
Page 1 of 19

CSE 100, UCSD: LEC 17

Lecture 17

✔ Improving open-addressing hashing

✔ Brent’s method

✔ Ordered hashing

Page 2 of 19

Improving open addressing hashing

costs for common open-

some applications...
CSE 100, UCSD: LEC 17

✔ Recall the average case unsuccessful and successful find time
addressing schemes (α is load factor N/M)...

✔ Random hashing, double hashing:

✔ Linear probing:

✔ It is possible to improve these, and it makes sense to do so in

Uα
1

1 α–
------------=

Sα
1
α
--- 1

1 α–
------------ln≈

Uα
1
2
--- 1

1
1 α–()2

--------------------+
 ≈

Sα
1
2
--- 1

1
1 α–()

-----------------+
 ≈

Page 3 of 19

Improving successful find time cost

once, followed by many
Examples:

en as each word is typed
elling... not found means

d; then when a variable is
und means an undeclared

roves average-case
CSE 100, UCSD: LEC 17

✔ It is common to have databases in which keys are inserted only
successful searches and relatively few unsuccessful searches.

✗ spell checker (insert all words from the dictionary once; th
into a document, do a usually-successful find to check its sp
a misspelled word)

✗ compiler symbol table (insert a variable when it is declare
used, do a usually-successful find to check its type... not fo
variable error)

✔ Brent’s method is a variant of double hashing that greatly imp
successful find time cost (but increases insert time cost)

Page 4 of 19

Improving unsuccessful find time cost

d only once, followed by
earches. Examples:

it is reported stolen; then
cessful find to check its

time; then when a word
eck if it is a noise word)

verage-case unsuccessful
CSE 100, UCSD: LEC 17

✔ It is also common to have databases in which keys are inserte
many unsuccessful searches and relatively few unsuccessful s

✗ stolen credit card database (insert credit card number when
when a customer presents a credit card, do a usually-unsuc
status... successful find means a stolen card)

✗ noise-word list (insert “noise” words once, at initialization
is read in a document, do a usually-unsuccessful find to ch

✔ Ordered hashing is a variant of double hashing that improves a
find time cost

Page 5 of 19

Brent’s method

n double hashing that

.5 probes even when the

ore expensive, but
e and successful searches
CSE 100, UCSD: LEC 17

✔ Brent’s method for hashing [R. P. Brent, 1973] is a variation o
improves the average-case time for successful searches

✔ In fact, the average-case successful search time is bounded < 2
table is full (load factor α = 1)!

✔ The tradeoff is that the insert operation becomes somewhat m
amortized analysis shows this can be worth it if inserts are rar
are common

Page 6 of 19

Toward Brent’s method: start with double hashing

these keys give these

searches in the table as
CSE 100, UCSD: LEC 17

✔ Consider a 5-cell table, open addressing, double hashing

✔ Consider 3 keys: k1, k2, k3

✔ Suppose the primary and secondary hash functions applied to
values:

H(k1) = 0, H2(k1) = 4
H(k2) = 3, H2(k2) = 1
H(k3) = 0, H2(k2) = 3

... so the probe index sequences for these keys are as follows:

k1: 0, 4, 3, 2, 1
k2: 3, 4, 0, 1, 2
k3: 0, 3, 1, 4, 2

✔ Now consider the total probe sequence lengths for successful
these keys are inserted

Page 7 of 19

Successful search probe path lengths, double hashing

ath length is 1, to total is

gth is 3; total is now
CSE 100, UCSD: LEC 17

✔ After inserting k1, the total successful probe path length is 1

✔ After also inserting k2, the increase in total successful probe p
now 1+1 = 2; average probe path length is 2/2 = 1

✔ Now insert k3. The increase in total successful probe path len
1+1+3 = 5; average probe path length is 5/3

0 1 2 3 4

k1

0 1 2 3 4

k1 k2

0 1 2 3 4

k1 k2k3

Page 8 of 19

Brent’s method: basic idea

e-inserted key, if it can be
obe path length

increases overall
le)

be location is empty, just
length by 2, which also

cation and with another

nd putting K in its place!

uccessful probe path
...

2, which is better than
case (an increase of at

example
CSE 100, UCSD: LEC 17

✔ Brent’s idea is to move items out of the probe path of the to-b
determined that this will reduce the overall total successful pr

✔ Consider inserting a new key K:

✗ If K’s first probe location is empty, just insert K there (this
successful probe path length by 1, which is the best possib

✗ If K’s first probe location is full (collision), and second pro
insert K there (this increases overall successful probe path
cannot be improved by Brent’s method...)

