CSE 152A: Computer Vision
Manmohan Chandraker

Lecture 8: Two-View Reconstruction
Overall goals for the course

• Introduce fundamental concepts in computer vision

• Enable one or all of several such outcomes
 – Pursue higher studies in computer vision
 – Join industry to do cutting-edge work in computer vision
 – Gain appreciation of modern computer vision technologies

• Engage in discussions and interaction

• This is a great time to study computer vision!
Course details

• Class webpage:
 – http://cseweb.ucsd.edu/~mkchandraker/classes/CSE152A/Fall2022/

• TAs
 – Meng Song, Mallikarjun Swamy, Rishi Chandrasekaran, Vishal Vinod:
 {mes050, mswamy, r3chandr, vvinod}@ucsd.edu

• Tutors
 – Nick Chua, Navya Sharma, Ang Li: {nchua, n1sharma, a3li}@ucsd.edu

• Discussion section: M 3-3:50pm

• Office hours posted on course calendar

• Piazza: https://piazza.com/ucsd/fall2022/cse152a/
Self-Study Assignment

• Pick a technology area primarily driven by computer vision
 – Can pick one of these suggestions, or use anything else that you like

• **Virtual Reality**
 – Meta Quest Pro
 – Oculus Rift

• **Augmented Reality**
 – Microsoft Hololens
 – Magic Leap 2

• **Self-Driving**
 – Waymo
 – Tesla

• **Content Creation**
 – Adobe Photoshop
 – OpenAI Dall-E

• **Cloud Services**
 – Amazon Rekognition
 – Microsoft Azure Cognitive Services

• **Sports**
 – Hawk-Eye
 – Gameface.ai

• **Face Recognition**
 – Face++
 – Apple FaceID

• **Robotics**
 – Boston Dynamics
 – iRobot Roomba

• **Space Exploration**
 – James Webb Telescope
 – Mars Rover

• **Social Media**
 – Snap
 – Instagram
Self-Study Assignment

• Pick a technology area primarily driven by computer vision
 – Can pick one of these suggestions, or use anything else that you like

• Write a 1 page essay (single-spaced)
 – Can be longer (hopefully not too long)
 – Great if you include pictures (with citations)

• Example prompts (feel free to add to these or use your own):
 – How does computer vision overcome barriers or solve user needs in this technology?
 – Can you identify where knowledge of photometric or geometric image formation is used?
 – Can you identify where such knowledge does not suffice and machine learning is used?
 – Can you identify where photometric or geometric models are used along with learning?
 – What was possible in this area 10 years ago and how did computer vision advance it?
 – How do you anticipate technology in this chosen area will advance in the next 10 years?

• Due date: Nov 11, 2022
Mid-Term Logistics

• In-class, on Nov 2, during 5 – 6:15pm PST
• “Paper-and-pen” exam
 – Bring your own pen, bring scratch paper if needed
 – Calculators should not be needed, can bring one just in case
• Write clearly and legibly to ensure correct grading
 – Show intermediate steps for partial grades

• Exam will test understanding of lectures
 – Some direct questions, some need applying concepts to new situations
 – Mimics real-life practice: know concepts (details can always be looked up)

• Open notes
 – Can refer to any material on your mobile device or computer
 – Can bring any printed or hand-written material
 – Any reference books or sources are fine
 – Only restriction: no communication among students
Recap
Photometric: How light is recorded

Light emitted

Illumination (energy) source

Light reflected to camera

Scene element

Imaging system

(Internal) image plane

Light recorded by sensor
Projection matrix

$$\mathbf{q} = (x, y, z, 1)$$

(3D point in homogeneous coordinates, a vector of length 4)

$$\Pi = K \begin{bmatrix} R & -Rc \end{bmatrix}$$

(2D image in homogeneous coordinates, a vector of length 3)

$$\left(\frac{(\Pi \mathbf{q})_1}{(\Pi \mathbf{q})_3}, \frac{(\Pi \mathbf{q})_2}{(\Pi \mathbf{q})_3} \right)$$

(Usual Cartesian coordinates, a vector of length 2)
Detection of features

• Examine a small window over an image

The wiggly arrows indicate graphically a directional response in the detector as it moves in the three areas shown.
Edge Detection with Image Gradients

