
The Y-Architecture: Yet Another On-Chip Interconnect Solution

Hongyu Chen, Bo Yao, Feng Zhou, and Chung-Kuan Cheng

Department of Computer Science and Engineering, University of California, San Diego
9500 Gilman Dr.; La Jolla, CA 92093-0114; U.S.A.

Abstract In this paper, we propose a new on-chip
interconnect scheme called Y-architecture, which can utilize the
on-chip routing resources more efficiently than traditional
Manhattan interconnect architecture by allowing wires routed
in three directions (0°, 60°, and 120°). To evaluate the efficiency
of different interconnect architectures, we assume mesh
structures with uniform communication demand and develop a
multi-commodity flow (MCF) approach to model the on-chip
communication traffic. We also extend the combinatorial MCF
algorithm in [5] to compute the optimal routing resource
allocations for different interconnect architectures. The
experiments show that: (1) Compared with Manhattan
architecture, the Y-architecture demonstrates a throughput
improvement of 24.1% for square chip. The throughput of the
Y-architecture is only 7.73% smaller than that of
X-architecture. (2) A chip with the shape of a convex polygon
produces better throughput than a rectangular chip: For
Y-architecture, a hexagonal chip provides 31.2% more
throughput than a squared chip using the Manhattan
architecture. For Manhattan architecture, a diamond chip
achieves a throughput improvement of 19.5% over the squared
chip using the same interconnect architecture. (3) Compared
with Manhattan architecture, the Y-architecture reduces the
wire length of a randomly distributed two pin net by 13.4% and
the average wire length of Y-architecture is only 4.3% more
than that of the X-architecture.

I Introduction
With rapid technology scaling, the interconnect becomes

one most precious resource on a chip. Traditional Manhattan
interconnect architecture organizes wires on two orthogonal
routing directions, 0° and 90° directions, for the simplicity of
routing embedding and design rule checking. However, its
artificial restriction on routing directions adds significant
wire length over the Euclidean optimum and thus decreases
the communication capability of the on-chip interconnects.

In the past decade, many researchers have explored the
possibility of using nonrectilinear wires to improve the
efficiency of on-chip interconnects.[4] Most of these work
discussed about how to introduce 45-degree short jogs to
improve the routability of the chip in the detailed routing
stage. Majority of the wires on the chip are still routed on
either 0-degree or 90-degree direction.

Recently, Mutrunoi et. al. [7] proposed a new on-chip
interconnect architecture named the X-architecture, which is
targeting at the designs with 5 or more routing layers. In the
X-architecture, the wires are organized in 0-degree,
45-degree, 90-degree and 135-degree directions. The

experimental results show that it achieves a chip
performance improvement of 10% and power reduction of
20% than Manhattan architecture for a high performance
design.

In the foreseeable future, more than 12 routing layers will
be available in the high performance circuit designs.[1] It is
both possible and desirable for us to explore the different
ways to organize the on-chip routing resources. However, the
prohibitive cost of actually designing and manufacturing a
chip with new interconnect architectures makes it very hard
to implement and test new interconnect architectures one by
one. It is necessary to develop a quantitative framework to
evaluate the efficiency of different interconnect
architectures.

From early 1990s, researchers [2][6] studied the wire
length reduction by allowing more routing directions. Most
of these works concentrated on the Steiner cost of a single
signal net. The competition on the routing resources between
different nets is ignored in these works.

We adopt Multi-commodity flow (MCF) approach to
model the on-chip communication traffic. We assume a mesh
structure with uniform communication demand, and use the
MCF throughput of the mesh to measure the communication
capability of different interconnect architectures. This
method is independent with particular test cases and can
reflect the exact communication bottleneck on the chip.

Recent advance in MCF algorithm [5] allows us to solve
MCF problem much more efficiently. Our implementation
can compute the throughput of meshes with up to 289 nodes
within 12 hours computing. We also extend this algorithm to
compute the optimal routing resource allocation for different
interconnect architectures.

