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Abstract— The responsiveness of networked applications is Many previously proposed models are based on the em-
limited by communications delays, making network distancean pedding of host positions in a low dimensional space, with
important parameter in optimizing the choice of communicaions network distances estimated by Euclidean distances. Such

peers. Since accurate global snapshots are difficult and egpsive dels h h tain limitati | i
to gather and maintain, it is desirable to use sampling techiques M0dels, however, share certain limitations. In particutagy

in the Internet to predict unknown network distances from a st  cannot represent networks with complex routing policies,

of partially observed measurements. such as sub-optimal routiAigor asymmetric routing, since
This paper makes three contributions. First, we present a Eyclidean distances satisfy the triangle inequality and ar

model for representing and predicting distances in large-gale  ;\harenty symmetric. On the Internet, such routes areequit

networks by matrix factorization which can model sub-optimal
and asymmetric routing policies, an improvement on previos common [12], [13], [14], and models that do not take them

approaches. into account yield inaccurate predictions of network dises.
Second, we describe two algorithms — singular value decom- Our model is based omatrix factorizationfor representing
position (SVD) and nonnegative matrix factorization (NMF)—for T ; . X
representing a matrix of network distances as the product ofwo ~ and predicting distances in large-scale networks. Thendase
smaller matrices. idea is to approximate a large matrix whose elements represe
Third, based on our model and algorithms, we have designed pairwise distances by the product of two smaller matrices.
and implemented a scalable system+nternet Distance Estimation  g\,ch a model can be viewed as a form of dimensionality

Service (IDES)—that predicts large numbers of network distances . . o
from limited samples of Internet measurements. Extensiveisi- reduction. Models based on matrix factorization do notesuff

ulations on real-world data sets show that IDES leads to more from the limitations of previous work: in particular, they
accurate, efficient and robust predictions of latencies indrge- can represent distances that violate the triangle ineguab

scale networks than existing approaches. well as asymmetric distances. Two algorithms—singulaneal
decomposition (SVD) and nonnegative matrix factorization
. INTRODUCTION (NMF)—are presented for learning models of this form. We

Wide-area distributed applications have evolved consid&valuate the advantages and disadvantages of each aigorith
ably beyond the traditional client-server model, in which [P 1€aming compact models of network distances. The basic
client communicates with a single server. In content distf"0del was introduced in an earlier paper [15]. The contribu-
bution networks (CDN), peer-to-peer distributed hashe(s{blt'ons_Of the present paper are refmements_ of the model, define
(DHT) [1], [2], [3], [4], and overlay routing [5], nodes oftte algonthms, gnd more th_orough evaluatlor!s of the Internet
have a choice of communication peers. Exploiting this ahoi©iStance Estimation Service (IDES). In particular, we @ssr
can greatly improve performance if relevant network diséan the questions of the impact of both landmark placement and
are known. For example, in a CDN, an optimized client caff"éasurement error on IDES performance.
download Web objects from the particular mirror site to whic  The rest of the paper is organized as follows. Section Il re-
it has the highest bandwidth. Likewise, in DHT constructiorviews previous work based on the low dimensional embedding
a peer can route lookup requests to the peer (among those #idiost positions in Euclidean space. Section 1l presemss t
are closer to the target in the virtual overlay network) wite model for matrix factorization of network distances. The[BV
lowest latency in the IP underlay network. and NMF algorithms for learning these models from network

Exact knowledge of network distances, such as that obtain@éasurements are presented and evaluated in Section V. Sec
from on-demand network measurements, is expensive afish V proposes an architecture to estimate distances nejui
time-consuming to gather and maintain, especially at scalg an arbitrary host from low dimensional reconstructidite
Thus, a highly promising approach is to construct a model th&chitecture is evaluated in Section VI. Finally, Sectiol V
canpredictunknown network distances from a set of partiallgummarizes the paper.
observed measurements [6], [7], [8], [9], [10], [11].

Jonathan M. Smith is currently on leave from Penn at DARPApraped
for Public Release, Distribution Unlimited.

INetwork distance is traditionally known as the round tripei (RTT) 2with sub-optimal routing policies, the network distancéween two end
between two hosts. However, in this paper, unless specifiedneise, the hosts does not necessarily represent the shortest patte inetivork. Such
definition is generalized to any type of network measurerbetween nodes, routing policies exist widely in the Internet for varioushaical, political and
which may or may not be symmetric. economic reasons.



Il. NETWORK EMBEDDINGS (:0.5,0.5) A (05,0.5)
One way to predict network distance between arbitrary (H,) 1 (H)  (H, Jooooeecereeee @
Internet end hosts is to assign each host a “position” in a T
finite-dimensional vector space. This can be done at the cost NSAVNES SN
of a limited number of network measurements to a set of well- e
positioned infrastructure nodes (also knownlasdmark or @ ________________ ‘_
beaconnodes), or other peer nodes. In such a model, a pair
. . (-0.5,-0.5) (0.5,-0.5)
of hosts can estimate the network distance between them by , ,
Network Topology One Possible 2-D Embedding

applying a distance function to their positions, withoutedt
network measurement. Most previous work on these models h L ol ‘ |
has represented the host positions by coordinates in Eaclid Fg. 1. Four hoststy =4 In & simple network topology
space and adopted Euclidean distance as the distanceofuncti

We define the problem formally as follows. Suppose there
are N hostsH = {Hi,Ha, -+ ,Hy} in the network. The
pairwise network distance matrix is/é x N matrix D, such
that D;; > 0 is the network distance fromi; to 7;.

