s 2min 30s

TABLE I

EFFICIENCY COMPARISON ONIDES, ICSAND GNPOVER FOUR DATA

SETS

• P2PSim: 20 out of 1143 nodes were selected randomly
as landmarks. The remaining 1123 nodes were treated as
ordinary hosts. The prediction accuracy was evaluated on
1123× 1123 pairs of hosts.

Although deliberate placement of landmarks might yield more
accurate results, we chose the landmarks randomly since in
general they may be placed anywhere on the Internet. We
present the study of landmark placement effect in section VI-
C. To ensure fair comparisons, we used the same set of land-
marks for all four algorithms. We also repeated the simulation
several times, and no significant differences in results were
observed from one run to the next.

Table I illustrates the running time comparison between
IDES, ICS and GNP. GNP is much less efficient than the IDES
and ICS. This is because GNP uses Simplex Downhill method,
which converges slowly to local minima. Both IDES and ICS
have running time less than 1 second, even when the data sets
contain thousands of nodes. It is possible to reduce the running
time of GNP by sacrifying the accuracy, but the parameters are
hard to tune, which is another drawback of Simplex Downhill
method.

Figure 6 plots the CDF of prediction errors for IDES using
SVD, IDES using NMF, ICS and GNP over the three data
sets respectively. In Figure 6(a), the GNP system is the most
accurate system for the GNP data set. IDES using SVD
and NMF are as accurate as GNP for 70% of the predicted
distances. The GNP data set is somewhat atypical, however,
in that the predicted distance matrix has many more columns
(869) than rows (4). Figure 6(b) and 6(c) depict the CDF of
prediction errors over NLANR and P2PSim data sets, which
are more typical. In both cases, IDES has the best prediction
accuracy. On the NLANR data set, IDES yields better results
than GNP and ICS: the median relative error of IDES using
SVD is only 0.03. Its 90th percentile relative error is about
0.23. The accuracy is worse for all three systems in P2PSim
data set than in NLANR data set. However, IDES (with either
SVD or NMF) is still the most accurate system among the
three. The better prediction results on the NLANR data set
may be due to the fact that 90% of the hosts in NLANR are
in North America and the network distances, computed from
minimum RTT over a day, are not affected much by queueing
delays and route congestion. These properties make the data
set more uniform, and therefore, more easily modeled by a
low dimensional representation.

B. Scalability and robustness

In the previous subsection, we showed that IDES can
accurately model the network distances in low dimensions
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Fig. 7. the correlation between accuracy and landmark failures on IDES using SVD algorithm.
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Fig. 8. the impact of measurement errors on the accuracy of IDES and ICS. In each test, there isp fraction of links are subject to measurement errors.

d ≤ 10, which is fundamental to make the system scale to
large-scale networks. In this subsection, we study the impact of
partially observed landmarks and network measurement errors
on the accuracy of IDES.

1) partially observed landmarks:Measuring the distances
to only a subset of landmark nodes reduces the overall load and
allows the system to support more ordinary hosts concurrently.
It also makes the system robust to partial landmark failures.

We simulated partially observed landmark scenarios in
IDES using SVD to model partial distance matrices from
the NLANR and P2PSim data sets. For each data set, we
experimented with two settings: 20 random landmarks and
50 random landmarks. The simulation results are shown in
Figure 7. The x-axis indicates the fraction of unobserved
landmarks. The unobserved landmarks for each ordinary host
were independently generated at random. When the number
of landmarks is less than twice the model dimensionalityd,
the accuracy appears sensitive to the fraction of unobserved
landmarks. However, as the number of landmarks increases,
the system tolerates more failure: for example, not observing
40% of the landmarks has little impact on the system accuracy
when 50 landmarks are used in the test.

2) measurement errors:In previous simulations, we assume
that all the measurement results from the data sets are accurate.
However, in the real world, measurement may contain various
kinds of errors. For example, a temporary route change may

result unstable measurement results; a very high load node
may respond the ICMP ECHO or UDP packet with a higher
delay5; a transparent Web proxy may intercept TCP SYN
packets and respond with SYN/ACK packets to make TCP
probing results inaccurate. A robust system should be resilient
against a small amount of measurement anomalies and still
yield reasonably accurate results.