In this paper, we propose the use of Y-architecture, which
has three symmetrical routing directions (0-degree,
60-degree, and 120-degree). We compare this interconnect
architecture with the Manhattan architecture and the
X-architecture. Based on our experiments on throughputs
and analytical analysis on wire length, we have following
reason to motivate the use of the Y-architecture:

(1) Using Y-architecture can gain a throughput
improvement of 24.1% over the traditional Manhattan
architecture on a squared mesh. Comparing with the
X-architecture, which has one more routing direction, the
Y-architecture produces close (7.73% less) throughput on
a squared mesh.
(2) The Y-architecture achieves an average of 13.4% wire

length reduction over Manhattan architecture for a
two-pins connection. The more complex X-architecture
can only improves this reduction of 4.3% further.

Fig. 1 A 5 by 5 communication mesh and its graph representation

(a) (b)

(3) Making chip shape close to a circle can significantly
improve the throughput over the rectangular chip. Using
Y-architecture, we can make hexagonal chip, which can
produce 31% more throughput than square chip using
Manhattan architecture, without causing dead space on the
wafer.
The rest of this paper is organized as follows: Section 2

presents the problem formulation in an MCF model. Section
3 compares the throughput of meshes using Manhattan
architectures, the Y-architecture, and the X-architecture. In
subsection 3.1, we compare the throughputs of n by n
meshes using different interconnect architectures, these
experiments are designed to test the communication
capability of different interconnect architectures on a square
chip. In subsection 3.2, we set the chip shape to be close to a
circle, e.g. hexagons for the Y-architecture, octagons for the
X-architecture, and diamonds for the Manhattan architecture,
and compare the throughput of meshes using different
interconnect architectures. Following that we discuss the
wirelength of two pin nets using different interconnect
architectures in section 4. Finally, we conclude this paper in
section 5.

We assume a uniform communication requirement i.e.
every pair of nodes communicate with an equal demand. All
communications happen at the same time. Note that the
model can be extended to various communication demands,
e.g., Poisson distribution, Rents rule, etc., depending on
specific applications. In this paper, the uniform pairwise
communication model is adopted because of its simplicity
and genericalness. Moreover, the communication demand
presents an unbiased symmetry, which makes the solution
independent of the test cases, placement, and routing.

We define the throughput, z, to be the maximum amount
of communication flow between every pair of nodes. We
find the throughput using a multi-commodity flow model.
The flow that starts from node i is deemed as commodity i.
Commodity i starts from node i with the amount of z·(N-1),
where N = n2 is the number of nodes in the graph, to each of
the rest nodes with the amount of z. We solve the
multi-commodity flow problem to find the throughput z.

II. Problem Formulation

2.1 MCF with constant edge capacities
For Manhattan architecture, we decompose the

communication resources into an array of n×n slots. Each
slot contains a communication terminal, say, a processor. The
slots are aligned in rows and columns. The slot array forms a
90-degree mesh structure. Figure 1(a) illustrates an example
of a 90-degree mesh structure with 25 slots. Each square tile
represents a slot. The mesh structure can be mapped to a
graph G={V, E} according the following rules:

The above MCF problem can be formulated as a linear
program in either the node-arc form (LP1) or the edge-path
form (LP2).
a. Node-Arc form of MCF (LP1):

ij
Vv

v
ji

v
ij

v
ij

i ofneighbor j

v
ji

cff

otherwise z

v i if nzfftS

zMaximize

≤+



 =−⋅−=−

∑

∑

∈

∈

)(

)1()(..

:
2

 In this linear program, flow variable represents the
flow amount of commodity v on edge (i,j). The edge capacity
c

v
ijf

ij represents the flow capacity of edge (i,j), in a uniform
mesh using X-architecture, we set cij to be unit for all (i,j).
We set that the flow injecting to a node is positive and the
flow ejecting from a node is negative

for all nodes v,i ∈ V (1.1)

for all edges (i,j)∈E (1.2) (1) Each slot i corresponds to the node i in the graph.

