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Abstract-We present a method for implementing high speed 

Finite Impulse Response (FIR) filters using just registered adders 
and hardwired shifts. We extensively use a modified common 
subexpression elimination algorithm to reduce the number of 
adders. We target our optimizations to Xilinx Virtex II devices 
where we compare our implementations with those produced by 
Xilinx CoregenTM using Distributed Arithmetic. We observe up 
to 50% reduction in the number of slices and up to 75% 
reduction in the number of LUTs for fully parallel 
implementations. We also observed up to 50% reduction in the 
total dynamic power consumption of the filters. Our designs 
perform significantly faster than the MAC filters, which use 
embedded multipliers. 
 

I. INTRODUCTION 
 

FPGAs are being increasingly used for a variety of 
computationally intensive applications, mainly in the realm of 
Digital Signal Processing (DSP) and communications [1-7]. 
Due to rapid increases in the technology, current generation of 
FPGAs contain a very high number of Configurable Logic 
Blocks (CLBs), and are becoming more feasible for 
implementing a wide range of applications. The high non-
recurring engineering (NRE) costs and long development time 
for ASICs are making FPGAs more attractive for application 
specific DSP solutions. DSP functions such as FIR filters  
and transforms are used in a number of applications such as 
communication and multimedia. These functions are major 
determinants of the performance and power consumption of 
the whole system. Therefore it is important to have good tools 
for optimizing these functions. 

Equation (I) represents the output of an L tap FIR filter, 
which is the convolution of the latest L input samples. L is the 
number of coefficients h(k) of the filter, and x(n) represents 
the input time series.  

 
y[n] = ∑ h[k] x[n-k]  k= 0, 1, ..., L-1   (I) 
 

The conventional tapped delay line realization of this inner 
product is shown in Figure 1. This implementation translates 
to L multiplications and L-1 additions per sample to compute 
the result. This can be implemented using a single Multiply 
Accumulate (MAC) engine, but it would require L MAC 
cycles, before the next input sample can be processed. Using a 
parallel implementation with L MACs can speed up the 
performance L times. A general purpose multiplier occupies a 
large area on FPGAs. Since all the multiplications are with 
constants, the full flexibility of a general purpose multiplier is 
not required, and the area can be vastly reduced using 
techniques developed for constant multiplication. Though 

most of the current generation FPGAs such as Virtex IITM 
have embedded multipliers to handle these multiplications, the 
number of  
these multipliers is typically limited. Furthermore, the size of 
these multipliers is limited to only 18 bits, which limits the 
precision of the computations for high speed requirements. 
The ideal implementation would involve a sharing of the 
Combinational Logic Blocks (CLBs) and these multipliers. In 
this paper, we present a technique that is better than 
conventional techniques for implementation on the CLBs. 
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Figure 1. A MAC FIR filter block diagram 

 
 An alternative to the above approach is Distributed 
Arithmetic (DA) which is a well known method to save 
resources. Using DA method, the filter can be implemented 
either in bit serial or fully parallel mode to trade bandwidth for 
area utilization. Assuming coefficients c[n] are known 
constants, equation (I) can be rewritten as follows: 
  
 y[n] = ∑ c[n] · x[n]     n = 0, 1, …, N-1   (II) 
 
Variable x[n] can be represented by: 
 

x [n] = ∑ xb [n] · 2b      b=0, 1, …, B-1   (III) 
   xb [n]  € [0, 1]   

 
where xb [n] is the bth bit of x[n] and B is the input width. 
Finally, the inner product can be rewritten as follows: 
 
y =  ∑ c[n] ∑ xb [k] · 2b  
   =  c[0] (xB-1 [0]2B-1 + xB-2 [0]2B-2 + … + x0  [0]20 ) 
       + c[1] (xB-1 [1]2B-1 + xB-2 [1]2B-2 + … + x0 [1]20 ) 
       + …    
       + c[N-1] (xB-1 [N-1]2B-1 + xB-2 [0]2B-2 + … + x0 [N-   
       1]20 ) 
 