- Gradient represents direction of most rapid change in intensity
 \[\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, & 0 \end{bmatrix} \]
 \[\nabla f = \begin{bmatrix} 0, & \frac{\partial f}{\partial y} \end{bmatrix} \]

- The gradient encodes edge strength and edge direction as
 \[
 \| \nabla f \| = \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2} \quad \theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)
 \]

- Can efficiently compute gradient using convolutions
 \[
 K_x = \frac{1}{2} \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix} \quad K_y = \frac{1}{2} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}
 \]

- Sobel operator is often used in practice
 \[
 K_x = \begin{bmatrix} +1 & 0 & -1 \\ +2 & 0 & -2 \\ +1 & 0 & -1 \end{bmatrix} \quad K_y = \begin{bmatrix} +1 & +2 & +1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}
 \]
Harris Corner Detector

First, consider the second moment matrix for a simpler case:

\[
C = \begin{bmatrix}
\sum I_x^2 & \sum I_x I_y \\
\sum I_x I_y & \sum I_y^2
\end{bmatrix} = \begin{bmatrix}
\lambda_1 & 0 \\
0 & \lambda_2
\end{bmatrix}
\]

This means dominant gradient directions align with x or y axis.

In the general case, since C is symmetric, it can be shown:

\[
C = Q^{-1} \begin{bmatrix}
\lambda_1 & 0 \\
0 & \lambda_2
\end{bmatrix} Q
\]

If either \(\lambda \) close to 0, then not a corner, so seek locations where both large.

CSE 152A, FA22: Manmohan Chandraker

Slide based on: David Jacobs
Simple Corner Detector: Implementation

- Run a small window over an image and compute spatial gradient matrix C at every pixel
- Compute the minor eigenvalue of C at every pixel to obtain the corner response “image” R
- Apply nonmaximal suppression to the “image” R
 - Divide into grid, choose maximum within each grid cell
 - Resulting image R' has only one corner candidate per grid cell
 - Prevents corners from being too close to each other
- Threshold resulting image R' using a global threshold T
 - Corners at pixels (x, y) corresponding to $R'(x, y) > T$
Simple matching methods

Interest point:
• Localized position
• Informative about image content
• Repeatable under variations

Descriptor:
• Function applied on W_1 and W_2, to enable comparing them
• Simple descriptor: can just use the window W around interest point

$W_1(x, y): k \times k$ pixel patch in image 1

$W_2(x, y): k \times k$ pixel patch in image 2
Simple matching methods

- **SSD (Sum of Squared Differences)**
 \[\sum_{x,y} |W_1(x,y) - W_2(x,y)|^2 \]

- **NCC (Normalized Cross Correlation)**
 \[\sum_{x,y} \frac{(W_1(x,y) - \bar{W}_1)(W_2(x,y) - \bar{W}_2)}{\sigma_{W_1} \sigma_{W_2}} \]
 \[\bar{W}_i = \frac{1}{n} \sum_{x,y} W_i, \quad \sigma_{W_i} = \sqrt{\frac{1}{n} \sum_{x,y} (W_i - \bar{W}_i)^2} \]
 (Mean) \quad (Standard deviation)

- What advantages might NCC have over SSD?
Feature distance

How to define the distance between two features f_1, f_2?

- Better approach: ratio distance = $\frac{\text{SSD}(f_1, f_2)}{\text{SSD}(f_1, f_2')}$
 - f_2 is best SSD match to f_1 in I_2
 - f_2' is 2nd best SSD match to f_1 in I_2
 - gives small values for ambiguous matches
True or false positives

The distance threshold affects performance

- **True positives** = number of detected matches that are correct
 - Suppose we want to maximize these—how to choose threshold?
 - Increase threshold (uncertain matches are also allowed)

- **False positives** = number of detected matches that are incorrect
 - Suppose we want to minimize these—how to choose threshold?
 - Decrease threshold (matches discarded unless they are very certain)
Correspondence is a vital 3D cue
Depth from correspondence

Two measurements: X_L, X_R
Two unknowns: X, Z

Constants:
- Baseline: d
- Focal length: f

Disparity: $(X_L - X_R)$

\[
Z = \frac{d f}{(X_L - X_R)}
\]

\[
X = \frac{d X_L}{(X_L - X_R)}
\]

Using similar triangles:
\[
\frac{X_L}{f} = \frac{X}{Z} \quad \frac{X_R}{f} = \frac{X - d}{Z}
\]