✗ But suppose K collides with a key K1 at K’s first probe lo
key K2 at K’s second location:

• Think about moving K1 to K1’s next probe location, a

• If K1’s next location is empty, this will increase K1’s s
length by 1, and K’s probe sequence will have length 1

• This increases the total successful probe path length by
what would happen with regular double hashing in this
least 3)

✔ This is the basic idea behind Brent’s method. Let’s look at an

Page 9 of 19

Brent’s method: example 1

ove k1 to its next probe

probe path length is 4/3
CSE 100, UCSD: LEC 17

✔ Recall the probe sequences
k1: 0, 4, 3, 2, 1
k2: 3, 4, 0, 1, 2
k3: 0, 3, 1, 4, 2

✔ k1 and k2 have been inserted:

✔ Now insert k3. We can put it in its first probe location, and m
location, which is empty:

✔ Total successful search path length is now 2+1+1 = 4; average

0 1 2 3 4

k1 k2

0 1 2 3 4

k1k2k3

Page 10 of 19

Brent’s method: example 2

move k2 to its next probe

probe path length is 5/3
CSE 100, UCSD: LEC 17

✔ Same probe sequences...

✔ k1 and k2 have been inserted:

✔ Now insert k3. We can put it in its second probe location, and
location, which is empty:

✔ Total successful search path length is now 1+2+2 = 5; average

0 1 2 3 4

k1 k2

0 1 2 3 4

k2k3k1

Page 11 of 19

Brent’s method: example 3

is empty. (This is the
rts.)

probe path length is 5/3

which gives the smallest
) successful find path
amples to know this!
CSE 100, UCSD: LEC 17

✔ Same probe sequences...

✔ k1 and k2 have been inserted:

✔ Now insert k3. We can put it in its third probe location, which
same result as regular double hashing on this sequence of inse

✔ Total successful search path length is now 1+2+2 = 5; average

✔ Of these 3 possibilities, we should pick the one in Example 1,
increase in (and so the best resulting overall total and average
length. In fact, we wouldn’t even have to check the last 2 ex

0 1 2 3 4

k1 k2

0 1 2 3 4

k2k3k1

Page 12 of 19

Brent’s algorithm

p1, p2 ,..., pv-1 , pv ,
mpty

e is M.

an that.

will consider (c-d+1)

then
ne!

e d, and increases the
se in successful-find path
CSE 100, UCSD: LEC 17

✔ Suppose a new key K to be inserted has probe index sequence
where location pv is the first location in the sequence that is e

✔ Let ki be the key in location pi . Suppose the size of the tabl

✔ Brent’s method operates as follows:

✔ If v < 3, just insert K in location pv as usual; can’t do better th

✔ Else, for c = 1,...,v-2 do the following:

✗ For d = 1,...,c do the following:

• Consider moving kd out of the way. At this stage, we
probes to find an empty location for kd :

if location (pd + (c-d+1) * H2(kd)) mod M is empty,
move kd to that location, and put K in location pd . Do

This makes the path length for finding the new key K b
path length for finding kd by c-d+1. So the total increa
length is c+1, which is less than v

Page 13 of 19

Analysis of Brent’s method

he keys; it is a simple

Brent’s does not consider

robes for unsuccessful

bes for successful search
show that this number is

ut this is worth it, if
CSE 100, UCSD: LEC 17

✔ Brent’s algorithm does not always find optimal positions for t
heuristic that works well on average

✗ for one thing, note that when moving a key out of the way,
also moving keys it collides with...

✔ Brent’s method does not change the average case number of p
search; it is the same as double hashing:

✔ Brent’s method does improve the average case number of pro
compared to double hashing (that is the whole point). One can
bounded, independent of load factor:

✔ Of course, insert is now more expensive, O(N2) worst-case! B
successful searches are much more common than inserts

Uα
1

1 α–
------------≈

Sα 2.49<

Page 14 of 19

Ordered hashing

ouble hashing that

fact, the two become the

ive by a constant factor,
CSE 100, UCSD: LEC 17

✔ Ordered hashing [Knuth and Amble, 1974] is a variation on d
improves the average-case time for unsuccessful searches

✔ The average-case time for successful searches is unchanged; in
same

✔ This technique requires comparable keys

✔ The tradeoff is that the insert operation becomes more expens
but this can be worth it

Page 15 of 19

Ordered hashing: basic idea

take N steps: the list

uld terminate sooner...
the target can’t be in the

2 in the average case, and

earch so that the keys
consider an empty table

in advance. Sort them.
g insert algorithm

thout knowing the keys in
CSE 100, UCSD: LEC 17

✔ In an unsorted linked list with N items, an unsuccessful search
must be searched exhaustively

✔ However, if the list is sorted in decreasing order, the search co
As soon as you see a list item smaller than the target, you know
list

✔ This makes unsuccessful search take 1 step in the best case, N/
N steps worst case: same as successful search

✔ Ordered hashing sets up probe sequences for any successful s
belonging to that probe sequence will be in decreasing order (
location to have a value smaller than any key)

✔ Clearly, this will have the desired result... if we can do it!

