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Abstract. Causal message logging spread recovery information around
the network in which the processes execute. This is an attractive prop-
erty for wide area networks: it can be used to replicate processes that
are otherwise inaccessible due to network partitions. However, current
causal message logging protocols do not scale to thousands of processes.
We describe the Hierarchical Causal Logging Protocol (HCML) that is
scalable. It uses a hierarchy of proxies to reduce the amount of informa-
tion a process needs to maintain. Proxies also act as caches for recovery
information and reduce the overall message overhead by as much as 50%.
HCML also leverages di�erences in bandwidth between processes that re-
duces overall message latency by as much as 97%.

1 Introduction

Large scale computational grids are gaining popularity as infrastructure for run-
ning large scienti�c applications. Examples of such grids exist in the academic
world (SETI@Home [5], Globus [9], and Nile [13]) as well as in the commercial
sector (Entropia and Parabon among others). A primary goal of all these grids
is to leverage the increased computational power of desktop personal comput-
ers and workstations that are linked by high speed communication protocols to
provide a virtual supercomputer with the aggragate computational power that
is many times that of current supercomputers. For example, the largest current
grid is the SETI@Home grid that includes over two million desktop personal
computers. The aggragate computing power of this grid exceeds that of all the
top 500 supercomputers [12].

Before applications can leverage this virtual supercomputer, many problems
inherent to large-scale systems must be solved. One of the key challenges is fault



tolerance. In any system of thousands or millions of computers, the likelihood
of multiple failures is high. Many of the current applications that utilize these
grids are decomposed into independent pieces where each piece is assigned to
a particular host machine. For such applications, failures can be dealt with by
re-running a failed computation on a di�erent host. Consistency is not an issue
since each piece of computation is independent of all other pieces. Such is the
case for the Seti@Home application.

However, for many other applications, the application can not be divided
into independent pieces. Each piece has dependencies on other pieces of the
application, and it is not suÆcient to simply restart a failed piece of the compu-
tation on another host. The system must ensure that the restarted computation
maintains consistency with the other parts of the application. Examples of such
applications include Jacobi grid and other relaxation style algorithms. Such ap-
plications are typically written using a communication library where each piece
of the computation communicates with other pieces by sending and receiving
messages. The messages de�ne the dependencies between the sender process and
the receiver process. The transitive closure of the message dependencies de�ne
the overall application dependencies. Restarted processes must respect the ap-
plication dependencies.

Simple checkpointing mechanisms will not suÆce for fault tolerance in these
environments. The host machines are geographically widely distributed. Network
partitions can make checkpoint �les ubavailable when needed. The checkpointed
state needs to be cached at various places in the network.

One class of protocols, called Causal Message Logging protocols [4, 8], cache
recovery information in an appropriate manner. They operate by logging the
recovery information in the volatile memory of the application processes and by
dispersing the recovery information by piggybacking it on to application mes-
sages. The dispersed recovery information can then be used to generate replicas
that are causally consistent [1] with the rest of the application. Causal message
logging protocols also have a low overhead during failure-free executions and
send no extra messages to distribute the recovery information.

While causal message logging protocols have been used successfully in local-
area-networks, they are not suitable for use in large wide-area environments.
These protocols maintain data structures that grow quadratically in the number
n of processes in the system. For large n the memory needed to maintain these
data structures can easily become unmanageable. In addition, the higher latency
and decreased bandwidth of wide area computing can lead to a large increase
in the amount of data that these protocols piggyback on the ambient message
traÆc.

This paper presents an implementation of causal message logging that is de-
signed for use in large scale, wide-area grid infrastructures. An expanded version
of the paper is available as [6]. Hierarchical Causal Message Logging (HCML)
utilizes a network of proxies situated throughout the network that cache recov-
ery information while routing application messages. Using proxies exponentially
reduces the size of the data structures needed to track causality. We have also



found that using proxies reduces signi�cantly the bandwidth overhead of dis-
tributing recovery information throughout the network.