=   (c[0] xB-1 [0] + c[1] xB-1 [1] + … + c[N-1] xB-1 [N- 
     1])2B-1  +(c[0] xB-2 [0] + c[1] xB-2 [1] + … + c[N-1] xB-2 [N-   
     1])2B-2 

    + … 
    + (c[0] x0 [0] + c[1] x0 [1] + … + c[N-1] x0 [N-1])20     
= ∑ 2b  ∑ c[n] · xb [k]         (IV) 
    
    where    n=0, 1, …, N-1 and b=0, 1, …, B-1 
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The coefficients in most of DSP applications for the 
multiply accumulate operation are constants. The partial 
products are obtained by multiplying the coefficients ci by 
multiplying one bit of data xi at a time in AND operation. 
These partial products should be added and the result depend 
only on the outputs of the input shift registers. The AND 
functions and adders can be replaced by Look Up Tables 
(LUTs) that gives the partial product. This is shown in Figure 
2. Input sequence is fed into the shift register at the input 
sample rate. The serial output is presented to the RAM based 
shift registers (registers are not shown in Figure for simplicity) 
at the bit clock rate which is n+1 times (n is number of bits in 
a data input sample) the sample rate. The RAM based shift 
register stores the data in a particular address. The outputs of 
registered LUTs are added and loaded to the scaling 
accumulator from LSB to MSB and the result which is the 
filter output will be accumulated over the time. For an n bit 
input, n+1 clock cycles are needed for a symmetrical filter to 
generate the output. 

In conventional MAC method with a limited number of 
MAC engines, as the filter length is increased, the system 
sample rate is decreased. This is not the case with serial DA 
architectures since the filter sample rate is decoupled from the 
filter length. As the filter length is increased, the throughput is 
maintained but more logic resources are consumed.  

Though the serial DA architecture is efficient by 
construction, its performance is limited by the fact that the 
next input sample can be processed only after every bit of the 
current input samples are processed. Each bit of the current 
input samples takes one clock cycle to process. 
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Figure 2. A serial DA FIR filter block diagram 
  
Therefore, if the input bitwidth is 12, then a new input can be 
sampled every 12 clock cycles. The performance of the circuit 
can be improved by modifying the architecture to a parallel 
architecture which processes the data bits in groups. Figure 3 
shows the block diagram of a 2 bit parallel DA FIR filter. The 
tradeoff here is performance for area since increasing the 
number of bits sampled has a significant effect on resource 
utilization on FPGA. For instance, doubling the number of bits 
sampled, doubles the throughput and results in the half the 
number of clock cycles. 
 This change doubles the number of LUTs as well as the 
size of the scaling accumulator. The number of bits being 
processed can be increased to its maximum size which is the 
input length n. This gives the maximum throughput to the 
filter. For a fully parallel implementation of the DA filter 
(PDA), the number of LUTs required would be enormous. In 
this work we show an alternative to the PDA method for 
implementing high speed FIR filters that consumes 
significantly lesser area and power. 
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Figure 3. A 2 bit parallel DA FIR filter block diagram 

 
 A popular technique for implementing the transposed 

form of FIR filters is the use of a multiplier block, instead of 
using multipliers for each constant as shown in Figure 4. The 
multiplications with the set of constants {hk} are replaced by 
an optimized set of additions and shift operations, involving 
computation sharing. Further optimization can be done by 
factorizing the expression and finding common 
subexpressions. The performance of this filter architecture is 
limited by the latency of the biggest adder and is the same as 
that of the PDA.  
 

 
 

                      

 Figure 4. Replacing constant multiplication by multiplier block 
 

The main contribution in this paper is the development of a 
novel algorithm for optimizing the multiplier block for FIR 
filters, using a modified algorithm for common subexpression 
elimination. The goal of the algorithm is to produce a filter 
that can provide the maximum sample rate with the least 
amount of hardware. Our algorithm takes into account the 
specific features of FPGA slices to reduce the total number of 
occupied slices. The reduced number of slices also leads to a 
reduction in the total power on the FPGA. 