(2) The adjacency between two slots (i,j) is represented by
an edge e = (i,j) in the graph
(3) The edge capacity c(e) is proportional to the length of
the line segment separating the adjacent slots, and the
number of routing layers.
Figure 1(b) describes the graph corresponding to the mesh

in Fig.1(a).
b. Edge-Path form of MCF (LP2):
Maximize: z
S. t.: 0)(≥−∑

∈
zpf

ijPp

 for nodes i,j∈ V, i ≠ j (2.1)

∑
∈

≤
Pep

ecpf)()(
 for all edges e∈E (2.2)

In this linear program, we denote by Pe the set of all paths
p containing the edge e, and by Pij the set of all paths

between nodes i,j, the flow variables f(p) represents the flow
amount of path p.

Note that the number of linear constraints in linear
program LP1 is |V|2 + |E|. Thus the linear program LP1 can
be solved in polynomial time using any polynomial time
linear program solver[6]. However, when n increases, the
number of linear constraints explodes at the rate of n4 for a n
by n mesh. So, for large cases it is impractical to solve the
MCF using linear programming.

In [5], a combinatorial (1+ε)-approximation approach is
proposed to solve the MCF problem. It adopts the
primal-dual structure of the linear program LP2. The
algorithm assigns a nonnegative shadow cost [9] to each
edge according to the congestion level on that edge. Initially,
all the shadow costs are set to be equal. Then, the algorithm
proceeds in iterations. In each iteration, we reroute a fixed
amount of flow along the shortest path for every commodity.
At the end of each iteration, we adjust the capacity of every
edge and its shadow cost according to the dual linear
program.

For any given error tolerance ε, this MCF algorithm can
find a (1+ε) approximation of the throughput in

)log
'1

log
'

1(4
'1 nnnO

εε ε −+
 time, where ε’ = 1-(1+ε)-1/3.

2.2 MCF with edge capacities in linear constraints
For X-architecture, we add 45-degree edges to the

90-degree mesh of Manhattan architecture. Fig. 2 illustrates
an example of 5 by 5 mesh with X-architecture. Fig. 2(a)
shows the slots arrangement and Fig. 2(b) is the
corresponding communication graph.

Fig. 2 A 5 by 5 mesh with X-architecture

(a) (b)

In Fig. 2(b), the edges are oriented in 0˚, 90˚, 45˚ or 135˚

angle. All nodes are aligned in rows and columns. Thus, all
the edges in 45˚ and 135˚ directions have the same capacity
and all the edges in 0˚ and 90˚ directions have the same edge
capacity. Note that the length of an edge in 45˚ or 135˚
direction is 2 times of that of an edge in 0˚ or 90˚
direction. Hence, if route some number of wires on an edge
in 0˚ or 90˚ direction consumes one unit of routing area, then
route same number of wires on an edge in 45˚ or 135˚
direction costs 2 units of routing area. In other words, for
a pair of routing layers, if we can allocate a capacity of x to
0˚ and 90˚ edges, we can only allocate a capacity of 2/x to
45˚ and 135˚ edges. Let c1 be the capacity of horizontal and

vertical edges, c2 be the capacity of 45˚ and 135˚ edges. The
area constraints can be expressed as 12 21 =⋅+ cc

E

. Thus,
the total area is equal to the constant.

Φ=i
i

RI

For Y-architecture, we set the shape of slots to be hexagon.
Fig. 3(a) illustrates a hexagonal mesh with 19 slots. Fig. 3(b)
is the corresponding communication graph. In Fig. 3(b) all
edges are symmetrically oriented in 0˚, 60˚ or 120˚ direction
and every edge has the same length. We set the area of each
slot to be a unit. Hence, the length of each edge is 1.074. The
routing area constraint for Y-architecture can be expressed as
1.074(c1+c2+c3)=2, where c1, c2, and c3 are edge capacity for
edges oriented in 0˚, 60˚ and 120˚ directions, respectively.
We can add the routing area constraint into the Linear

program LP1 or LP2 and treat edge capacities as variables.
The optimal solution of the linear program produces an

optimal routing resource allocation for different routing
directions. Following is the formal formulation of routing
resource allocation problem.