A network embeddindgs a mappingH : H — R such that

Lim et. al.[9] and Tanget. al.[11] independently proposed
models based on Lipschitz embeddings and Principal Com-
ponent Analysis (PCA). These models begin by embedding
the hosts in anV-dimensional space, where the coordinates
of the hostH, are given by its distance@;1,--- , D;n) tO

D;j ~ Dij = |H(H;) — H(H,)|,Vi,j=1,....,.N (1) N landmark nodes. This so-called Lipschitz embedding has

R the property that hosts with similar distances to other $ost

where D;; is the estimated network distance frai) to ; are located nearby in th&/-dimensional space. To reduce
andH (H;) is the position coordinate 6f; as ad-dimensional the dimensionality, the host positions in thié-dimensional
real vector. We simplify the coordinate notation frdif(;) space are then projected into thedimensional subspace of

to Hi = (Hiy, Hia, -+, Hia). The network distance betweenmaximum variance by PCA. A linear normalization is used to
two hosts™; andH; is estimated by the Euclidean distanceurther calibrate the results, yielding the final host fosi
of their coordinates: H, € R4,

d 2
2 7 2
Dyj = |[H; — Hyl| = <I;(Hz — Hji) ) @) g, Limitations
The main problem in constructing a network embedding is Euclide_an dist_ances are inherer_wtly symmetric; they aISo_ sa
to compute the position vectod; for all hosts#; from a isfy the triangle inequality. Thus, in any network embedglin
partially observed distance matri®. A number of learning
algorithms have been proposed to solve this problem, which . . .
we describe in the next section. Dij + Dji 2 Dix Vi, j, k

Dij =Dy Vi, j

First, the triangle inequality property is inconsistentthwi
A. Previous work observed network distances. On the Internet, studiesatelic

The first work in the network embedding area was done Bat as many as 40% of node pairs of real-world data sets have
Ng and Zhang [10], whose Global Network Positioning (GNF§ shorter path through an alternate node[12], [11]. Seaamd,
System embedded network hosts in a low-dimensional glgss the definition of network distances is RTT, the symmetry
clidean space. Many algorithms were subsequently propodé@pPerty also disagrees with the observation. previougdystu
to calculate the coordinates of network hosts. GNP usesSkeWws that asymmetric routing is quite common [14]; even

Simplex Downhill method to minimize the sum of relativdor the same link, the upstream and downstream capacities
errors: may be very different [13].

|Dy; — Dijl In addition to these limitations, low-dimensional embed-

totalerr = Z : T ®) dings of host positions cannot always model distances in
v networks where there are pairs of nodes that do not have a
The drawback of GNP is that the Simplex Downhill methodirect path between them, even if the distances are synmmetri
converges slowly, and the final results depend on the initiahd satisfy the triangle inequality. Figure 1 illustratesiraple
values of the search. PIC [6] applies the same algorithm tetwork topology in which four hosts in different autonorsou
the sum of squared relative errors and studies securitye@l| systems are connected with unit distance to their neighbors
issues. An intuitive two-dimensional embedding is also shown. In
Cox, Dabeket. al. proposed the Vivaldi algorithm [16], the given embedding, the estimated distances afg =

[7] based on an analogy to a network of physical spring8.; = /2, but the real distances ai@, = Do3 = 2. It is
In this approach, the problem of minimizing the sum of errogzrovable that there exists no Euclidean space embedding (of
is related to the problem of minimizing the potential energgny dimensionality) that can exactly reconstruct the dista
of a spring system. Vivaldi has two main advantages: it isia this network. Similar cases arise in networks with triée-I
distributed algorithm, and it does not require landmarkeasod topologies.



IIl. DISTANCE MATRIX FACTORIZATION IV. DISTANCE RECONSTRUCTION

The limitations of previous models lead us to consider aIn this section we investigate how to estimate outgoing
different framework for compactly representing network-di and incoming vectors{; andY; for each hostH; from the
tances. Suppose that two nearby hosts have similar distandistance matrixD. We also examine the accuracy of models
to all the other hosts in the network. In this case, theireorrthat approximate the true distance matrix by the product of
sponding rows in the distance matrix will be nearly iderticatwo smaller matrices in this way.

More generally, there may be many rows in the distance matrixThe distance matrixD can be viewedl as storing N
that are equal or nearly equal to linear combinations of rothew-vectors in N-dimensional space. Factoring this matrix
rows. Recall from linear algebra that &hx N matrix whose D ~ XY is essentially a problem in linear dimensionality
rows are not linearly independent has rank strictly lesa fia reduction, whereY” storesd basis vectors and stores the
and can be expressed as the product of two smaller matridexar coefficients that best reconstruct each row vectap of
With this in mind, we seek an approximate factorization diVe present two algorithms for matrix factorization thatveol
the distance matrix, given by: this problem in linear dimensionality reduction.

D~XYT, . B
A. Singular value decomposition

An N x N distance matrixD can be factored into three
matrices by its singular value decomposition (SVD), of the
form:

where X andY are N x d matrices withd < N. From such
a model, we can estimate the network distance friEmto
H; by DZ—]— = X’i . }73 Wherefi is theith row vector of the
matrix X andY; is the jth row vector of the matrix’.

