
Increased Performace of FPGA-Based Color Classification System
Junguk Cho, Bridget Benson, Sunsern Cheamanukul, and Ryan Kastner

Department of Computer Science and Engineering
University of California, San Diego
La Jolla, CA 92093, United States

{jucho, b1benson, scheaman, kastner}@cs.ucsd.edu

Abstract�—This paper presents a hardware architecture for
increased performance of color classification. In our
architecture, color classification, based on an AdaBoost
algorithm, identifies a pixel as having the color of interest or
not. We designed the proposed architecture using Verilog HDL
and implemented the design in a Xilinx Virtex-5 FPGA. The
architecture for color classification can have 598 times
performance improvement over an equivalent software
solution and 1.9 times performance improvement over the
leading hardware color classifier.

Keywords-AdaBoost; architecture; color classification;
FPGA; image processing; Verilog HDL

I. INTRODUCTION
Color is an important feature in image processing as it

allows for fast processing and robustness to geometric
variations. Color classification is the act of identifying colors
of interest in images. Color classification algorithms need a
distinct set of color descriptors to allow for color
discrimination of one object from another. Potential color
classification applications include object detection, object
tracking, human computer interaction, food classification,
intelligent robots, and biomedical image analysis. A high
frame processing rate and low latency are important for these
applications that must provide quick decisions. Numerous
approaches have been proposed for color classification.
Askar et al. [1] present a robust method for skin color
segmentation of moving hands for a real-time application.
They proposed to adjust the thresholds for skin color
segmentation automatically according to the specific
participant and the illumination conditions. Somatilake and
Chalmers [2] proposed a food classification system to grade
six types of fresh produce using color images. Reyes et al.
[3] presented an Adaboost learning based Fussy color
contrast fusion color classification algorithm. Their system is
able to learn color discrimination knowledge during training
that accounts for hue and saturation drift of the target color.
It is suitable for real-time color object recognition and
contributes to accurate calculation of object position and
orientation for the robot soccer game application. Lu and
Zhang [4] presented an adaptive color classification
algorithm and implemented the color classification algorithm
in a RoboCup vision system. They used a Gaussian Mixture
Model of two components to model the distribution of a
color class in the YUV color space.

Programmable hardware in the form of FPGA has been
proposed as a conventional platform to exploit image
processing in order to achieve high performance. Jin et al. [5]

proposed a skin color detection system with mean-based
surface flattering. They implemented the design in an FPGA
for real-time processing. Zhou et al. [6] presented a color
image classification algorithm for mobile robot navigation.
In order to calibrate the object color in different lighting
conditions, a kind of statistic ellipsoidal model was
constructed. They implemented this method on an FPGA for
a mobile robot. Paschalakis and Bober [7] presented the issue
of face detection and tracking in the context of mobile
videoconferencing. Their proposed face detection and
tracking method adopts the color-based face detection
philosophy, due to its combined high performance and
computational efficiency potential. They also examined an
FPGA implementation of the proposed algorithmic frame
work.

This paper presents hardware architecture for increased
performance of color classification. In our architecture, color
classification is based on an AdaBoost algorithm [8] that
identifies a pixel as having the color of interest or not. The
main contribution of our work, described in this paper, is the
design and implementation of a physically feasible hardware
system to accelerate the processing speed of the operations
required for real-time color classification. Therefore, this
work has resulted in the development of a real-time color
classification system employing an FPGA implemented
system designed by Verilog HDL. Its performance has been
measured and compared with the equivalent software and
hardware implementations. The paper is organized as
follows: In Section 2, we explain the color classification
algorithm. In Section 3, we describe the hardware
architecture, designed with Verilog HDL, of the color
classification system. We also present the implementation of
our real-time color classification system in an FPGA. In
Section 4, we show the performance of the proposed system.
We conclude in Section 5.

II. COLOR CLASSIFICATION ALGORITHM
For the color classifier, we identify pixels of a particular

class. Each classifier is a binary classifier which can only tell
that a pixel is from a class or non-class. It is possible to make
a multi-classifier by combining the output of multiple binary
classifiers. The training data are 320×240 RGB images from
a color camera. We mark either a point or a rectangle as a
positive or negative example of a class. The feature values of
a pixel are HSV values (converted from RGB). For each
pixel on an image, the hue, saturation and value of intensity
are calculated and passed to trained binary classifiers. The
classifier then outputs whether the pixel has the color of

Figure 1. Block diagram of proposed color detection system.

interest. The binary classifier is trained using boosting on
images obtained from the actual setup of the system. There
are two reasons for doing this. First, we do not need to make
any assumptions about the underlying distribution of the
color space. Second, by using data from the actual setup, this
automatically calibrates the system and no further calibration
is needed.