✔ One way to do it would be: Know all the keys to be inserted
Insert them in decreasing order, using the usual double-hashin

✔ But we would like an insert algorithm that works “on line”, wi
advance...

Page 16 of 19

The ordered hashing algorithm

ple: “bump” any smaller
n...
the table, so searches in a

ash function H() and

key larger than K:

: no need to insert (or

uccessful find). Done!
p it for insert (or
CSE 100, UCSD: LEC 17

✔ An “on-line” insert algorithm for ordered hashing is quite sim
item along its probe sequence, until finding an empty locatio
... This never decreases the key value stored in any location in
later probe sequence will never be stopped too soon

✔ To insert (or find) a key K in a table of size M, with primary h
secondary function H2():

1. Set indx = H(K); offset = H2(K)
2. While location indx is not empty, and location indx holds a

set indx = (indx + offset) mod M.
3. If table location indx is not empty, and holds a key equal K

successful find). Done!
3. Else if table location indx is empty, insert key there (or uns
4. Else collision with a smaller key, say K2. We want to bum

unsuccessful find):
Put K in K2’s position,
set offset = H2(K2), and set K=K2.
Go to 2.

Page 17 of 19

Ordered hashing: an example

553

unit’s digit of K

8 9 10
CSE 100, UCSD: LEC 17

✔ Insert this sequence of keys in the table: 145, 293, 397, 458,

✔ Use ordered hashing, with H(K) = ten’s digit of K, H2(K) =

✔ Now search for 454...

0 1 2 3 4 5 6 7

Page 18 of 19

Analysis of ordered hashing

probes for successful

obes for unsuccessful
aking it the same as for

average case number of

ey swapping in the table
CSE 100, UCSD: LEC 17

✔ Ordered hashing does not change the average case number of
search; it is the same as double hashing:

✔ Ordered hashing does improve the average case number of pr
search compared to double hashing (that is the whole point), m
successful search:

✔ Insert still requires finding an empty table location, and so the
probes for insert is the same as for double hashing:

.... though more memory operations are required, because of k

Sα
1
α
--- 1

1 α–
------------ln≈

Uα
1
α
--- 1

1 α–
------------ln≈

Iα
1

1 α–
------------≈

Page 19 of 19

Next time
CSE 100, UCSD: LEC 17

✔ Self-organizing data structures

✔ Self-organizing lists

✔ Splay trees

✔ Spatial data structures

✔ K-D trees

✔ The C++ Standard Template Library

Reading: Weiss, Ch. 4 and Ch. 12

	Lecture 17
	Improving open-addressing hashing
	Brent’s method
	Ordered hashing

	Improving open addressing hashing
	Recall the average case unsuccessful and successful find time costs for common open- addressing s...
	Random hashing, double hashing:
	Linear probing:
	It is possible to improve these, and it makes sense to do so in some applications...

	Improving successful find time cost
	It is common to have databases in which keys are inserted only once, followed by many successful ...
	spell checker (insert all words from the dictionary once; then as each word is typed into a docum...
	compiler symbol table (insert a variable when it is declared; then when a variable is used, do a ...

	Brent’s method is a variant of double hashing that greatly improves average-case successful find ...

	Improving unsuccessful find time cost
	It is also common to have databases in which keys are inserted only once, followed by many unsucc...
	stolen credit card database (insert credit card number when it is reported stolen; then when a cu...
	noise-word list (insert “noise” words once, at initialization time; then when a word is read in a...

	Ordered hashing is a variant of double hashing that improves average-case unsuccessful find time ...

	Brent’s method
	Brent’s method for hashing [R. P. Brent, 1973] is a variation on double hashing that improves the...
	In fact, the average-case successful search time is bounded < 2.5 probes even when the table is f...
	The tradeoff is that the insert operation becomes somewhat more expensive, but amortized analysis...

	Toward Brent’s method: start with double hashing
	Consider a 5-cell table, open addressing, double hashing
	Consider 3 keys: k1, k2, k3
	Suppose the primary and secondary hash functions applied to these keys give these values: H(k1) =...
	Now consider the total probe sequence lengths for successful searches in the table as these keys ...