More formally, for a network with distance matri®;;, we
define adistance matrix factorizatioms two mappings whereU andV are N x N orthogonal matrices anfl is an
N x N diagonal matrix with nonnegative elements (arranged

D=USVT,

, d
X+ H- Rd’ in decreasing order). Letl = US% and B = S2V, where
Y o H—-RY S2 = /S;. It is easy to see thal BT = USz(VS:)T =
1 ~1 . . .
and an approximate distance function computed by USzSzVT = D. Thus SVD yields an exact factorization
. D = ABT, where the matrices! and B are the same size
Dij = X(Hi) - Y (H;). asD.

We can also use SVD, however, to obtain an approximate
factorization of the distance matrix into two smaller megs.
In particular, suppose that only a few of the diagonal elemen

As shorthand, we denot& (H;) as X; and Y (H;) asY;, so
that we can write the above distance computation as:

. L d of the matrix S are appreciable in magnitude. DefineXhed
Dij=X;-Y; =Y XuYi. (4)  matrices:
k=1
. . . . Xii = Uiin/S,;, 5
Note that in contrast to the model in section Il, which maps J IV )
each host to one position vector, our model associates Yij = Vij/ Sis (6)

vectors with each host. We calf; the outgoing vectoandY; \yherei — 1. N andj = 1...d. The productX ¥ is a low-

the incoming vectorfor 7¢;. The estimated distance frof;  ank approximation to the distance matiix if the distance
to H; is simply the dot product between the outgoing VECtGhayrix is itself of rankd or less, as indicated bg;; = 0
of H; and the incoming vector k. for j > d, then the approximation will in fact be exact. The

Applying this model of network distances in distributeqyy_rank approximation obtained from SVD can be viewed as
applications is straightforward. For example, consideg tl?ninimizing the squared error function

problem of mirror selection. To locate the closest servesragn L

several mirror candidates, a client can retrieve the ouatgoi ZZ(Dij - X, Y))? @)
vectors of the mirrors from a directory server, calculate th i

dot product of these outgoing vectors with its own incomin

i X d . d
vector, and choose the mirror that yields the smallest eﬂ;dm&”th respect toX; N R and YJ. < R% Eqs._ (5) and (6)
compute theglobal minimumof this error function.

of network distance (i.e., the smallest dot product). : - . L
0 del f i work dist b tri Matrix factorization by SVD is related to principal compo-
fact(l)Jrrizg]t?one ovcgrggrargi ecnelr?zgnnl(iarxilgtionfss ({;Ifn ?r?(?de?ls ggsrﬂ(ent analysis (PCA) [17] on the row vectors. Principal com-
) ; . : . ponents of the row vectors are obtained from the orthogonal
on low dimensional embeddings. In particular, distances-co

uted in this way are not constrained to satisfy the trian égenvectors of their correlation matrix; each row vectan c
P . Y . 4 Ye expressed as a linear combination of these eigenvectors.
inequality. The main assumption of our model is that many

rows in the distance matrix are linearly dependent, or gearl snote that D does not have to be a square matrix of pairwise distances.
so. This is likely to occur whenever there are clusters difcan be the distance matrix from one set/§f hostsH to another set of
nearby nodes in the network which have similar distances }p hoss?t’, which may or may not overlap with each other, In this case,

. . . L X € RV *? contains the outgoing vectors fé¢ andY € R***¥" contains
distant nodes. In this case, the distance maffriwill be well the incoming vectors fofH’. For simplicity, though, we consider the case
approximated by the product of two smaller matrices. N = N in what follows.



The diagonal values ob measure the significance of thet is known that these update rules converge monotonically t
contribution from each principal component. In previouskvo stationary points of the error function, Eq. (7). Our expede
on embedding of host positions by PCA, such as ICS [8hows that two hundred iterations suffice to converge toal loc
and Virtual Landmark [11], the first rows of the matrixU  minimum.

were used as coordinates for the hosts, while discarding thédne major advantage of NMF over SVD is that it is
information in the matrice§ andV'. By contrast, our approach straightforward to modify NMF to handle missing entries in
usesU, S andV to compute outgoing and incoming vectorshe distance matrixD. For various reasons, a small number

for each host. of elements inD may be unavailable. SVD can proceed with
We use the topology in Figure 1 as an example to shawissing values if we eliminate the rows and columnslin
how the algorithm works. The distance matrix is that contain them, but doing so will leave the corresponding
0 1 1 2 host positions unknown.
p— |t 0 21 NMF can cope with missing values if we slightly change the
L2 01 update rules. Suppos¥ is a binary matrix where\/;; = 1
21 10 indicatesD;; is known andM;; = 0 indicatesD;; is missing.
We obtain the SVD result as The modified update rules are:
—0.5 01 & 05 40 0 0 X. — X, >k DitMirYia (®)
U=1T0s £ 0 oalS10 0 5 0 B ny ol
05 0 -L 05 0000 Yie o VigetohlX JakDig M 9)
' vz ! T (X T)an (XY ) My
-05 0 —% —0.5 These update rules converge to local minima of the error
V= —0.5 %21 0 0.5 function, Zij MZJ|DZJ - X; - }/J|2
05 -2 0 0.5
05 0 5 05 C. Evaluation
Note thatS,, = 0. Therefore, an exacef = 3 factorization We evaluated the accuracy of network distance matrices
exists with: modeled by SVD and NMF and compared the results to
1 0 1 1 0 -1 those of PCA from the Lipschitz embeddings used by.VirtuaI
1 -1 0 1 1 0 Landmark [11] and ICS [9]. We did not evaluate the Simplex
X = 11 o Y = 1 -1 o Downhill algorithm used in GNP because while its accuracy
1 0 -1 1 0 1 is not obviously better than Lipschitz embedding, it is much