2 System Model

We assume a system with a set P of n processes, whose execution is repre-
sented by a run, which is an irre
exive partial ordering ! of the send events,
receive events and local events based on potential causality [11]. Processes can
communicate only by sending and receiving messages; communication is FIFO
and reliable. The system is asynchronous: there exists no bound on the relative
speeds of processes, no bound on message transmission delays, and no global
time source. A deliver event is a local event that represents the delivery of a
received message to the application or applications running in that process. For
any message m from process p to process q, q delivers m only if it has received
m, and q delivers m no more than once.

We assume that processes are piecewise deterministic [7, 14], i.e. that it is
possible to identify all the non-deterministic events executed by each process and
to log for each such event a determinant [4] that contains all the information
necessary to replay the event during recovery. In particular, we assume that
the order in which messages are delivered is non deterministic, and that the
corresponding deliver events are the only non-deterministic events that a process
executes. The determinant #m for the deliver event of a message m includes
a unique identi�er for m as well as m's position in the delivery order at its
destination. The contents of the message need not be saved because it can be
regenerated when needed [4].

Given a message m sent from process p to process q, we de�ne Dep(m) to be
the set of processes that have executed an event e such that receiveq(m; p)! e.
Informally, this is the set of processes that causally depend on the delivery of
message m (including q) once it has delivered m. We also de�ne the set Log(m)
as the set of processes that have stored a copy of #m in their volatile memory.

De�nition 1 (Causal Logging Property). The causal logging speci�cation
de�ned in [2] requires that Dep(m) � Log(m) when any subset of processes can
crash.

We de�ne a locality hierarchy as a rooted tree H with the processes in P as
the leaves of the tree. Each interior nodes of the tree represent a locale, such as
a speci�c processor, local-area network, or a stub domain. Given H, we denote
with C(x; y) the least common ancestory or x and y and x̂ to be the parent of x.

Each locale in H has associated with it a characteristic that de�nes the
available bandwidth for communication among the locale's children. If two ap-
plication processes s and t have the same parent p in H, then the communication
cost of a message m from process s to process t depends on the bandwidth char-
acteristics of their parent p. If s and t do not have the same parent, then the
communication cost of message m depends on the bandwidth characteristics of



the locale C(p; q). We assume that all locales at the same height i have the same
bandwidth BWi (measured in MB/sec).

The overhead of a message m, denoted as jmj, is the size in bytes of the
fault tolerance information piggybacked on m. The transmission overhead of m
is a the time it takes to transmit jmj from its sender to its destination m:dest
(based on the slowest locale in the path). The total message overhead of a run
is the sum of the message overhead for all the messages sent in the run. The
message overhead at depth i of the hierarchy is the sum of the message overhead
of messages that traverse locales at height i. The total transmission overhead is
the sum of the transmission overheads for all messages in the run.

3 Hierarchical Design

In this section we �rst review a simple causal message logging protocol that we
call SCML. It is equivalent to the protocol �det with f = n described in [3]
and to Manetho [8]. We then discuss its limitations with respect to scaling, and
present a hierarchical and scalable causal message logging protocol.

3.1 Review of SCML

Like other message logging protocols, causal message logging is built using a
recovery unit abstraction [14]. The recovery unit acts like a �lter between the
application and the transport layer. When an application sends a message, the
recovery unit records fault tolerance information on the message and hands it
o� to the transport layer. Similarly, on the receiving end, the recovery unit reads
the fault tolerance information on the message and updates its in-memory data
structures before passing the contents of the message to the application layer.

The recovery unit for causal message logging maintains a determinant array
Hs at each process s. For every process t,Hs[t] contains the determinant of every
message delivered by t in the causal past of s. Hs[t] is ordered by the order of
message delivery at t. We denote with Hs[t; i] the i

th determinant in Hs[t].
A simplistic way to maintain Hs is as follows. When a process s sends a

message m to t, it piggybacks on m all determinants in Hs. When process t
receives m, it extracts these piggybacked determinants, incorporates them into
Ht, generates the determinant for m, and appends #m to Ht[t]. By doing so,
when process t delivers m it has all the determinants for messages that were
delivered causally before and including the delivery of m and therefore satis�es
the causal logging property. This method of maintaining H, however, needlessly
piggybacks many determinants. To reduce the number, each process s maintains
a dependency matrix Ds. This is a matrix clock where the value Ds[t; u] is an
index intoHs[u]. IfDs[t; u] = j, then process s knows that all of the determinants
in Hs[u] up through Hs[u; j] have been sent to t.