We compare our results with the industry standard Xilinx 
CoregenTM, where we compare the total area and power 
consumption. 

The rest of the paper is organized as follows:  Section 2 
presents some related work. In Section3, we describe our filter 
architecture. In Section 4, we present our optimization 
algorithm for reducing the total area of the design. In Section 
5, we describe our experimental setup and present our results. 
Finally we conclude the paper in Section 6. 
 

II. RELATED WORK 
 
 Multiplications with constants have to be performed in 
many signal processing and communication applications such 
as FIR filters, audio, video and image processing. Since 
implementing a general purpose multiplier is expensive on an 
FPGA and since we do not really need such a multiplier, when 
one of the operands is a constant, there has been a lot of work 



on deriving efficient structures for constant multiplications [8-
13].  All these techniques are based on computing constant 
multiplications using table lookups and additions. The method 
of Distributed Arithmetic [12, 14] which is the most popular 
method for implementing Multiplierless FIR filters, is also 
based on table lookup. The XilinxTM CORE Generator has a 
highly parameterizable, optimized filter core for implementing 
digital FIR filters [12]. based on both Distributed Arithmetic 
as well as MAC (Multiply Accumulate) based architectures. It 
generates synthesized core that targeting a wide range of 
Xilinx devices. The MAC based implementations make use of 
the embedded DSP slices on the FPGA devices. In this work, 
we primarily compare our technique with the Coregen 
implementation of the Distributed Arithmetic, since that also 
is a Multiplierless technique. We show that our designs are 
much more area efficient than the DA based approach for fully 
parallel filters. We also compare our method with MAC based 
implementations, where we achieve significantly higher 
performance 
 Though there has been a lot of work on optimizing 
constant multiplications using adders and employing 
redundancy elimination [15-19] , they have not been 
effectively used for FIR filter design.  The closest work to 
implementing filters with adders is in [20], FIR filters are 
implemented using the Add and Shift method. Canonical 
Signed Digit (CSD) encoding is used for the coefficients to 
minimize the number of additions. The paper discusses how 
high speed implementations can be achieved by registering 
each adder, due to which the critical path becomes equal to the 
delay of the adder. Registering an adder output comes at no 
extra cost on an FPGA because of the presence of a D flip flop 
at the output of each LUT. In comparison with [20], we 
extensively use common subexpression elimination for 
reducing the number of adders and therefore area. 
Furthermore, our designs can run with sample rates as high as 
252 Msps (Million samples per second), whereas the designs 
in [20] can run only at 78.6 Msps. 
 In comparison with the other algorithms for common 
subexpression elimination [15, 16, 18, 19, 21], our method 
takes into account the structure of the FPGA slices (Figure 5) 
and takes into account both the cost of adders and registers 
when performing the optimization. Furthermore, we provide 
comprehensive evidence of the benefits of our technique 
through experimental results, where we compare our results 
with those produced by industry standard tools. 
 

III. FILTER ARCHITECTURE 
 
 We base our filter architecture on the transposed form of 
the FIR filter as shown in Figure 1. The filter can be divided 
into two main parts, the multiplier block and the delay block, 
and is illustrated in Figure 4. In the multiplier block, the 
current input variable x[n] is multiplied by all the coefficients 
of the filter to produce the yi outputs. These yi outputs are then 
delayed and added in the delay block to produce the filter 
output y[n]. 