(a (b

Fig. 3 A hexagonal mesh of 19 nodes with Y-architecture

Input: communication graph G = (V, E), k different routing
channels {R1, …,Rk}, where andRi

i
=U ; edge

capacity ci for every edge in the routing channel Ri,;and area
constraints 1=∑

i
iiCα

Output: an routing resource allocation {ci}, such that the
communication graph G = (V,E) has maximum throughput.

The routing resource allocation problem can be written as
the following linear program:

i
Pp

Pp

i
ii

Cpf

pftS

CMin

e

ij

≤

≥

∑

∑

∑

∈

∈

)(

1)(..

: α

This linear
program finds the
minimum routing area that can satisfy the unit pairwise
communication demand. The dual program of this linear
program is:

for all distinct vertices pair i,j∈V (3.1)

for all routing channel Ri (3.2)

i
Re

e

Pe
eij

ij
ij

i

ij

d

d tS

Max

α

λ

λ

≤

≤

∑

∑

∑

∈

∈
..

:

III Throughputs of Meshes with Different

Interconnect Architectures
use Matlab’s linear program package on a Sun

rkstation to compute MCF solutions. For the case
odes, the run time exceeds 24 hours. We then

The dual program
assigns a nonnegative sh
that the sum of the short
pair of nodes is maxim
that the total shadow cos
smaller than or equal to
channel.

f

f
(

We extend the combinato
[5] to solve the routing r
adopt the primal-dual st
shadow cost is determin
the edge. Let

ec
efeg)()(=

where f(e) is the total flo
Ce is the capacity of e. Th

∑
∈

−
−

=

Ee
geg

geged

'
)'((exp(

*)((exp()(
β

β

and β is a constant relate
Initially, all the shadow
algorithm proceeds in ite
fixed amount of flow
commodity. At the end
capacity of every edge a
dual linear program. Fig
routing resource allocatio

Algorithm
For all e∈E, set de= consta
Repeat
 For j := 1 to k do //k: nu
 Begin
 Set d(j) = σ
 While d(j) ≠ 0 do
 Begin

Find shortest path P f
Route f = min{c,d(j)}
the capacity of the mi
d(j) = d(j) – f
Update {de}.

 End while
 End for
 Find {C1, C2, …, Cm}, suc

 Update {de}
Until flow solutions conve

Fig. 4. Routing Reso
We first
Ultra10 wo
with 100 n

or all distinct vertices pair i,j∈V (3.1)

or all edge e∈Ri
4.2)
 implement the MCF algorithm [5] and our routing resource

allocation algorithm using C programming language. Our
implementation derives the MCF solutions for cases with up
to 289 nodes within 12 hours.

adow cost de to each edge e, such
est distances between every distinct
ized. The constraints (3.2) denotes
ts of all edges in a routing channel is
 the area coefficient of that routing

We compare the throughputs of meshes with different
interconnect architectures. In subsection 3.1, we set the chip
shape to be square. Then use our extended flow approach to
compute the throughputs of different interconnect
architectures with optimal routing channel allocation. In
subsection 3.2, we set the chip shape to be fully symmetrical
to all routing directions, i.e. diamond for Manhattan
architecture, hexagon for Y-architecture, and octagon for
X-architecture.

rial (1+ε)-approximation scheme in
esource allocation problem. We also
ructure of the linear program. The
ed by the flow congestion level on
 be the congestion level of edge e,

w amount going through edge e, and
e shadow cost is computed using

3.1 Throughputs with square chip shape

In this subsection, we compare the throughput of n by n
meshes using Manhattan architecture, Y-architecture, and
X-architecture. Fig. 5 demonstrates three 7 by 7 meshes
using different interconncect architectures. For an n by n
mesh, the enclosing box of the slots is close to a rectangle.
The throughput of an n by n mesh using a certain
interconnect architecture demonstrates the communication
ability of that interconnect architecture on a rectangular chip.

*)
) , where g* = max{g(e)|e∈E},

d to desired approximation error ε.
costs are set to be equal. Then, the
rations. In each iteration, we route a
along the shortest path for every
 of each iteration, we adjust the
nd its shadow cost according to the
. 4 shows the pseudo-code of our
n algorithm.