This protocol does not scale well with n because the size of D is O(n2), and
grid computation middleware is being designed for systems in which n in the
thousands or millions. Even if n were the relatively small value of 10,000, then



each process would need to maintain a dependency matrix whose size would be
measured in gigabytes.

3.2 Proxy Hierarchy

HCML addresses the scalability problems of causal message logging through
hierarchy. Each process tracks only a small subset of the processes, thereby
e�ectively reducing n for each process. Doing so also reduces the number of
times a process is a�ected by another process joining or leaving the system; a
process is a�ected only when the joining or leaving process is in the subset of
processes it tracks. The hierarchy we use is based on the locality hierarchy H
discussed in Section 2. The leaves in the HCML hierarchy are the application
processes, and the internal nodes (corresponding to locales in H) are HCML
proxy processes called simply proxies. There is no proxy corresponding to the
root of H. In the degenerate case of a single locale, the only processes are the
application processes, and HCML degenerates to SCML.

An application process can directly send messages to other application pro-
cesses within its immediate locale and to the one proxy associated with that
locale which acts as a surrogate for all of the other application processes outside
of the locale. Proxies operates similarly to other processes: each proxy has a set
of sibling processes with which it can communicate directly. To communicate
with any non-sibling, the proxy forwards a message to its proxy.

The routing of messages is done automatically by the communication layer
and is invisible to the application. This can be done eÆciently when the locales
are de�ned in terms of IP subnets.

3.3 Peers and Proxies

Each proxy in the system simultaneously runs two causal message logging pro-
tocols: one with its siblings and parent in the role of a peer, and one with its
children in the role of a proxy. Since application processes are at the leaves of
the hierarchy and have no children, they only run one causal message logging
protocol with their siblings and parent in the role of a peer. Hence, for a hier-
archy containing i internal nodes, there are i distinct protocols running at any
time. We call this basic causal message logging protocol CML, and we associate
a CML protocol with each proxy in the system. Thus proxy x runs both CMLx̂

with its siblings and parent and CMLx with its children. Application process s
only runs CMLŝ.

CML is SCML with two di�erences: proxies have access to the determinants
that are piggybacked on messages and proxies do not generate determinants.
The �rst di�erence is needed for coupling instances of CML; as for the second, it
is not necessary for proxies to generate determinants because their state can be
safely reconstructed even if their messages are delivered in another order during
recovery.

To satisfy the Causal Logging property, a proxy x couples CMLx and CMLx̂.
Process x acts as a proxy to all of its children for all processes outside of its



locale. Therefore, all determinants stored in Hx̂
x (that is, the determinant array

of process x associated with protocol CMLx̂) and assigned to remote processes
are also stored inHx

x (the determinant array of process x associated with protocol
CMLx and assigned to process x: it is always the case that

8r; d : (d 2 Hx̂
x[r]) d 2 Hx

x[x]): (1)

Process x also acts as a proxy to the processes in its peer group for its child
processes. Therefore, determinants stored in Hx

x are also stored in Hx̂
x: it is

always the case that

8r; d : (d 2 Hx
x[s]) d 2 Hx̂

x[x]): (2)

We call the conjunction of Equations 1 and 2 the Coupling invariant.
It is easy to see that the Coupling invariant combined with CML satis�es the

Causal Logging property. Consider a message m sent from application process
a to application process b. Let T = ht1; t2; : : : ; tki be the sequence of prox-

ies that lead from a to b via C(a; b); thus, t1 = â, tk = b̂, and tk=2+1 =
C(a; b). Due to the routing of messages through the proxies, m is forwarded
via CMLt1 ;CMLt2 ; : : :CMLtk . For the protocols CMLt1 ;CMLt2 ; : : :CMLtk=2+1

Equation 2 ensures that the determinants needed to satisfy the Causal Logging
property are available and forwarded appropriately. For the remaining proto-
cols CMLtk=2+2 ;CMLtk=2+3 ; : : :CMLk Equation 1 ensures that the determinants
needed to satisfy the Causal Logging property are forwarded.