We perform all our optimizations in the multiplier block. 
The constant multiplications are decomposed into registered 
additions and hardwire shifts. The additions are performed 
using two input adders, which are arranged in the fastest tree 
structure. We use registered adders, so that the performance of 
the filter is only limited by the slowest adder. We use common 
subexpression elimination extensively, to reduce the number 
of adders, which leads to a reduction in the area. To 
synchronize all the intermediate values in the computation, we 
insert registers in the dataflow, wherever necessary. 
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Figure 5.  Registered adder at no additional cost 
 
 Performing subexpression elimination can sometimes 
increase the number of registers substantially, and the overall 
area could possibly increase. Consider the two expressions F1 
and F2 which could be part of the multiplier block. 
 
 
 
Figure 6 shows the original unoptimized expression trees. 
Both the expressions have a minimum critical path of two 
addition cycles. These expressions require a total of six 
registered adders for the fastest implementation, and no extra 
registers are required. From the expressions we can see that 
the computation A + B + C is common to both the 
expressions. If we extract this subexpression, we get the 
structure shown in Figure 7. Since both D and E need to wait 
for two addition cycles to be added to (A + B + C), we need to 
use two registers each for D and E, such that new values for 
A,B,C,D and E can be read in at each clock cycle. Assuming 
that the cost of an adder and a register with the same bitwidth 
are the same, the structure shown in Figure 7 occupies more 
area than the one shown in Figure 6. A more careful 
subexpression elimination algorithm would only extract the 
common subexpression A + B (or A+C or B + C). The number 
of adders is decreased by one from the original, and no 
additional registers are added. This is illustrated in Figure 8. 
The algorithm for performing this kind of optimization is 
described in the next section. 
 
 
 
 
 
 
 
 
 

Figure 6. Unoptimized expression trees 
 

 
 
 
 
 
 
 
 
 
 

Figure 7. Extracting common expression (A + B + C) 

F1 = A + B + C + D 
F2 = A + B + C + E 



  
  
 
 
 
 
 
 
 

 
Figure 8. Extracting common subexpression (A+B) 

 

IV. OPTIMIZATION ALGORITHM 

 
 The goal of our optimization is to reduce the area of the 
multiplier block by reducing the number of adders and any 
additional registers required for the fastest implementation of 
the FIR filter. We first give a brief overview of the common 
subexpression elimination methods. A detailed description can 
be found in [22]. We then present the modified optimization 
algorithm to be used for our work. 

A. Overview of common subexpression elimination 
 We use a polynomial transformation of constant 
multiplications. Given a representation for the constant C, and 
the variable X, the multiplication C*X can be represented as a 
summation of terms denoting the decomposition of the 
multiplication into shifts and additions as  

C*X = ∑±
i

iXL   (V) 

The terms can be either positive or negative when the 
constants are represented using signed digit representations 
such as the Canonical Signed Digit (CSD) representation. The 
exponent of L represents the magnitude of the left shift and the 
i’s represent the digit positions of the non-zero digits of the 
constants. For example the multiplication 7*X = (100-1)CSD*X 
= X<<3 – X = XL3 – X, using the polynomial transformation. 
 We use the divisors to represent all possible common 
subexpressions. Divisors are obtained from an expression by 
looking at every pair of terms in the expression and dividing 
the terms by the minimum exponent of L. For example in the 
expression F = XL2 + XL3 + XL5, consider the pair of terms 
(+XL2  + XL3). The minimum exponent of L in the two terms 
is L2. Dividing by L2, we get the divisor (X + XL). From the 
other two pairs of terms (XL2 + XL5) and (XL3 + XL5), we get 
the divisors (X + XL3) and (X + XL2) respectively.  
 These divisors are significant, because every common 
subexpression in the set of expressions can be detected by 
performing intersections among the set of divisors.  