(c) A 7 by 7 mesh using
X-architecture

(b) A 7 by 7 mesh using
Manhattan-architecture

(a) A 7 by 7 mesh using Y-architecture

∑
∈

=
)(iRe

ied α ∑ =
i

iiC 1α

nt

mber of distinct flow demands

or commodity flow demand j.
 units of flow along P, where c is
nimum capacity edge on this path.

h that and

rge

Fig.5 7 by 7 meshes with different interconnect architectures
Note that for an n by n mesh with Y-architecture, there are

3n2-4n+1 edges, for an n by n mesh with Manhattan
architecture, there are 2n2-2n 0-degree and 90-degree edges;
for an n by n mesh with X-architecture, there are 2n2-2n
edges on 0˚or 90˚ direction and 2(n-1)2 edges on 45˚or 135˚
direction. To fairly compare the throughput of meshes with
different interconnect architectures, we need to allocate the
same amount of routing resources to meshes of the same size.
In our experiments, we set the sum of all edge capacities
equal to 2n2-2n for all n by n meshes, and use our routing
resource allocation algorithm to find the optimal allocation urce Allocation Algorithm

of edge capacities.
For n from 2 to 17, Table 1 lists the throughputs of n by n

meshes with different interconnect architectures. We
normalized the throughput using a factor m0.5(m-1), where m
is the number of nodes in the mesh. By doing so, we can
keep the total amount of communication demand and total
edge capacities independent with the dimension of the mesh.
The third and the forth column show throughput and
normalized throughput of meshes using Manhattan
architecture. The fifth and seventh column depicts the
normalized throughput of meshes using Y-architecture and
X-architecture, respectively. We list the throughput
improvement achieved by Y-architecture and X-architecture
in the sixth and the eighth column.

Table 1. Throughput of rectangular meshes
For n from 10 to 17, Y-architecture provides an average

throughput improvement of 21.6% for an n by n mesh, and
X-architecture achieves 34.5%. For a 17 by 17 mesh,
Y-architecture provides a throughput improvement of 22.5%
and X-architecture achieves an improvement of 34.6%.

For Y-architecture and Manhattan architecture, equally
distributed edge capacities produces maximum throughput
on n by n meshes. For X-architecture, we show the optimum
ratio of the area of diagonal routing edges to that of
Manhattan edges in the last column. That ratio approaches
5.65 when n increases.

Fig. 6 shows bottlenecks of communication flows for

three 12 by 12 meshes using different interconnect
architectures. The fully saturated edges are highlighted with
bold lines. Note that the saturated edges form vertical and
horizontal cut sets for both interconnect architectures. The
cut lines are shown with dashed lines.

Summing up the capacities of the edges passing across the
cut lines, we can derive a throughput upper bound for n by n
meshes with different interconnect architectures.

For Manhattan architecture, there are n edges crossing
each cut line. The total edge capacity is n. For Y-architecture,
there are 2n-1 edges passing across each cut line and each
edge has capacity 0.6205, the total edge capacity crossing
the cut line is 1.241n-0.6205, when n approaches infinity, an
n by n mesh using Y-architecture can have (1.241 –1) =
24.1% more flow crossing the cutline. Thus, Y-architecture
can achieve at most 24.1% throughput improvement over
Manhattan architecture on a squared mesh.

M-architecture Y-architectur
e

X-architecture

n #no
des

thrpt n.
thrp

t

n..t
hrpt

impr.
(%)

n.
thrp

t

imp
r.

(%)

12 /2 cc⋅

2 4 2.50e-1 2.00 2.00 0 2.00 0 0.00
3 9 8.33e-2 2.25 2.25 0 2.25 0 0.00
4 16 3.12e-2 2.00 2.36 18.0 2.60 29.8 3.36
5 25 1.67e-2 2.09 2.40 20.1 2.68 28.1 2.88
6 36 9.26e-3 2.00 2.41 20.4 2.65 32.8 4.39
7 49 5.95e-3 2.04 2.41 20.4 2.67 31.1 3.94
8 64 3.90e-3 2.00 2.38 19.1 2.69 34.6 5.19
9 81 2.78e-3 2.03 2.45 22.5 2.69 32.7 4.89
10 100 1.98e-3 2.00 2.43 21.3 2.67 33.3 5.44