3.4 Recovery

When a process crashes, a new process must be created as a replacement for the
failed process. In order to maintain consistency, causal message logging protocols
gather the relavent recovery information from the set of processes (or proxies)
and use it to ensure that the recovered process is consistent. Existing recovery
protocols (see [3]) can be easily adapted for HCML.

HCML, however, has additional processes to maintain over those of standard
causal message logging protocols, namely the proxy processes. Fortunately, a
crashed proxy can simply be restarted and its neighbors in the heirarchy need
to be informed. The proxies state includes only the cached recovery information,
and subsequent messages will simply re�ll the cache after recovery.

4 Performance

Using the proxy hierarchy ensures that no process needs to track the causality
of a large number of processes. This technique provides an exponential space
reduction as compared to tracking the full causality. For example, assume that
the locality hierarchy has depth of �ve and the fanout is 10 at each node. Such an
architecture can accommodate 100; 000 application processes, yet each process



only tracks either six or twelve processes (depending on whether it is an appli-
cation process or a proxy respectively). With SCML, on the other hand, each
application process would maintain a dependency matrix with 105 � 105 = 1010

entries.
However, the tradeo� is that HCML will over-estimate the causality as com-

pared to SCML and and more often needlessly piggyback determinants to pro-
cesses that are not dependent on them. In addition, HCML will send more
messages than SCML because all non-local messages are relayed through the
proxy hierarchy. This, however, is o�set by the fact that the proxies act as lo-
cal caches for determinants. This caching of determinants reduces the overall
message overhead by over 50% percent. More importantly, HCML reduces the
message overhead over slower communication channels and reduces the e�ective
message communication latency.

In this section, we �rst describe our application, the proxy hierarchy, and the
scheduling of processes within the hierarchy. We then discuss the performance
results.

4.1 E�ect of the Hierarchy

In order to gauge the e�ect of the hierarchy on both the message overhead
and the message cost for HCML and SCML, we analyzed the performance of
an application of 256 processes where, on average, each process communicates
with four other processes selected randomly. The application proceeds in rounds.
At each round, each process sends a message to its neighbors and delivers the
messages sent in the previous round. The run ends after approximately 5,000
messages have been delivered.

An execution completely de�nes a run, but the performance of the run using
HCML depends on the structure of the hierarchy and on how the processes are
scheduled in the hierarchy. We then considered proxy hierarchies of di�erent
depths:

1. A depth-one hierarchy consisting of one locale containing all 256 application
processes and no proxies. As stated earlier, this is identical to SCML.

2. A depth-two hierarchy with four locales (hence four proxies), each containing
64 application processes.

3. A depth-three hierarchy with sixteen application processes per lowest level
locale. Their proxies have three siblings each, and so there are 20 proxies
total.

4. A depth-four hierarchy that divides each of the application process locales
of the previous hierarchy by four. Thus, there are four application processes
per lowest level locale, and there are 84 proxies total.

The application processes are placed into locales independently of the com-
munication patterns that they exhibit.