B. Optimization algorithm 
 
 We first calculate the minimum number of registers 
required for our design. We calculate this by arranging the 
original expressions in the fastest possible tree structure, and 
then inserting registers. For example, for the six term 
expression F = A + B + C + D + E + F, we have the fastest 
tree structure with three addition steps, and we require one 
register to synchronize the intermediate values, such that new 
values for A,B,C,D,E,F can be read in every clock cycle. This 
is illustrated in Figure 9. 
We first generate all the divisors for the set of expressions 
describing the multiplier block. We then use an iterative 
algorithm, where we extract the divisor that has the greatest 
 

 
 
 
 
 
 
 
 

 
 

Figure 9. Calculating registers required for fastest evaluation 
 

value. To calculate the value of the divisor, we assume that the 
cost of a registered adder and a register is the same. We 
calculate the value of a divisor as the number of additions 
saved by extracting it minus the number of registers that have 
to be added. After selecting the best divisor, we rewrite the 
expressions using it. We then generate new divisors from the 
new terms that have been generated due to rewriting, and add 
them to the dynamic list of divisors. The iteration stops when 
there is no valuable divisor remaining in the set of divisors.  

Consider the expressions shown in Figure 6. We need six 
registered adders and no additional registers for the fastest 
evaluation of F1 and F2. Now consider the selection of the 
divisor d1 = (A+B). This divisor saves one addition and does 
not increase the number of registers. Divisors (A + C) and (B 
+ C) also have the same value, but (A+B) is selected 
randomly. The expressions are now rewritten as: 

 
 
 

 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10. Optimization algorithm to reduce area 

 

ReduceArea( {Pi}  ) 
{ 
     {Pi} = Set of expressions in polynomial form; 
     {D} = Set o f divisors = ϕ ; 
 
   //Step 1: Creating divisors and calculating minimum  
                 number of registers required 
 
   for each expression Pi in {Pi} 
  { 
     {Dnew} =  FindDivisors(Pi); 
    Update frequency statistics of divisors in {D}; 
    {D} = {D} ∪ { Dnew}; 
    Pi->MinRegisters = Calculate Minimum registers required 
                                    for fastest evaluation of Pi ;   
    } 
 
   //Step 2: Iterative selection and elimination of best divisor 
  while(1)  
 { 
 
       Find d = Divisor in {D} with greatest Value; 
     // Value = Num Additions reduced – Num Registers Added; 
      
       if( d == NULL) break; 
       Rewrite affected expressions in {Pi} using d; 
  
      Remove divisors in {D} that have become invalid; 
     Update frequency statistics of affected divisors; 
 
         {Dnew} = Set of new divisors from new terms added 

                  by division; 
      {D} = {D} ∪ {Dnew}; 

    } 
} 

d1 = (A + B) 
F1 =  d1 + C + D 
F2 =  d1 + C + E  



After rewriting the expressions and forming new divisors, the 
divisor d2 = (d1 + C) is considered. This divisor saves one 
adder, but introduces five additional registers, as can be seen 
in Figure 7. Therefore this divisor has a value of - 4. No other 
valuable divisors can be found and the iteration stops. We end 
up with the expressions shown in Figure 8. 

V. EXPERIMENTS 
 
 The goal of our experiments was to compare the number of 
resources consumed by our add and shift method with that 
produced by the cores generated by the commercial 
CoregenTM tool, based on Distributed Arithmetic. Besides the 
resources, we also compared the power consumption of the 
two implementations, and also measured the performance. For 
our experiments, we considered 9 FIR filters of various sizes 
(6, 10, 13, 20, 28, 41, 61, 119 and 151 tap filters). We targeted 
the Xilinx Virtex II device for our experiments. The constants 
were normalized to 17 digit of precision and the input samples 
were assumed to be 12 bits wide. For the add and shift 
method, we decomposed all the constant multiplications into 
additions and shifts and optimized the expressions using the 
algorithm explained in Section 4.2.  We used the Xilinx 
Integrated Software Environment (ISE) for performing 
synthesis and implementation of the designs. All the designs 
were synthesized for maximum performance. 
 Table 1a shows the resources utilized for the various filters 
and the performance in terms of Million samples per second 
(Msps) for the filters implemented using the add and shift 
method. Table 1b, shows the same numbers for the filters 
implemented using Xilinx Coregen, using the Parallel 
Distributed Arithmetic (PDA) method.  
 