11 121 1.51e-3 2.01 2.46 23.1 2.70 34.4 5.12

12 144 1.16e-3 2.00 2.43 21.4 2.69 34.5 5.26

13 169 9.15e-4 2.01 2.43 21.5 2.70 34.4 5.33

14 196 7.29e-4 2.00 2.43 21.5 2.69 34.5 5.62

15 225 5.95e-4 2.01 2.43 21.6 2.70 34.5 5.51

16 256 4.88e-4 2.00 2.44 22.0 2.69 34.6 5.65

17 289 4.08e-4 2.00 2.45 22.5 2.70 34.6 5.56

(a) Y

Fig. 6 Congestion pattern of 12 by 12 meshes using different interconnect
architectures

(b) X

For X-architecture, there are 2(n-1) diagonal edges and n
Manhattan edges crossing each of the two cut lines. To
achieve maximum throughput, the ratio of the capacity for
diagonal edges and the capacity for Manhattan edges is 5.6.
Under this ratio, the edge capacities are 0.1515 and 0.6 for
Manhattan edges and diagonal edges respectively. The total
flow amount can go across the cut line is 1.3515n-1. When n
approaches infinity, the throughput improvement bound is
35.6%.

For all the cases have been tested (n = 2 to 17), we all
observed this kind of central horizontal and vertical cut sets
in n by n meshes using both X, Y and Manhattan
architectures. Furthermore, in all these cases, there is no flow
passing through the same cut set more than once. If this is
true for all n by n meshes, the improvement upper bounds we
derived are exact throughput improvement rates.

3.2 Throughputs with symmetrical chip shape

As we have already seen in last subsection, a rectangle
shaped chip has communication bottlenecks on theirs two
middle cut lines. The physical dimension of the middle part
of the chip restricts the communication flow and thus
prevents us from getting larger throughput. As suggested in

[3], a convex shaped chip may produce better throughput by
allowing more wires crossing the original middle cut lines.
In this section, we set the chip shape to be close to a circle
and symmetrical to all routing directions and then compare
the throughput of different structures.

Fig. 7 shows an example of meshes symmetrical to the
routing directions for different interconnect architecture.
Fig.7(a) is a level 2 hexagonal mesh, which is the
symmetrical structure corresponding to the Y-architecture.
Fig. 7(b) illustrates an octagonal mesh, which is
X-architecture’s corresponding symmetrical mesh. Fig 7(c)
shows a diamond shaped mesh, which is symmetrical to the
Manhattan architecture.

We compute the throughput of symmetrical structures for
the Y-architecture, X-architecture, and Manhattan
architecture. Table 2 lists the throughput of Hexagonal
meshes from level 1 to level 7. Table 3 shows the throughput
of octagonal meshes from level 2 to level 4. Table 4
illustrates the throughputs of diamond meshes from level 1
to level 12. We also normalized the throughput by total edge
capacities.
For Y-architecture, a hexagonal mesh with 169 mesh
produces a normalized throughput of 2.62, which is 7.6%
more than that of a square mesh using the same interconnect
architecture. For X-architecture, our experiments have not
reached the converged throughput yet. For largest case we
have tested, which has 281 nodes, the normalized throughput
is 2.84, which is 5.2% more than that of square mesh using
the same interconnect architecture. For Manhattan
architecture, a diamond shaped mesh with 265 nodes
provides a normalized throughtput of 2.39. The throughput
improvement of diamond mesh over square mesh for
Manhattan architecture is 20%.