Depth is inversely proportional to disparity

(Adapted from Hager)
Mars Exploratory Rovers: Spirit and Opportunity, 2004

Stereo camera
Structure from Motion (SFM)
Visual SLAM
Structure from Motion
Feature detection

Several images observe a scene from different viewpoints
Feature detection

Detect features using, for example, SIFT [Lowe, IJCV 2004]
Feature matching

Match features between each pair of images
Structure from motion

Optimization problem:
minimize\[g(R, T, X) \]

non-linear least squares

\[\Pi_1 X_1 \sim p_{11} \]

Camera 1
\[R_1, t_1 \]

Camera 2
\[R_2, t_2 \]

Camera 3
\[R_3, t_3 \]
Feature matching
Robustness

Let’s consider a simpler example... line fitting

Problem: Fit a line to these datapoints

Least squares fit
Idea

• Given a hypothesized line
• Count the number of points that “agree” with the line
 – “Agree” = within a small distance of the line
 – These are the inliers to that line

• For all possible lines, select the one with the largest number of inliers
Counting inliers
Counting inliers

Inliers: 3
Counting inliers

Inliers: 20

CSE 152A, FA22: Manmohan Chandraker
How do we find the best line?

• Unlike least-squares, no simple closed-form solution

• Hypothesize-and-test
 – Try out many lines, keep the best one
 – RANSAC: Random Sample Consensus

• Number of hypotheses depends on
 – Outlier ratio
 – Probability of correct answer
 – Model size
RANSAC

- General version:
 1. Randomly choose s samples
 - Typically $s = \text{minimum sample size to fit a model}$
 2. Fit a model (say, line) to those samples
 3. Count the number of inliers that approximately fit the model
 4. Repeat N times
 5. Choose the model with the largest set of inliers
Two-View Reconstruction

Given correspondences with potential outliers, fit a model to find maximum number of inliers, consistent with geometric image formation in the two views.
Model: Fundamental Matrix

\[x_1 \leftrightarrow x_2 \]

\[x_1^T F x_2 = 0 \]

- \(F \) is a 3x3 matrix of rank 2
- \(F \) has 7 degrees of freedom
Estimating F

• Given just the two images, can we estimate F?

• Yes, with enough correspondences.
Estimating F: 8-point algorithm

• The fundamental matrix F is defined by

$$x'^T F x = 0$$

for any pair of matches x and x' in two images.

• Let $x = (u,v,1)^T$ and $x' = (u',v',1)^T$, \[F = \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \]

• Each match gives a linear equation:

$$uu' f_{11} + vu' f_{12} + u' f_{13} + uv' f_{21} + vv' f_{22} + v' f_{23} + uf_{31} + vf_{32} + f_{33} = 0$$
8-point algorithm

Given \(n \) point correspondences, set up a system of equations:

\[
\begin{bmatrix}
u_1 u'_1 & v_1 u'_1 & u'_1 & u_1 v'_1 & v_1 v'_1 & v'_1 & u_1 & v_1 & 1 \\
u_2 u'_2 & v_2 u'_2 & u'_2 & u_2 v'_2 & v_2 v'_2 & v'_2 & u_2 & v_2 & 1 \\
\vdots & \vdots \\
u_n u'_n & v_n u'_n & u'_n & u_n v'_n & v_n v'_n & v'_n & u_n & v_n & 1
\end{bmatrix}
\begin{bmatrix}f_{11} \\ f_{12} \\ f_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{31} \\ f_{32} \\ f_{33}\end{bmatrix} = 0
\]

- In reality, instead of solving \(A\mathbf{f} = 0 \), we seek \(\mathbf{f} \) to minimize \(\| A\mathbf{f} \| \).
Solving homogeneous systems

• In reality, instead of solving $\mathbf{Af} = 0$, we seek \mathbf{f} to minimize $\|\mathbf{Af}\|$.

• Singular value decomposition:

$$\mathbf{A} = \mathbf{U}\Sigma\mathbf{V}^\top$$

\mathbf{U}, \mathbf{V} are rotation matrices

$$\Sigma = \begin{bmatrix} s_1 & & \\ & \ddots & \\ & & s_n \end{bmatrix}$$

• Solution \mathbf{f} given by the last column of \mathbf{V}.