To this end, we studied how well IDES and ICS work
by simulating measurement errors. We first assumed that the
original data sets do not contain erroneous results. Then,
among then × (n − 1) links in the distance matrixD, we
randomly pickedpn(n − 1) links, where0 < p < 1, and
increased the RTTs of these links toλ times of the original
values. This is to say that, in the following simulation, the
measured network distances could be larger than the actual
values as much asλ−1 times. We simulated the IDES system
using SVD and ICS respectively. 20 landmarks were chosen
by the random algorithm, and the dimension used wasd = 10.
Note that when calculating the estimation errors, we compared
the estimated results to the actual network distances (i.e.the
original data without injected errors). We ran the simulation
over the NLANR and P2P data sets, repeated the test 100

5The data set from PlanetLab pairwise ping project [22] show that some
of the RTTs are longer than 2000 ms, which is unlikely to happen in today’s
Internet. We suspect this is due to the fact that the PlanetLab nodes are often
overloaded.
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Fig. 6. Accuracy comparison on IDES using SVD and NMF, ICS, and GNP,
d = 8

times, and report the average median estimation errors in
Figure 8. Not surprisingly, in the IDES system, the amount
of relative estimation errors increases when the amount of
inaccurately measured links increases. The higher the degree
of measurement errorλ is, the faster the estimation error
increases along withp. However, even whenp = 0.05 and
λ = 3, i.e.5% of the network links are subject to 2 times more
measurement errors, IDES is still more accurate than the case
of ICS where no link suffers any measurement error. In ICS,
the accuracy is not affected much whenλ is low. However,
we noticed significant estimation error whenp = 0.15 and
λ = 10 over both data sets, which means that ICS is not as

robust as IDES when the measurement error range is large,
the reason for which deserves further investigation.

C. Landmark selection
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Fig. 9. performance comparison on the landmark selection algorithms (
random, k-means, spectral clustering and maximum distance) over the datasets
of NLANR, P2PSim and PL-RTT. 20 landmarks are chosen.d = 10

In this subsection, we use simulation to evaluate the impacts
of different landmark selection algorithms on the accuracy
of IDES. Except for the random algorithm, we assume the
pairwise network distances among all the nodes are given
when choosing the landmarks. Although the assumption is
somewhat unrealistic in very large scale networks, under-
standing the relationship between landmark distribution and
prediction accuracy is important.

We studied the four algorithms proposed in section V-C,
the random algorithm, the k-means algorithm, the spectral
clustering algorithm, and the maximum distance algorithm.
Each of them was evaluated over three data sets (NLANR,
P2PSim, and PL-RTT). After using a particular algorithm to
select a pre-defined number of landmarks (20 in the simula-
tion), we ran IDES using SVD withd = 10 to predict the
network distances between ordinary nodes, and recorded the
90th percentile relative error of the predicted distances.For
each landmark selection algorithm and data set, we repeated
the test 100 times, and reported the average and standard
deviation of the 90th percentile relative error in Figure 9(a)
and 9(b), respectively. From the figures, we can see that the
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average errors of the random, k-means and spectral clustering
algorithms are quite close, and it is consistent over the three
data sets. However, maximum distance algorithm is much
worse: for example, the average 90th percentile relative error
of the maximum algorithm is about 5 times larger than the
errors of the other three algorithms over the P2PSim data
set. This indicates that the maximum distance algorithm is
not appropriate for landmark selection in IDES system. From
Figure 9(b), we can see that the standard deviation of the 90th
percentile relative error of the random algorithm is largerthan
the k-means and spectral clustering algorithms. This is due
to the fact that random selections do not necessarily prevent
“bad” landmark selections. Therefore, the stability of yielded
accuracy of the random algorithm is lower than the two clus-
tering based algorithms. The k-means and spectral clustering
algorithms slightly outperform each other in different data sets.
We conclude that the maximum distance algorithm is not a
good choice of landmark selection; the random algorithm,
although not as stable as the clustering based algorithms,
performs reasonably well and has the least time complexity
without assuming a given distance matrix. A previous study on
virtual network coordinates also showed that random landmark
selection is fairly effective if more than 20 landmarks are
employed [26].

VII. SUMMARY

In this paper, we have presented a model based on matrix
factorization for predicting network distances between arbi-
trary Internet hosts. Our model imposes fewer constraints on
network distances than models based on low dimensional em-
beddings; in particular, it can represent distances that violate
the triangle inequality. Such a model is more suitable for
modeling the topology and complex routing policies on the
Internet. Based on this model, we proposed the IDES system
and two learning algorithms, SVD and NMF, for factoring
matrices of network distances between arbitrary Internet hosts.
Simulations on real world data sets have shown that IDES
is computationally efficient, scalable to large-scale networks,
more accurate than previous models, and resilient to temporary
landmark failures.
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