We used the Network Weather Service [16] to measure the available band-
width for processes communicating in di�erent locales. The values we measured



ranged from over 200 MB/s for communication within the locale of a simple
workstation to less than 0.4 MB/s for the wide area locale containing San Diego
and western Europe. Thus, we set BW1 = 1MB=s (intercontinental communica-
tions), BW2 = 10MB=s (intra-stub domain communications), BW3 = 100MB=s
(local area network communications), and BW4 = 1; 000MB=s (intra-high per-
formance multiprocessor communications). 1 Figure 1 shows the total message
size for the run using both HCML and SCML as a function of depth. Because
SCML does not take advantage of the locale hierarchy, its performance is con-
stant with respect to the depth. HCML, on the other hand, relays non-local mes-
sages through the hierarchy and therefore sends more messages overall. Hence,
one might expect that HCML would have a higher total message overhead. As
the �gure shows, the caching of the determinants actually improves the message
overhead of HCML over SCML by as much as 50%. As the hierarchy gets deeper,
the net e�ect of the caches is reduced. For a depth of four, for example, the lo-
cales at depth 3 have only four processes in them each and so the opportunity
to bene�t from caching is low.

To see how the caches reduce the communication costs, consider the example
from the last section once again. After m2 is �nally delivered to process u, the
determinant for message m1 is stored at the intermediate nodes p and r as well
as the application process u. Consider what happens if a third message m3 is
sent from process t to process v. In SCML t simply piggybacks #m1 onm3 which
gets sent from the locale of p to the locale of r. Using HCML, however, m3 is
redirected to node p which knows that r already has a copy of #m1. Therefore
p does not need to piggybacked #m1 again. Process r does not know whether v
has stored #m1, and hence piggybacks the determinant to v.

A secondary e�ect of the proxies is that more of the communication occurs
lower in the hierarchy, where there is more bandwidth available. Figure 1 also
shows the total transit overhead for SCML and HCML. In the case of depth 3
hierarchy, HCML reduces the total transit overhead by 97%. It should be noted
that this metric does not include any added latency arising from the processing
time of proxies.

We have found similar results for di�erent application with di�erent commu-
nication properties. In most cases, HCML is able to leverage the locality and
produce a net reduction in both the total message overhead and the total mes-
sage transit time. In addition, HCML performs better when the communication
pattern the application processes use biases communication to be mostly within
the higher bandwidth locales. Hence, we believe that HCML can only bene�t
from the the careful scheduling of grid-based applications.

1 For hierarchies of depth less than three, we assigned bandwidths starting with BW1.
While doing so is unrealistic|for example, one would not expect a program to consist
of 256 processes, each running in its own stub domain|it is at least well de�ned
and no less arbitrary than any other choice. Furthermore, doing so does not a�ect
the relative total transmission overheads for a �xed depth.
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Fig. 1. HCML (H) and SCML (S) performance. Darker areas represent bandwidth
overhead sent between locales lower in the hierarchy, and hence locales with greater
available bandwidth.

5 Conclusions

We have developed a scalable version of causal message logging. Our preliminary
measurements indicate that it can easily scale to the largest grid-based comput-
ing environments that are being envisioned. Not only are the data structures that
are maintained by each application process reduced by an exponential amount,
but a caching e�ect reduces the message overhead as well when compared to tra-
ditional causal message logging. To attain these bene�ts, one sets up a hierarchy
of proxies, each serving both as a router of causal message logging communica-
tion and as a cache of recovery information. Indeed, an interesting open question
is if the routing of fault-tolerant information could be implemented as part of
the underlying network routing function.

The protocol as described here is very simple, and appears to be amenable
to re�nement. For example, each proxy p manages an instance CMLp̂ of a causal
message logging protocol. It seems straightforward to allow CMLp̂ to be replaced
with a pessimistic message logging protocol to limit the spread of recovery infor-
mation to be below p in the locale hierarchy. Another re�nement we are devel-
oping would allow one to give speci�c failure model information about locales,
thereby allowing one to replicate recovery information more prudently.

One spreads recovery information for the purpose of recovery, which is not
discussed in any detail in this paper. In fact, we have designed HCML to allow us
to experiment with recovery in the face of partitions. HCML does not appear to
be hard to extend to support dynamic replication of a process (or an object) when



a partition makes it inaccessible to a set of clients that require its service. The
approach we are developing has some similarities with other dynamic replication
services and with wide-area group programming techniques [10, 15].
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