CSE 152A, FA22: Manmohan Chandraker
8-point algorithm: Problem?

• F should have rank 2
• To enforce that F is of rank 2, F is replaced by F' that minimizes $\|F^T F'\|$ subject to the rank constraint.

• This is achieved by SVD. Let $F = U\Sigma V^T$, where

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{bmatrix}. \text{ Let } \Sigma' = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

then $F' = U\Sigma' V^T$ is the solution.
8-point algorithm

% Normalization on 2D points (advanced concept, implemented for you)

% Build the constraint matrix
A = [x2(1,:)' .* x1(1,:)' x2(1,:)' .* x1(2,:)' x2(1,:)' ...
 x2(2,:)' .* x1(1,:)' x2(2,:)' .* x1(2,:)' x2(2,:)' ...
 x1(1,:)' x1(2,:)' ones(npts,1)];

[U,D,V] = svd(A);

% Extract fundamental matrix from the column of V
% corresponding to the smallest singular value.
F = reshape(V(:,9),3,3)';

% Enforce rank 2 constraint
[U,D,V] = svd(F);
F = U * diag([D(1,1) D(2,2) 0]) * V';

% Do the reverse normalization on 2D points
RANSAC to Estimate Fundamental Matrix

• For N times
 – Pick 8 points
 – Compute a solution for \mathbf{F} using these 8 points
 – Count number of inliers with $\mathbf{x}_1^T \mathbf{F} \mathbf{x}_2$ close to 0

• Pick the one with the largest number of inliers
Outliers in Feature Matching

Overall plan: use the fundamental matrix as a model to remove outliers
- Points in correspondence should be consistent with some fundamental matrix
- Find the fundamental matrix with which most points are consistent (inliers)
- Remove points not consistent with the above fundamental matrix (outliers)
Fundamental Matrix for SFM
Cross-product as linear operator

Useful fact: Cross product with a vector \mathbf{t} can be represented as multiplication with a *(skew-symmetric)* 3x3 matrix

$$[\mathbf{t}]_\times = \begin{bmatrix} 0 & -t_z & t_y \\ t_z & 0 & -t_x \\ -t_y & t_x & 0 \end{bmatrix}$$

$$\mathbf{t} \times \mathbf{\hat{p}} = [\mathbf{t}]_\times \mathbf{\hat{p}}$$

What is the rank of $[\mathbf{t}]_\times$?
Cross-product as linear operator

Useful fact: Cross product with a vector \(\mathbf{t} \) can be represented as multiplication with a \((skew-symmetric)\) 3x3 matrix

\[
[t]_\times = \begin{bmatrix}
0 & -t_z & t_y \\
t_z & 0 & -t_x \\
-t_y & t_x & 0
\end{bmatrix}
\]

\(\mathbf{t} \times \tilde{\mathbf{p}} = [\mathbf{t}]_\times \tilde{\mathbf{p}} \)

What is the rank of \([\mathbf{t}]_\times\)?

Rank 2, since \(\mathbf{t} \) is a null vector of \([\mathbf{t}]_\times\)

\([\mathbf{t}]_\times \mathbf{t} = \mathbf{t} \times \mathbf{t} = \mathbf{0} \)

CSE 152A, FA22: Manmohan Chandraker
Two-view geometry

Corresponding point in other image is constrained to lie on a line, called the *epipolar line*.
Epipoles

Two special points: e_1 and e_2 (the *epipoles*): projection of one camera into the other.
Epipolar lines

Two special points: e_1 and e_2 (the *epipoles*): projection of one camera into the other.

All epipolar planes pass through the two camera centers.
All of the epipolar lines in an image pass through the epipole.
Essential matrix

- Assume calibrated cameras with $K_1 = K_2 = I_{3x3}$.
- Let camera 1 be $[I, 0]$ and camera 2 be $[R, t]$.
- In camera 1 coordinates, 3D point X is given by $X_1 = \lambda_1 p$.
- In camera 2 coordinates, 3D point X is given by $X_2 = \lambda_2 q$.
- Since camera 2 is related to camera 1 by rigid-body motion $[R, t]$

$$X_2 = RX_1 + t$$

$$\lambda_2 q = \lambda_1 R p + t$$
Essential matrix

- We have: $\lambda_2 q = \lambda_1 R p + t$
- Take cross-product with respect to t:
 $$\lambda_2 [t] \times q = \lambda_1 [t] \times R p$$
- Take dot-product with respect to q:
 $$0 = \lambda_1 q^\top [t] \times R p$$
Essential matrix