more expensive, requiring hours of computation on larga dat
One can verify in this case that the reconstructed distansets [11]. Accuracies were evaluated by the modified reativ
matrix XY is equal to the original distance matriX. error, R
|Dij — Dij|
B. Non-negative matrix factorization min(D;, Dij)
Non-negative matrix factorization (NMF) [18] is anothetvhere the min-operation in the denominator serves to iiserea
form of linear dimensionality reduction that can be applied the penalty for underestimated network distances.
the distance matrixD;;. The goal of NMF is to minimize 1) Data sets:We used the following five real-world data
the same error function as in Eq. (7), but subject to tHets in simulation. Parts of the data sets were filtered out
constraint thaty andY” are non-negative matrices. In contrasfo €liminate missing elements in the distance matriceésin
to SVD, NMF guarantees that the approximately reconstcictBone of the algorithms except NMF can cope with missing
distances are nonnegativé,ij > 0. The error function for data).
NMF can be minimized by an iterative algorithm. Compared to The network distances in the data sets are round-trip time
gradient descent and the Simplex Downhill method, howevéRTT) between pairs of Internet hosts. RTT is symmetric be-
the algorithm for NMF converges much faster and does niyeen two end hosts, but it does violate the triangle inetyual
involve any heuristics, such as choosing a step size. The ofnd also give rise to other effects (described in Sectid®)II-
constraint on the algorithm is that the true network distancthat are poorly modeled by network embeddings in Euclidean
must themselves be nonnegative;; > 0; this is generally space*
true and holds for all the examples we consider. The algorith « NLANR: The NLANR Active Measurement Project [19]

relativeerror= (20)

takes as input initial (random) matricés andY and updates collects a variety of measurements between all pairs
them in an alternating fashion. The update rules for each of participating nodes. The nodes are mainly at NSF
iteration are: supported HPC sites, with about 10% outside the US.

X — X % “Note that the proposed model can be applied to any type ofonktmea-

. . (XYTY);, surement between nodes, such as one-way latency, lossnatdyandwidth,

XTD). - but we have only experimentally validated the model for RValidation on

Y: — Y. ( )‘U data sets that use different metrics as the distances lisustibpen problem

J TNXTXYT),; and will be considered in our future work.



The data set we used was collected on January 30, 208i8jhtly better than NMF whed is large. The reason for this
consisting of measurements ofl&0 x 110 clique. Each may be that the algorithm for NMF is only guaranteed to
host was pinged once per minute, and network distancenverge to local minima. Considering that the hosts in the
was taken as the minimum of the ping times over the dagata sets come from all over the Internet, the results show
« GNP and AGNP: The GNP project measured minimunthat matrix factorization is a scalable approach to modelin
round trip time between 19 active sites in May 200Idistances in large-scale networks. In terms of maintairsng
About half of the hosts are in North America; the redbw-dimensional representatiod,~ 10 appears to be a good
are distributed globally. We used GNP to construct tadeoff between complexity and accuracy for both SVD and
symmetric19 x 19 data set and AGNP to construct arNMF.
asymmetric’69 x 19 dataset.
« P2PSim The P2Psim project [20] measured a distance V. DISTANCE PREDICTION
matrix of RTTs among about 2000 Internet DNS servers The simulation results from the previous section demon-
based on the King method [21]. The DNS servers weggrate that pairwise distances in large-scale networksvate
obtained from an Internet-scale Gnutella network tracemodeled by matrix factorization. In this section we present
« PL-RTT: Obtained from PlanetLab pairwise ping projecthe Internet Distance Estimation Service (IDES) a scalable
[22]. We chose the minimum RTT measured at 3/23/20Q¢hd robust service based on matrix factorization to esémat
0:00 EST. A169 x 169 full distance matrix was obtained network distances between arbitrary Internet hosts.
by filtering out missing values.
A. Basic architecture
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We classify Internet hosts into two categories: landmark
nodes and ordinary hosts. Landmark nodes are a set of well-
positioned distributed hosts. The network distances betwe
each of them is available to theformation serverof IDES.

We assume that landmarks can measure network distances to
others and report the results to the information server. The
information server can also measure the pairwise distances
via indirect methods without landmark suppoetg. by the

King method [21] if the metric is RTT. An ordinary host is

an arbitrary end node in the Internet, which is identified by a
valid IP address.