Table 2. Throughput of Hexagonal Meshes
Level #nodes throughput Normalized throughput

1 7 1.86-1 2.02

2 19 1.69e-2 2.32

3 37 1.15e-3 2.48

4 61 5.33e-3 2.58

5 91 2.28e-3 2.61

6 127 4.41e-4 2.61

7 169 1.29e-4 2.62

(a) A level 2 hexagonal mesh (b) A level 2 octagonal mesh

Table 3. Throughput of Octagonal Meshes

Level #nodes Throughput Normalized throughput

2 29 2.31e-2 2.34

3 61 5.45e-3 2.51

4 101 3.01e-3 2.63
5 169 1.36e-3 2.74
6 281 5.75e-4 2.84

Table 4. Throughput of Diamond Meshes (c) A level 2 Diamond mesh

Fig. 7 Meshes with symmetrical structures level #nodes Throughput Normalized throughput
2 5 1.25e-1 1.78
3 13 4.20e-2 1.80
4 25 1.74e-2 2.09
5 41 8.71e-3 2.23
6 61 4.92e-3 2.30
7 85 3.00e-3 2.32
8 113 1.89e-3 2.36
9 145 1.39e-3 2.37

10 181 9.23e-4 2.38
11 221 6.90e-4 2.38
12 265 5.11e-4 2.39

(c) flow bottleneck on a level 8 diamond mesh

Fig. 8 Flow congestions on meshes with symmetrical structures

The meshes with symmetrical structures produce different
flow congestion pattern from n by n meshes. Fig. 8
illustrates the flow congestion patterns of a level 6 hexagonal
mesh, a level 3 octagonal mesh and a level 8 diamond mesh.
We mark the cut edges using red bold line. The symmetrical
meshes displays a more evenly distributed congestion pattern
than n by n meshes. The middle cut lines do not exist any
more.

(b) flow bottleneck on a level 3
octagonal mesh
(a) flow bottleneck on a level 6
hexagonal mesh

Lemma3: Let A, B be two random points on the plan, re be
the expected Euclidean distance between A and B, and rλ be
the expected length of the shortest wire to connect AB in

λ-geometry, then err
)/sin(

))/cos(1(2
λππ
λπλ

λ
−

=

Lemma1 states that in order to connect two pins with the
shortest wire, there is at most one turn on the path, and we
need to maximize the angle between two segments of the
path for the given interconnect architecture.

VI. Wire-length of Different Interconnect

Architectures For different interconnect architectures, Lemma2 shows that
in worst case how much additional wire length could we pay
over the Euclidean distance. For Manhattan architecture, in
worst case the wire length is 41.2% longer than the
Euclidean distance. For Y-architecture and X-architecture,
the additional wire length over Euclidean distance is at most
15.47% and 8.23% respectively. We list these numbers in the
Table 5.

Wire length has significant impact on virtually every
important measure of chip quality. From physical point of
view, decreasing wire length directly reduces the resistance
and capacitance of the interconnect, thus improves the
performance and power consumption of the circuits. From
designer’s point of view, shorter total wire length can
produces less routing congestion on the chip, hence improve
the routability and signal integrity of the design. At the same
time, from manufacturing point of view, shortening the
wirelength can improve the manufacturability and reliability
of the chip.

Lemma3 discuss the average wire length of a two pin net
using different interconnect architecture. For Manhattan
architecture, the average wire length is 27.32% longer than
its Euclidean distance. For Y-architecture, the average wire
length is 10.27% longer than its Euclidean distance and
achieves a average wire length reduction of 13.4%. The
X-architecture further reduces the average wire length to be
within 5.48% of the Euclidean optimum and it produces
4.3% wire length reduction over Y-architecture with the cost
of one more routing direction.

Because of its few freedom on choosing routing directions,
Manhattan architecture adds significant amount of wire
length to the Euclidean optimum. Apparently, allowing more
routing directions may shorten the total wire length.
Previously, researchers has studied the impact of using
different interconnect architecture on the wire length. Many
of these efforts were put on constructing the Steiner routing
trees under different routing direction restriction [2] [8]. Due
to the inherent hardness of Steiner minimum tree problem,
most of these work develop heuristics to construct Steiner
trees for a randomly generated net, and statistically calculate
the average wire length for different interconnect
architectures. In this section, we derive the quantitative
comparison of wire lengths needed to connect a two pin net
using different interconnect architectures.