We generate the color classifier offline by feeding our
training images and their positive and negative annotations to
AdaBoost [8]. The training is performed using active training
[9]. In the beginning, we start by marking color of interest
and non-color of interest regions on each image. Then, a
training set of color of interest and non-color of interest is
sampled from all images. In each iteration of active training,
the trained classifier is improved since hard examples and
mistakes are introduced into the training set. Typically, our
initial training set has about 15 images containing 20,000
samples of each type (color of interest and non-color of
interest). When the training is done, boosting outputs a
trained classifier which is represented as an alternating
decision tree [10]. The alternating decision tree structure
consists of two components: decision nodes and prediction
nodes. Decision nodes specify a predicate condition.
Prediction nodes specify a value to add to the score based on
the result of the decision node. Each decision node can be
seen as a conjunction between a precondition (the decision
node was reached) and the condition specified in the decision
node. The actual order that the alternating decision tree
nodes are evaluated will likely be different than the order in
which they were created, but all nodes in the higher branches
of the tree must be evaluated before the nodes in the lower
branches. In general, either breadth-first or depth-first
evaluation will yield the correct interpretation. If a decision
node is not reached then the node's predicate and subsequent
prediction nodes will not be evaluated. The trained classifier
describes if a particular pixel belongs to the color of interest
or not. Our color classifier includes 99 binary classifiers to
classify a pixel as having color of interest or not. It outputs a
large value if the pixel belongs to the color of interest and a
small value if the pixel does not.

III. HARDWARE ARCHITECTURE / IMPLEMENTATION
Figure 1 shows the overview of the proposed architecture

for color classification. It consists of six modules: image
interface, frame grabber, RGB to HSV converter, color
classifier, display, and DVI interface. The image interface
and DVI interface are implemented using ASIC custom
chips with the FPGA board. The others are designed using
Verilog HDL and implemented on an FPGA in order to
perform color classification in real-time.

The frame grabber controller generates the control
signals for the image interface, and transfers images and sync
signals from the image interface module to all of the modules
of the color classification system. The RGB color space has a
weakness in representing shading effects or rapid
illumination changes [11]. To solve this problem, we
consider converting from the RGB to HSV color space. The
HSV model defines a color space in terms of three
constituent components. Hue is the color type such as red,

blue, or yellow that ranges from 0 to 360 degrees. Saturation
is the vibrancy of color that ranges from 0 to 100%. The
lower the saturation of a color, the more grayness is present
and the more faded the color appears. Value of intensity is
the brightness of the color that ranges from 0 to 100%. These
ranges are not suitable for a hardware implementation, so
they are normalized to 0 to 255 (8-bit) in the RGB to HSV
converter. The HSV color image is obtained from the RGB
color image using the converting equation [11]. The RGB to
HSV converter module has a latency of 25 clock cycles and
thus uses a pipeline structure to improve the processing
speed of the RGB to HSV conversion. The RGB to HSV
converter module also produces sync signals to synchronize
all processes of the color classification in the HSV color
space.

The color classifier module performs the classification of
color of interest. This module consists of classifiers, training
data, comparators, accumulators, delayer, and comparator
blocks to perform the color classification as shown in Fig. 2.
The skin color classification is based on the AdaBoost
algorithm [8] which identifies a pixel as having the color of
interest or not. The color classifier includes k (100) binary
classifiers to classify the color of interest in the images. The
color classifier requires substantial computation because all
pixels in the image should be classified with these classifiers
sequentially. A general purpose computer of Von Neumann
architecture has to process k×width×height (100×640×480=
30,720,000) classifications for each image when it processes
an image with width×height (640×480) pixels. It may take a
long latency delay every frame. In order to reduce processing
time, we propose a specific architecture for the color
classification. The architecture has a pipeline scheme which
includes n (10) parallel classifiers blocks, n (10)
corresponding to a constraint parameter given to AdaBoost
algorithm. Each classifiers block has k (100) binary
classifiers which are performed concurrently. A classifiers
block evaluates k (100) binary classifiers by comparing the
appropriate hue, saturation, or value of intensity value. The
classifiers block then stores the result of the k-1 (99) binary
classifiers (the result of the root node is always true) in the

... ...

Figure 2. Block diagram of the color classifier module.

Figure 3. Block diagram of the classifiers blocks.