Table 1a. Filter Synthesis using Add Shift method 
 
 
 
 
 
 
 
 
 
 
 

Figure 11 plots the reduction in the number of resources, in 
terms of the number of Slices, Look Up Tables (LUTs) and 
the number of Flip Flops (FFs). From the results, we can 
observe an average reduction of 58.7% in the number of 
LUTs, and about 25% reduction in the number of slices and 
FFs. Though our algorithm does not optimize for performance, 
the synthesis produces better performance in most of the 
cases, and for the 13 and 20 tap filters, we observe about 26% 
improvement in performance.  

 
Table 1b. Filter Synthesis using Coregen (PDA method) 
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Figure 11. Reduction in resources 
 
Figure 12 compares power consumption for our add/shift 

method versus CoregenTM. From the results we can observe up 
to 50% reduction in dynamic power consumption. We did not 
include the quiescent power into our calculation since that 
value is the same for both methods. The power consumption is 
the result of applying the same test stimulus to both designs 
and measuring the power using XPower tools provided by 
Xilinx ISE software. 
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Figure 12. Power consumption 
 
Comparison with MAC filters using embedded multipliers 
  

CoregenTM can produce FIR filters based on the Multiply 
Accumulate (MAC) method, which makes use of the 
embedded multipliers and DSP blocks. We implemented the 
FIR filters using the MAC method to compare the resource 
usage and performance with our add and shift method. Due to 
tool limitations we had to do the experiments for Virtex IV 
device . We present the synthesis results in terms of number of 
slices on the Virtex IV device and the performance in Msps in 
Table 2. 

 
Table 2. Comparing with MAC filter on Virtex IV 

 
 
 
 
 
 
 
 
  
 
 
 
 
 
From the table, it can be seen that the MAC filter uses fewer 
number of slices compared to the add-shift method, but it also 

Filter 
(# taps) Slices LUTs FFs Performance 

(Msps) 
6 264 213 509 251 

10 474 406 916 222 
13 386 334 749 252 
20 856 705 1650 250 
28 1294 1145 2508 227 
41 2154 1719 4161 223 
61 3264 2591 6303 192 
119 6009 4821 11551 203 
151 7579 6098 14611 180 

Filter 
(# taps) Slices LUTs FFs Performance 

(Msps) 
6 524 774 1012 245 

10 781 1103 1480 222 
13 929 1311 1775 199 
20 1191 1631 2288 199 
28 1774 2544 3381 199 
41 2475 3642 4748 222 
61 3528 5335 6812 199 
119 6484 9754 12539 205 
151 8274 12525 15988 199 

Add Shift 
Method 

MAC 
filter Filter 

(# taps) Slices Msps Slices Msps 
6 264 296 219 262 

10 475 296 418 253 
13 387 296 462 253 
20 851 271 790 251 
28 1303 305 886 251 
41 2178 296 1660 243 
61 3284 247 1947 242 
119 6025 294 3581 241 
151 7623 294 7631 215 



uses the DSP blocks available on Virtex IV devices. The 
number of DSP blocks is equal to the number of taps of the 
filter. The results show that we achieve higher performance as 
the filter size increases. This is mainly because that critical 
path in our design consists of adders while in MAC method, 
critical path consists of multipliers and adders. Another 
limitation for MAC method is that Xilinx CoregenTM is limited 
to input width of 17 bits due to the embedded DSP block input 
limitation while our add and shift method can accept inputs of 
any width. 
 

VI. CONCLUSION 
 

In this paper we presented a multiplierless technique, 
based on the add and shift method and common subexpression 
elimination for low area, low power and high speed 
implementations of FIR filters. We validated our techniques 
on Virtex IITM devices where we observed significant area and 
power reductions over traditional Distributed Arithmetic based 
techniques. In future, we would like to modify our algorithm 
to make use of the limited number of embedded multipliers 
available on the FPGA devices. 
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