 Table 5. Worst case wire length overhead of different
interconnect architectures

M (%) Y (%) X (%)
41.2 15.47 8.23

Table 6. Average case wire length overhead of different

interconnect architectures
M (%) Y (%) X (%)

27.32 10.27 5.48
In-order to generalize the non-rectilinear routing structure,

Burman et al. [2] introduces the concepts of λ-geometry. In
λ-geometry, wires with angles iπ/λ, for all i are allowed,
where λ is a positive integer. λ = 2, 3, 4 corresponds to the
Manhattan architecture, Y-architecture, and X-architecture,
respectively. In the following discussion, we follow this
notation of λ-geometry.

V. Conclusions and Future Directions
In this paper, we propose a new on-chip interconnect

architecture named Y-architecture. Comparing with the
traditional Manhattan architecture, Y-architecture apparently
improves the throughput (22.5% more for a 17 by 17 mesh)
and significantly reduces the wire length. (an average
reduction of 13.4% for a two pin net). Comparing with
recently proposed X-architecture, Y-architecture produces
very close throughput (only 9.2% less for a 17 by 17 mesh)
and slightly longer wire length (Averagely 4.3% longer for a
random two pins connection).

Lemma1: In λ-geometry, given two points A and B, if AB
are not on any of the λ feasible routing directions, then the
shortest path connecting AB consists two segments AC and
CB, where the angle between AC and CB is (1-1/λ)π

According to our experiments, making the chip shape
close to a circle can improve the throughput of rectangular
chip. A hexagonal chip using Y-architecture produces a
throughput improvement of 31% over the rectangular chip
using Manhattan architecture.

Lemma2: Let A, B be any two points on the plane, re be the
Euclidean distance between A and B, and rλ be the length of
the shortest wire to connect AB in λ-geometry, then

))
2

1csc((max
,

π
λ

λ

λ

−
=

r
re

BA

Some interesting research directions about Y-architecture

include: (1) Developing new models to take vias into
consideration when evaluating different interconnect
architectures, and (2) Designing a sample chip to justify our
theoretical prediction.

VI. Acknowledgment
This work was supported in part under grants from NSF

project number MIP-9987678, the California MICRO
program, SRC support, and Cal-(IT)2 graduate fellowship.

VII References
[1]International Technology Roadmpa for Semiconductors, 2001
Edition-Interconnect
[2]S.Burman, H. Chen, and N. Sherwani, “Improved global routing
using λ-geometry,” in Proc. of 29th Annual Allerton Conference on
Communication, Computing, and Controls, Oct. 1991
[3]H. Chen, B. Yao, F. Zhou, and C. K. Cheng, “Physical Planning
of On-Chip Interconnect Architectures,” In Proc. of ICCD,
pp.30-35, Sep. 2002
[4]C. Chiang and M. Sarrafzadeh, “Wirability of Knock-knee
Layouts with 45-degree wires,” IEEE Trans. on Circuits & Systems,
vol. 38, No.6, June 1991, pp. 613-624
[5]N. Garg, and J. Konemann, “Faster and Simpler Algorithms for
Multicommodity Flow and other Fractional Packing Problems,” In
Proc. Of the 39th Annual Symposium on Foundations of Computer
Science, pp.300-309, 1998
[6]N. Karmarkar, “A new polynomial-time algorithm for linear
programming,” Combinatorica, 4(4):373--395, 1984
[7]I. Mutsunori, T. Mitsuhashi, A. Le, S. Kazi, Y. Lin, A. Fujimura,
and S. Teig, “A Diagonal Interconnect Architecture and Its
Application to RISC Core Design,” Proc. ISSCC, pp. 684- 689. San
Jose, CA, Feb. 2002.
[8]M. Sarrafzadeh, C.K. Wong, “Hierarchical Steiner tree
construction in uniform orientations,”. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, vol.11,
(no.9), Sept. 1992. p.1095-103
[9]F. Shahrokhi and D. Matula, “The maximum concurrent flow
problem,” J. ACM, 37(2): pp.318-334, 1990
[10] S. L. Teig, “The X Architecture: not your father’s diagonal
wiring,” in Proc. of SLIP, pp.33-37, Apr. 2002