Figure 4. Block diagram of the display module.

result register and stores information about links between
nodes in the link register. Figure 3 shows the block diagram
of the classifiers blocks in the color classifier module. This
block consists of binary classifiers, and result and link
registers. If a binary classifier has true value, its bit of the
result register has the value of 1. Otherwise, its bit of the
result register has the value of 0. If the decision node of a
binary classifier is reached, its bit of the link register has the
value of 1. Otherwise, its bit of the link register has the value
of 0. When a pixel passes each classifiers block, its result
and link registers are updated concurrently. The value of the
result register is calculated once in the first classifiers block
(Classifiers 0) and then is just transferred to the result
register of the adjacent classifiers block (Classifier n (n>1))
as shown in Fig 3. The link register, however, must be
updated based on the previous link register in each classifiers
block, to determine the list of decision nodes present in the
solution for the current pixel. The values of the result and
link register from the last (n-th) classifier block are used for
an analyzer which makes an alternating decision tree of the
current pixel. The training data for the color classification are
stored as parameters in registers because they can be
accessed quickly and simultaneously and modified easily.
The accumulators perform the accumulation of the score of k
(100) binary classifiers based on the alternating decision tree
obtained from the analyzer. The comparator determines the
classification of the color of interest. If the sore value
obtained from the accumulators is larger than the threshold
(1.0~2.0), the pixel belongs to the class of the color of
interest. Otherwise, the pixel belongs to the class of the non-
color of interest. If the pixel is the color of interest, the
comparator produces a detect signal and the position of the
detected pixel. The delayer keeps the position of the
processing pixels in the color classifier module and produces
the position of the detected pixel. The color classifier module
has a latency of 12 clock cycles where the n (10) parallel
classifiers blocks require 10 clock cycles and the
accumulators require 2 clock cycles to calculate the final
score from k (100) binary classifiers.

The display module stores the position of the pixels of
the color of interest which is transferred from the color
classifier module and makes a binary image of the color of
interest of an image. The binary image is processed by the
morphological operation of opening (erosion followed by
dilation) to eliminate spot noises. The display module also
displays the regions of the color of interest on the images by
changing the pixel color to the green color. Therefore, the
classified pixels of the color of interest show only green
color while the pixels of the non-color of interest show their
own color. The display module consist of analyzers, binary
images, line buffers, window buffers, erosion, dilation,
address generator, and print blocks as shown in Fig. 4. The
analyzer receives the detect signal and the position of the
detected pixel including the color of interest and makes a
binary image of the color of interest from an input image in
dual port BRAMs. The size of BRAMs for the binary image
is the same as the resolution of the input images
(640×480×1-bit). One port (port_a) is used to generate the
binary image of the color of interest from an input image; the

other port (port_b) is used to read the generated binary image
for the morphological operation of opening to eliminate spot
noises of the color classification.

There are two operations; erosion followed by dilation. In
order to perform these operations, we need a 3×3 window
buffer which contains the necessary values of a binary image
for each operation [12]. We designed the specific
architecture that consists of the line buffers and window
buffer to generate the 3×3 window in a single clock cycle for
morphological operation. In this architecture, the line buffers
store some parts of a binary image. The line buffers use dual
port BRAMs where the number of BRAMs (2) is the same as
the value of row-1 (3-1=2) in the window buffers. Each dual
port BRAM can store one line of a binary image. Thus, the
x-coordinates (0~width: 0~640) of the binary image can be
used as the address for the dual port BRAM. Since each dual
port BRAM stores one line of a binary image, it is possible
to get a value from every line simultaneously. The result

value of erosion is transferred to the other line buffers and
window buffers to generate the other 3×3 window buffers for
dilation. The result value of dilation is transferred to the
other analyzer to generate the other binary image. The printer
reads the value of the other binary image according to the
address generator to display the regions of the color of
interest on the image by changing the pixel color to the green
color (RGB: 0 255 0). The regions of the color of interest
show only green color while the regions of the non-color of
interest show their own color. In the display module, the
Digital Visual Interface (DVI) specification is applied to
display the processed image sequence to the LCD monitor
through a DVI transmitter in the DVI interface module.

IV. EXPERIMENT / RESULTS
The proposed architecture for color classification has

been designed using Verilog HDL, synthesized using XST,
and implemented on a Virtex-5 FX70T FPGA using ISE
design suite 10.1. Note that less than 15% of the device
resources are allocated for color classification. We
implemented two color classification examples; skin color of
people and orange color of a buoy underwater. The color of
the classified pixel which has the color of interest is changed
to the green color. It means the color can be classified
successfully.

We measure the performance of the proposed
architecture for the color classification system. The color
classification system is capable of processing an image
consisting of 640×480 at speeds of a maximum of 233.21 fps.
The performance of the software program is determined by
measuring the computation time required for performing
color classification on the PC; in this case using an Intel
Pentium D CPU (3.0 GHz), 4 GB DDR2 RAM (800 MHz),
and Fedora 9.0 Operating System. All of the software
programs are developed using Java (1.6.0). The algorithm
and parameters used in software color classification are
exactly the same as those of the hardware color classification.
When the color classification, using the software program, is
applied to the same conditions as the hardware color
classification, it is capable of processing an image at speeds
of an average of 0.39 fps with 640×480 images, and 0.69 fps
with 320×240 images, respectively. The hardware color
classification system has the performance improvement of
598 times over the software color classification system when
applied to the 640×480 resolution images.