Suppose there are landmark nodes. The first step of IDES
is to gather them x m pairwise distance matriXD on the

information server. Then, we can apply either SVD or NMF
algorithm overD to obtain landmark outgoing and incoming
vectorsX; andY; in d dimensionsd < m, for each host;.
As before, we us& andY to denote thel x m matrices with

2) _Slmulat.ed ResultsFlgure_ 2 illustrates the cumulatlve)zi and Y. as row vectors. Note that NMF can be used even
density function (CDF) of relative errors of RTT reconstac when D contains missing elements.

by SVD whend = 10, on 5 RTT data sets. The best result is suppose an ordinary host wants to gather
over GNP data set: more than 90% distances are reconstru%t%gance information over the netwgivkv. The first step is to

within 9% relative error. This is not too surprising becausg; |-, jate its outgoing vectat. . and incoming vectol ...

the GNP data set only contains 19 nodes. However, SVD al‘f(? this end, it measures the network distances to and from the
works well over NLANR, which has more than 100 nodes;,qmark nodes. We denofe?™ as the distance to landmark
about 90% fraction of distances are reconstructed with# 15, o 4 pin a5 the distance from landmaiko the host. Ideally
rela_t|ve error. Over P2PSim and PL-RTT d_ata set§, SV\l;ae would like the outgoing and incoming vectors to satisfy
achieves similar accuracy results: 90 percentile rela&ier Hout — ¥y andDi* — X.. V... The solution with the

is 50%. We ran the same tests on NMF and observed simifgk,; squgigs error is éiven t;y: e

results. Therefore, we chose NLANR and P2PSim as two

Fig. 2. Cumulative distribution of relative error by SVD owarious data
sets,d = 10

representative data sets for the remaining simulations. X _ argminzm:(Dgut _U. 17)2 (12)
Figure 3 compares the reconstruction accuracy of three new Jers = ‘

algorithms: matrix factorization by SVD and NMF, and PCA m

applied to the Lipschitz embedding. The algorithms were YView = argminZ(D;“ —X;-U)? (12)

simulated over NLANR and P2PSim data sets. It is shown Uerd =1
that NMF has almost exactly the same mt_edian _relative errofie global minima of these error functions, computed by
as SVD on both data sets when the dimensibn< 10.  simple matrix operations, have the closed form:

Both NMF and SVD yield much more accurate results than 5 out o
Lipschitz: the median relative error of SVD and NMF is more X;new = (D. Y)(Y'Y) (13)
than 5 times smaller than Lipschitz wheh= 10. SVD is Yoew (DPX)(xTx)™! (14)
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Fig. 3. Reconstruction error comparison of SVD, NMF and tip&z over NLANR and P2PSim data set

Egs. (13-14) assume that the optimizations are unconsttairsteps are identical.
AIternauver, one can impose nonnegativity constraints o Second, we measure the distance vectors for the ordinary

Xoew anNdYey; this will guarantee that the predicted distancesosts: D%t =

Dt =05 1.5

1.5 2.5] for ordinary hostH;.

are themselves nonnegative (assuming that the landmark discording to Egs. (13 — 14)XH1 = [-1.5 0 1], YH1 =
tance matrix was also modeled by NMF). The least squargdl.5 0 — 1]. Similarly, we obtain the distance vector #f;
error problems in Egs. (11-12) can be solved with nonnegatas [2.5 1.5 1.5 0.5], and calculate its outgoing and incoming
ity constraints, but the solution is somewhat more compdida vectors: X5, = [-1.5 0 — 1], Y3, = [-1.5 0 1]. One can
Our simulation results did not reveal any significant digfece verify that distances between ordinary hosts and landnaeks
between the prediction accuracies of least squares sotutiexactly preserved. The distance between two ordinary li®sts

with and without non-negativity constraints; thus, in whatot measured, but can be estlmated)sa;@1

YH2 = XH2

follows, we focus on the simpler unconstrained solutions iri,, = 3.25, while the real network distance is 3.

Egs. (13-14).

Fig. 4.

interconnected by a simple network topology

network is an enlarged version of the network in Figure 1, nodes areXl,XQ,.
with the four original nodes serving as landmarks and twg, Y5, --
new nodes introduced as ordinary hosts. The first stepfiem and to theith node, for a||z =1,

Four landmark nodeg&; — L4 and two ordinary host$t;, Hs2

B. Optimization

The basic architecture requires an ordinary host to measure
network distances to all landmarks, which limits the sciitsth
of IDES. Furthermore, if some of the landmark nodes experi-
ence transient failures or a network partition, an ordirtergt
may not be able to retrieve the measurements it needs to solve
Egs. (13-14).
To improve the scalability and robustness of IDES, we
propose a relaxation to the basic architecture: an ordinasy
Huew ONly has to measure distances to a sek afodes with
pre-computed outgoing and incoming vectors. Eh@des can
be landmark nodes, or other ordinary hosts that have already
We give a simple example of this procedure in Figure 4. Thgsmputed their vectors. Suppose the outgoing vectors sktho

, X
Y

and the incoming vectors are

We measureDout and Dm as the distance

, k. Calculating the

to measure inter-landmark distances and calculate laddmaew vectorsX,,.., and ?new for Hpew is done by solving the
incoming and outgoing vectors. We used SVD to factor theast squares problems:
landmark distance matrix in this example. The result is the
same as the example in section IV:

-1 0 1
-1 -1 0
X=11 1 o|'¥=
-1 0 -1

-1 0 -1
-1 1 0
-1 -1 0
-1 0 1

UeRrd

k

Xoew = argmmz (D" — U - Y;)? (15)
UeRrd
k

Yiew = arg min Z(D;“ - X;- (7)2 (16)