- We have: \(q^\top [t] \times R p = 0 \)
- Define:
 \[
 E = [t] \times R
 \]
- Then, we have:
 \[
 q^\top E p = 0
 \]

How many degrees of freedom does \(E \) have?
• Relax the assumption of calibrated cameras.
• Then, \(\mathbf{p} \) and \(\mathbf{q} \) are in metric coordinates and pixel counterparts are:
 \[
 \mathbf{p}' = \mathbf{K}_1 \mathbf{p} \quad \mathbf{q}' = \mathbf{K}_2 \mathbf{q}
 \]
• Recall essential matrix constraint:
 \[
 \mathbf{q}^\top \mathbf{E} \mathbf{p} = 0
 \]
• Substituting, we have:
 \[
 (\mathbf{K}_2^{-1} \mathbf{q}')^\top \mathbf{E} (\mathbf{K}_1^{-1} \mathbf{p}') = 0
 \]
Essential matrix constraint in pixel space: \((K_2^{-1}q')^\top E(K_1^{-1}p') = 0\).

Rearranging:

\[q'^\top (K_2^{-\top}EK_1^{-1})p' = 0 \]

Define: \(F = K_2^{-\top}EK_1^{-1} \)

Then, we have:

\[q'^\top Fp' = 0 \]

How many degrees of freedom does \(F \) have?
• For corresponding points x and x', we have $x'^{T}Fx = 0$
• Define $l' = Fx$, then we have $x'^{T}l' = 0$
• Then, for point x, the line Fx contains corresponding point x'
• So, $l' = Fx$ is the epipolar line in the second image
• For corresponding points \(x \) and \(x' \), we have \(x'^{\top}F x = 0 \)
• We saw that \(l' = F x \) is the epipolar line in the second image

Epipole: the point that lies on *all* epipolar lines \(l' \) for *any* \(x \)
• Thus, for any \(x \), we need point \(e' \), such that \(e'^{\top}F x = 0 \)
• Rewrite as \((F^{\top}e')^{\top}x = 0 \)
• So, epipole is given by \(e' = \text{null}(F^{\top}) \)
For corresponding points \(\mathbf{x} \) and \(\mathbf{x}' \), we have \(\mathbf{x}'^T \mathbf{F} \mathbf{x} = 0 \)

- Taking transpose, it is the same as \(\mathbf{x}^T \mathbf{F}^T \mathbf{x}' = 0 \)
- Define \(\mathbf{l} = \mathbf{F}^T \mathbf{x}' \), then we have \(\mathbf{x}^T \mathbf{l} = 0 \)
- Then, for point \(\mathbf{x}' \), the line \(\mathbf{F}^T \mathbf{x}' \) contains corresponding point \(\mathbf{x} \)
- So, \(\mathbf{l} = \mathbf{F}^T \mathbf{x}' \) is the epipolar line in the first image
For corresponding points \(x \) and \(x' \), we have \(x'^T F x = 0 \).

We saw that \(l = F^T x' \) is the epipolar line in the second image.

Epipole: the point that lies on *all* epipolar lines \(l \) for *any* \(x' \).

Thus, for any \(x' \), we need point \(e \), such that \(x'^T F e = 0 \).

Group the elements as \(x'^T (F e) = 0 \).

So, epipole is given by \(e = \text{null}(F) \).
Properties of the fundamental matrix

- \(Fx \) is the epipolar line associated with \(x \)
- \(F^T x' \) is the epipolar line associated with \(x' \)
- Epipoles given by \(Fe = 0 \) and \(F^T e' = 0 \)
- \(F \) is rank 2.
Motion from correspondences

- Use 8-point algorithm to estimate F
- Get E from F:
 \[
 F = K_2^{-\top} E K_1^{-1}
 \]
 \[
 E = K_2^\top F K_1
 \]
- Decompose E into skew-symmetric and rotation matrices:
 \[
 E = [t] \times R
 \]

Can estimate rotation and translation from E
Given camera motion $[R \mid t]$, can find intersection of back-projected rays from inlier correspondences to estimate the 3D points.
Results (ground truth)