In the hardware implementation by Jin et al. [5], the color
classification system can process a 640×480 image up to 120
fps on a Virtex-4 LX200 FPGA. Our system has the
performance improvement of 1.9 times over the Jin et al.
implementation. The hardware implementation by Jin et al.
[5] used 64583 (36%) Slice LUTs of Virtex-4 LX 200 FPGA
(178176 available). Our system uses only 6207 (13%) Slice
LUTs of Virtex-5 FX70T (44800 available). It saves 10
times the system resources of the Jin et al. implementation.
Although, the hardware implementation by Paschalakis and
Bober [7] can process a 176×144 image (25,344 pixels) up to
400 fps on EP20K1000EBC652 FPGA, the processed image
is 12 times smaller than a 640×480 image (307,200 pixels).
Therefore the performance of the Paschalakis and Bober [7]

implementation will decrease about 12 times (33 fps) when
applied to a 640×480 image. In the hardware implementation
by Zhou et al. [6], the classification costs 120ns. In order to
compare the performance, the performance of our system can
be calculated to the processing time of a pixel. In our system,
the classification costs about 54ns. Therefore, our system has
the performance improvement of 2.2 times over the Zhou et
al. [6] implementation.

V. CONCLUSION
We present hardware architecture for increased

performance of color classification. In our architecture, color
classification is based on an AdaBoost algorithm that
identifies a pixel as having the color of interest or not. We
designed the proposed architecture using Verilog HDL and
implemented the design in a Xilinx Virtex-5 FPGA. The
architecture for color classification can have 598 times
performance improvement over an equivalent software
solution. The proposed color classification system has the
performance improvement of 1.9 times over the Jin et al.
implementation, 7.0 times over the Paschalakis and Bober
implementation, and 2.3 times over the Zhou et al.
implementation.

REFERENCES
[1] S. Askar, Y. Kondratyuk, K. Elazouzi, P. Kauff, and O. Schreer, "Vision-

Based Skin-Colour Segmentation of Moving Hands for Real-Time
Applications," European Conference on Visual Media Production, pp. 79-
85, 2004.

[2] S. Somatilake and A. N. Chalmers, "An Image-Based Food Classification
System," Image and Vision Computing New Zealand, pp. 260-265, 2007.

[3] N. H. Reyes, A. L. Barczak, and C. H. Messom, "Fast Colour
Classification for Real-time Colour Object Identification: Adaboost
training of Classifiers," Conference on Autonomous Robots and Agents,
2006.

[4] X. Lu and H. Zhang, "Color Classification Using Adaptive Dichromatic
Model," IEEE Conference on Robotics and Automation, pp. 3411-3416,
2006.

[5] S. Jin, D. Kim, T. C. Pham, and J. W. Jeon, "FPGA Implementation of
Real-time Skin Color Detection with Mean-based Surface Flattening,"
ACM/SIGDA Symposium on Field Programmable Gate Arrays, pp. 283-
287, 2009.

[6] Q. Zhou, K. Yuan, Hui Wang, and H. Hu, "FPGA-Based Colour Image
Classification for Mobile Robot Navigation," IEEE Conference on
Industrial Technology, pp. 921- 925, 2005.

[7] S. Paschalakis and M. Bober, "Real-Time Face Detection and Tracking for
Mobile Videoconferencing," Real-Time Imaging, Vol. 10, No. 2, pp. 81-
94, 2004.

[8] Y. Freund and R. E. Schapire, "A Decision-Theoretic Generaliztion of On-
Line Learning and an Application to Boosting," Journal of Computer and
System Sciences, no. 55, pp. 119-139, 1997.

[9] S. Cheamanunkul, E. Ettinger, M. Jacobsen, P. Lai, and Y. Freund,
"Detecting, Tracking and Interacting with People in a Public Space,"
Conference on Multimodal Interfaces, pp. 79-86, 2009.

[10] Y. Freund and L. Mason, "The Alternating Decision Tree Learning
Algorithm," Conference on Machine Learning, pp. 124-133, 1999.

[11] J. U. Cho, S. H. Jin, X. D. Pham, D. Kim, and J. W. Jeon, "FPGA-Based
Real-Time Visual Tracking System Using Adaptive Color Histograms,"
IEEE Conference on Robotics and Biomimetics, pp. 172-177, 2007.

[12] J. Cho, S. Mirzaei, J. Oberg, and R. Kastner, "FPGA-Based Face
Detection System Using Haar Classifiers," ACM/SIGDA Symposium on
Field-Programmable Gate Arrays, pp. 103-112, 2009.