=1

The solution is exactly the same form as described in Eq. (13)
Note that SVD can be substituted by NMF and the followingnd Eq. (14). The constrairit > d is necessary (and usually



sufficient) to ensure that the problem is not singular. 16. Landmark selection
general, larger values of lead to better prediction results,
as they incorporate more measurements of network distances

involving M. into the calculation of the vector¥,..,, and  The system performance depends on the positioning of the
Yoow- landmarks. lll-positioned landmarks can significantly ueel

the accuracy of estimated network distances. For examgle, a

We use the topology in Figure 4 again to demonstrate NQWyorst case, imagine that all the landmarks are very close to
the system works. As in the basic architecture, the first steQ., other. Then the pairwise distance maBivill be close
is to measure inter-landmark distances and calculate Iaridmto the zero matrix, and modeling by matrix factorization

outgoing and incoming vectors. Secondly, the ordinary NQgfy not capture any information about long-range distance
H1 measures the distances g, L, andL; as [9'5 1.5 1.5]. o the global network topology. Given a set of nodes and
By Eq. (13) and Eq. (14), the vectors i, =[-1.5 0 1], their pairwise network distances, we propose the following

Y3, =[-1.5 0 -1]. Note that we did not measure the distanGg,;r jandmark selection algorithms and evaluate them in the
between; and L4, but it can be estimated a8y, - Y7,=[- next section.

1.5 0 1}[-1 0 1]= 2.5, which is in fact the true distance.
Finally, the ordinary host{, measures the distances fg,

L, andH; as [1.5 0.5 3]. Because all of them already have
pre-computed vectorsi{; can compute its own vectors by
Eq. (13) and Eq. (14). The results akg,, =[-1.4 0.1 -0.9],
?HQ =[-1.4 -0.1 0.9]. The distances between ordinary liost
and L,/L3 are not measured directly, but can be estimated as
XY, =[-1.40.1-0.9]-10-1]= 2.3 and Xy, - Yy, =[-1.4
0.1 -0.9}|-1 -1 0]= 1.3.

« random
We randomly choose landmarks by uniformly sampling
(without replacement) from the set of all candidate nodes.
In this scheme, each node has the same probability to be
chosen as a landmark, and no information about pairwise
distances is required.
o k-means
The k-means algorithm [23] is a well- known iterative
procedure for detecting clusters in multivariate data.
We adapt the algorithm to find clusters in the space
of host nodes; the host nodes closest to the cluster
centroids are then chosen as landmark nodes. Since only
distances between host nodes are initially specified, it
is necessary to represent the host nodes as points in
a vector space before applying themeans algorithm.
We choose the Lipschitz embedding method: each node
H; is represented by thé/-dimensional vector whose
elements are its distancé®,;,---, D;y) to the other
nodes in the network. Note that Euclidean distances in
this representation do not preserve the distances original
specified by the matribD, as discussed in section II.
« spectral clustering
Spectral clustering [24] is another well-known clustering
procedure. Unlike k-means, it can cluster objects directly
based on their pairwise distances, without requiring an
intermediate vector space representation. Moreover, the
main step of spectral clustering is an eigenvector com-
putation, not an iterative optimization with potentially
Fig. 5. Learning outgoing and incoming vectors for two oadin hosts. spurious local minima, as in k-means. In general, spectral
Solid lines indicate that real network measurement is cotedl Each edge clustering is more robust than k-means, but also more
is annotated with (real network distance / estimated distan computationally expensive. We use the algorithm in [24]
to assign nodes t& different clusters and choose the
nodes closest to each cluster centroid as landmark nodes.
This example illustrates that even without measurement toe maximum distance
all landmarks, the estimated distances can still be aceurat Finally, we use a simple greedy heuristic to identify
In this example, most of the pairwise distances are exactly landmarks whose summed pairwise distances are approx-
preserved; the maximum relative error is 15% when predictin ~ imately maximized. (An optimal algorithm would be NP-
the distance betweehs and L,. In the example, the load hard.) Our algorithm works as follows: (1) initially, we
is well distributed among landmarks. As shown in Figure 5, choose one node at random as the first landmark; (2) from
distances td.; are only measured twice during this estimation  the remaining nodes, we choose the node with maximum
procedure. Such a scheme allows IDES to scale to a large average distance to the existing landmarks as the next
number of ordinary hosts and landmarks. It is also robust landmark; (3) we repeat step (2) until enough landmarks
against partial landmark failures. have been chosen.




data set| IDES/SVD | IDES/NMF | ICS GNP
VI. EVALUATION GNP 0.10s 0.12s | 0.02s| Imin 19s
In this section we evaluate IDES, using SVD and NMF | NLANR 0.01s 0.02s 0.01s | 4min 44s
algorithms to learn models of network distances, and compar | P2PSim|[  0.16s 0.17s | 0.03s] 2min 30s
them to the GNP [10] and ICS [9] systems. TABLE |

The experiments were performed on a Dell Dimension
4600 with Pentium 4 3.2GHz CPU, 2GB RAM. The GNP
implementation was obtained from the official GNP software
release written in C. We implemented IDES and ICS exactly
as described in [9] in MatLab 6.0. Please refer to Sectioh II-

EFFICIENCY COMPARISON ONIDES, ICSAND GNP OVER FOUR DATA
SETS

for details of the GNP and ICS systems. o P2PSim: 20 out of 1143 nodes were selected randomly
We identify four evaluation criteria: as landmarks. The remaining 1123 nodes were treated as
. Efficiency ordinary hosts. The prediction accuracy was evaluated on