	Successful search probe path lengths, double hashing
	After inserting k1, the total successful probe path length is 1
	After also inserting k2, the increase in total successful probe path length is 1, to total is now...
	Now insert k3. The increase in total successful probe path length is 3; total is now 1+1+3 = 5; a...

	Brent’s method: basic idea
	Brent’s idea is to move items out of the probe path of the to-be-inserted key, if it can be deter...
	Consider inserting a new key K:
	If K’s first probe location is empty, just insert K there (this increases overall successful prob...
	If K’s first probe location is full (collision), and second probe location is empty, just insert ...
	But suppose K�collides with a key K1 at K’s first probe location and with another key K2 at K’s s...
	• Think about moving K1 to K1’s next probe location, and putting K in its place!
	• If K1’s next location is empty, this will increase K1’s successful probe path length by 1, and ...
	• This increases the total successful probe path length by 2, which is better than what would hap...

	This is the basic idea behind Brent’s method. Let’s look at an example

	Brent’s method: example 1
	Recall the probe sequences k1: 0, 4, 3, 2, 1 k2: 3, 4, 0, 1, 2 k3: 0, 3, 1, 4, 2
	k1 and k2 have been inserted:
	Now insert k3. We can put it in its first probe location, and move k1 to its next probe location,...
	Total successful search path length is now 2+1+1 = 4; average probe path length is 4/3

	Brent’s method: example 2
	Same probe sequences...
	k1 and k2 have been inserted:
	Now insert k3. We can put it in its second probe location, and move k2 to its next probe location...
	Total successful search path length is now 1+2+2 = 5; average probe path length is 5/3

	Brent’s method: example 3
	Same probe sequences...
	k1 and k2 have been inserted:
	Now insert k3. We can put it in its third probe location, which is empty. (This is the same resul...
	Total successful search path length is now 1+2+2 = 5; average probe path length is 5/3
	Of these 3 possibilities, we should pick the one in Example 1, which gives the smallest increase ...

	Brent’s algorithm
	Suppose a new key K to be inserted has probe index sequence p1, p2 ,..., pv-1 , pv , where locati...
	Let ki be the key in location pi . Suppose the size of the table is M.
	Brent’s method operates as follows:
	If v < 3, just insert K in location pv as usual; can’t do better than that.
	Else, for c = 1,...,v-2 do the following:
	For d = 1,...,c do the following:
	• Consider moving kd out of the way. At this stage, we will consider (c-d+1) probes to find an em...

	Analysis of Brent’s method
	Brent’s algorithm does not always find optimal positions for the keys; it is a simple heuristic t...
	for one thing, note that when moving a key out of the way, Brent’s does not consider also moving ...

	Brent’s method does not change the average case number of probes for unsuccessful search; it is t...
	Brent’s method does improve the average case number of probes for successful search compared to d...
	Of course, insert is now more expensive, O(N2) worst-case! But this is worth it, if successful se...

	Ordered hashing
	Ordered hashing [Knuth and Amble, 1974] is a variation on double hashing that improves the averag...
	The average-case time for successful searches is unchanged; in fact, the two become the same
	This technique requires comparable keys
	The tradeoff is that the insert operation becomes more expensive by a constant factor, but this c...

	Ordered hashing: basic idea
	In an unsorted linked list with N items, an unsuccessful search take N steps: the list must be se...
	However, if the list is sorted in decreasing order, the search could terminate sooner... As soon ...
	This makes unsuccessful search take 1 step in the best case, N/2 in the average case, and N steps...
	Ordered hashing sets up probe sequences for any successful search so that the keys belonging to t...
	Clearly, this will have the desired result... if we can do it!
	One way to do it would be: Know all the keys to be inserted in advance. Sort them. Insert them in...
	But we would like an insert algorithm that works “on line”, without knowing the keys in advance...

	The ordered hashing algorithm
	An “on-line” insert algorithm for ordered hashing is quite simple: “bump” any smaller item along ...
	To insert (or find) a key K in a table of size M, with primary hash function H() and secondary fu...

	Ordered hashing: an example
	Insert this sequence of keys in the table: 145, 293, 397, 458, 553
	Use ordered hashing, with H(K) = ten’s digit of K, H2(K) = unit’s digit of K
	Now search for 454...

	Analysis of ordered hashing
	Ordered hashing does not change the average case number of probes for successful search; it is th...
	Ordered hashing does improve the average case number of probes for unsuccessful search compared t...
	Insert still requires finding an empty table location, and so the average case number of probes f...

	Next time
	Self-organizing data structures
	Self-organizing lists
	Splay trees
	Spatial data structures
	K-D trees
	The C++ Standard Template Library Reading: Weiss, Ch. 4 and Ch. 12