We measure efficiency by the total running time required 1123 x 1123 pairs of hosts.
by a system to build its model of network distancedlthough deliberate placement of landmarks might yield enor
between all landmark nodes and ordinary hosts. accurate results, we chose the landmarks randomly since in
« Accuracy general they may be placed anywhere on the Internet. We
The prediction error betwee®,; and f)ij should be present the study of landmark placement effect in section VI
small. We use the modified relative error function in Ecfc- To ensure fair comparisons, we used the same set of land-
(10) to evaluate accuracy, which is also used in GNP amggrks for all four algorithms. We also repeated the simaiati
Vivaldi. Note that predicted distances are computed bgeveral times, and no significant differences in resultsewer
tween ordinary hosts that have not conducted any netwdrkserved from one run to the next.
measurements of their distance. Predicted distance errordable | illustrates the running time comparison between
are different than reconstructed distance errors (whdlES, ICS and GNP. GNP is much less efficient than the IDES
actual network measurements are conducted). Evaluatiésl ICS. This is because GNP uses Simplex Downhill method,
based on other proposed error functions [25] will b&hich converges slowly to local minima. Both IDES and ICS
considered in our future work. have running time less than 1 second, even when the data sets
« Scalability contain thousands of nodes. It is possible to reduce themgnn
The storage requirements afdd) for models based on time of GNP by sacrifying the accuracy, but the parametez's ar
network embeddings (with one position vector for eachard to tune, which is another drawback of Simplex Downbhill
host) and matrix factorizations (with one incoming anéethod.
outgoing vector for each host). In large-scale networks, Figure 6 plots the CDF of prediction errors for IDES using
the number of hostsV is very large. The condition SVD, IDES using NMF, ICS and GNP over the three data
d < N allows the model to scale, assuming that reasoféts respectively. In Figure 6(a), the GNP system is the most
able accuracy of predicted distances is maintained. Alsgcurate system for the GNP data set. IDES using SVD
to support multiple hosts concurrently, it is desirabl@nd NMF are as accurate as GNP for 70% of the predicted
to distribute the load—for instance, by only requiringlistances. The GNP data set is somewhat atypical, however,
distance measurements to partial sets of landmarks. in that the predicted distance matrix has many more columns
« Robustness (869) than rows (4). Figure 6(b) and 6(c) depict the CDF of
A robust system should be resilient against host failurggfediction errors over NLANR and P2PSim data sets, which
temporary network partitioning, and measurement erro@/€ more typical. In both cases, IDES has the best prediction
In particular, partial failure of landmark nodes shoul@ccuracy. On the NLANR data set, IDES yields better results
not prevent the system from building models of networthan GNP and ICS: the median relative error of IDES using
distances. SVD is only 0.03. Its 90th percentile relative error is about
0.23. The accuracy is worse for all three systems in P2PSim
data set than in NLANR data set. However, IDES (with either

A. Efficiency and accuracy SVD or NMF) is still the most accurate system among the
We use three data sets for evaluating accuracy and effiree. The better prediction results on the NLANR data set
ciency. may be due to the fact that 90% of the hosts in NLANR are

« GNP: 15 out of 19 nodes in the symmetric data set wepé North America and the network distances, computed from

selected as landmarks. The rest of the 4 nodes and {Hg]imum RTT over a day, are not affected much by queueing

869 nodes in the AGNP data set were selected as ordin4fjays and route congestion. These properties make the data
hosts. Prediction accuracy was evaluatedéx 4 pairs set more uniform, and therefore, more easily modeled by a
of hosts low dimensional representation.

o NLANR: 20 out of 110 nodes were selected randomlé .
as landmarks. The remaining 90 nodes were treated Bxs Scalability and robustness

ordinary hosts. The prediction accuracy was evaluated onln the previous subsection, we showed that IDES can
90 x 90 pairs of hosts. accurately model the network distances in low dimensions
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Fig. 7. the correlation between accuracy and landmarkré&slwn IDES using SVD algorithm.
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Fig. 8. the impact of measurement errors on the accuracy BSI@And ICS. In each test, theregidraction of links are subject to measurement errors.

d < 10, which is fundamental to make the system scale tesult unstable measurement results; a very high load node
large-scale networks. In this subsection, we study the ainpa  may respond the ICMP ECHO or UDP packet with a higher
partially observed landmarks and network measurementserrdelay’; a transparent Web proxy may intercept TCP SYN
on the accuracy of IDES. packets and respond with SYN/ACK packets to make TCP
1) partially observed landmarksMeasuring the distancesprobing results inaccurate. A robust system should beieasil
to only a subset of landmark nodes reduces the overall logd @gainst a small amount of measurement anomalies and still
allows the system to support more ordinary hosts concuyrenyield reasonably accurate results.
It also makes the system robust to partial landmark failures To this end, we studied how well IDES and ICS work
We simulated partially observed landmark scenarios By simulating measurement errors. We first assumed that the
IDES using SVD to model partial distance matrices frorfiriginal data sets do not contain erroneous results. Then,
the NLANR and P2PSim data sets. For each data set, @@ong then x (n — 1) links in the distance matriD, we
experimented with two settings: 20 random landmarks afidndomly pickedpn(n — 1) links, where0 < p < 1, and
50 random landmarks. The simulation results are shown ififreased the RTTs of these links lotimes of the original
Figure 7. The x-axis indicates the fraction of unobservedlues. This is to say that, in the following simulation, the
landmarks. The unobserved landmarks for each ordinary hg¥asured network distances could be larger than the actual
were independently generated at random. When the numbaiues as much as—1 times. We simulated the IDES system
of landmarks is less than twice the model dimensionality using SVD and ICS respectively. 20 landmarks were chosen
the accuracy appears sensitive to the fraction of unobdeni the random algorithm, and the dimension used #vas10.
landmarks. However, as the number of landmarks increasti§te that when calculating the estimation errors, we coegpar
the system tolerates more failure: for example, not obaegrvithe estimated results to the actual network distancestiee.
40% of the landmarks has little impact on the system accura@gginal data without injected errors). We ran the simaiati
when 50 landmarks are used in the test. over the NLANR and P2P data sets, repeated the test 100

2) measurement errordn previous simulations, we assume
that all the measurement results from the data sets areaecur °The data set from PlanetLab pairwise ping project [22] shiat some
H in th | d . . of the RTTs are longer than 2000 ms, which is unlikely to hapipetoday’s
owever, In the real world, measurement may contain Varolgsmet. We suspect this is due to the fact that the Plaheticales are often

kinds of errors. For example, a temporary route change mayrloaded.
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robust as IDES when the measurement error range is large,
GNP, e the reason for which deserves further investigation.
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5 IDES/SVD of NLANR, P2PSim and PL-RTT. 20 landmarks are chosérs 10
0.2 — IDES/NMF
- L§,§P In this subsection, we use simulation to evaluate the ingpact
o 03 02 05 08 1 of different landmark selection algorithms on the accuracy
relative error of IDES. Except for the random algorithm, we assume the
(c) CDF of relative error over P2PSim data set, 20 pairwise network distances among all the nodes are given
landmarks when choosing the landmarks. Although the assumption is
Fig. 6. Accuracy comparison on IDES using SVD and NMF, ICS| GNP, Somewhat Unrea“_St'C in very large scale net_wo_rks,_ under-
d=38 standing the relationship between landmark distributiod a

prediction accuracy is important.

We studied the four algorithms proposed in section V-C,
times, and report the average median estimation errorstire random algorithm, the k-means algorithm, the spectral
Figure 8. Not surprisingly, in the IDES system, the amourmtustering algorithm, and the maximum distance algorithm.
of relative estimation errors increases when the amount Bach of them was evaluated over three data sets (NLANR,
inaccurately measured links increases. The higher theedegP2PSim, and PL-RTT). After using a particular algorithm to
of measurement erroh is, the faster the estimation errorselect a pre-defined number of landmarks (20 in the simula-
increases along witlp. However, even whep = 0.05 and tion), we ran IDES using SVD withi = 10 to predict the
A = 3,i.e.5% of the network links are subject to 2 times mor@etwork distances between ordinary nodes, and recorded the
measurement errors, IDES is still more accurate than the c&th percentile relative error of the predicted distanées.
of ICS where no link suffers any measurement error. In IC8ach landmark selection algorithm and data set, we repeated
the accuracy is not affected much whans low. However, the test 100 times, and reported the average and standard
we noticed significant estimation error when= 0.15 and deviation of the 90th percentile relative error in Figure)9(

A = 10 over both data sets, which means that ICS is not asd 9(b), respectively. From the figures, we can see that the



average errors of the random, k-means and spectral clugteri[3]
algorithms are quite close, and it is consistent over theethr
data sets. However, maximum distance algorithm is much
worse: for example, the average 90th percentile relativer er [4]
of the maximum algorithm is about 5 times larger than the
errors of the other three algorithms over the P2PSim dat[g]
set. This indicates that the maximum distance algorithm is
not appropriate for landmark selection in IDES system. From
Figure 9(b), we can see that the standard deviation of the 90&
percentile relative error of the random algorithm is lartpen
the k-means and spectral clustering algorithms. This is due
to the fact that random selections do not necessarily ptevéL
“bad” landmark selections. Therefore, the stability oflgesl
accuracy of the random algorithm is lower than the two clust8l
tering based algorithms. The k-means and spectral clagteri
algorithms slightly outperform each other in differentalaéts. [9]
We conclude that the maximum distance algorithm is not a
good choice of landmark selection; the random algorithr'ﬂ0
although not as stable as the clustering based algorithms,
performs reasonably well and has the least time complex'tl)ﬂ
without assuming a given distance matrix. A previous study (L ]
virtual network coordinates also showed that random lamlmd12]
selection is fairly effective if more than 20 landmarks are
employed [26].

(13]

VIl. SUMMARY
. {1.4]
In this paper, we have presented a model based on matrix

factorization for predicting network distances betweehi-ar [15]
trary Internet hosts. Our model imposes fewer constraints o
network distances than models based on low dimensional em-
beddings; in particular, it can represent distances thalatg [16]
the triangle inequality. Such a model is more suitable for
modeling the topology and complex routing policies on thg7
Internet. Based on this model, we proposed the IDES system
and two learning algorithms, SVD and NMF, for factorindlg]
matrices of network distances between arbitrary Internstsh
Simulations on real world data sets have shown that IDES]
is computationally efficient, scalable to large-scale roeks, (20]
more accurate than previous models, and resilient to teanpor[21]
landmark failures.
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