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Abstract�—This paper presents a hardware architecture for 
increased performance of color classification. In our 
architecture, color classification, based on an AdaBoost 
algorithm, identifies a pixel as having the color of interest or 
not. We designed the proposed architecture using Verilog HDL 
and implemented the design in a Xilinx Virtex-5 FPGA. The 
architecture for color classification can have 598 times 
performance improvement over an equivalent software 
solution and 1.9 times performance improvement over the 
leading hardware color classifier. 
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I.  INTRODUCTION 
Color is an important feature in image processing as it 

allows for fast processing and robustness to geometric 
variations. Color classification is the act of identifying colors 
of interest in images. Color classification algorithms need a 
distinct set of color descriptors to allow for color 
discrimination of one object from another. Potential color 
classification applications include object detection, object 
tracking, human computer interaction, food classification, 
intelligent robots, and biomedical image analysis. A high 
frame processing rate and low latency are important for these 
applications that must provide quick decisions. Numerous 
approaches have been proposed for color classification. 
Askar et al. [1] present a robust method for skin color 
segmentation of moving hands for a real-time application. 
They proposed to adjust the thresholds for skin color 
segmentation automatically according to the specific 
participant and the illumination conditions. Somatilake and 
Chalmers [2] proposed a food classification system to grade 
six types of fresh produce using color images. Reyes et al. 
[3] presented an Adaboost learning based Fussy color 
contrast fusion color classification algorithm. Their system is 
able to learn color discrimination knowledge during training 
that accounts for hue and saturation drift of the target color. 
It is suitable for real-time color object recognition and 
contributes to accurate calculation of object position and 
orientation for the robot soccer game application. Lu and 
Zhang [4] presented an adaptive color classification 
algorithm and implemented the color classification algorithm 
in a RoboCup vision system. They used a Gaussian Mixture 
Model of two components to model the distribution of a 
color class in the YUV color space.  

Programmable hardware in the form of FPGA has been 
proposed as a conventional platform to exploit image 
processing in order to achieve high performance. Jin et al. [5] 

proposed a skin color detection system with mean-based 
surface flattering. They implemented the design in an FPGA 
for real-time processing. Zhou et al. [6] presented a color 
image classification algorithm for mobile robot navigation. 
In order to calibrate the object color in different lighting 
conditions, a kind of statistic ellipsoidal model was 
constructed. They implemented this method on an FPGA for 
a mobile robot. Paschalakis and Bober [7] presented the issue 
of face detection and tracking in the context of mobile 
videoconferencing. Their proposed face detection and 
tracking method adopts the color-based face detection 
philosophy, due to its combined high performance and 
computational efficiency potential. They also examined an 
FPGA implementation of the proposed algorithmic frame 
work. 

This paper presents hardware architecture for increased 
performance of color classification. In our architecture, color 
classification is based on an AdaBoost algorithm [8] that 
identifies a pixel as having the color of interest or not. The 
main contribution of our work, described in this paper, is the 
design and implementation of a physically feasible hardware 
system to accelerate the processing speed of the operations 
required for real-time color classification. Therefore, this 
work has resulted in the development of a real-time color 
classification system employing an FPGA implemented 
system designed by Verilog HDL. Its performance has been 
measured and compared with the equivalent software and 
hardware implementations. The paper is organized as 
follows: In Section 2, we explain the color classification 
algorithm. In Section 3, we describe the hardware 
architecture, designed with Verilog HDL, of the color 
classification system. We also present the implementation of 
our real-time color classification system in an FPGA. In 
Section 4, we show the performance of the proposed system. 
We conclude in Section 5. 

II. COLOR CLASSIFICATION ALGORITHM 
For the color classifier, we identify pixels of a particular 

class. Each classifier is a binary classifier which can only tell 
that a pixel is from a class or non-class. It is possible to make 
a multi-classifier by combining the output of multiple binary 
classifiers. The training data are 320×240 RGB images from 
a color camera. We mark either a point or a rectangle as a 
positive or negative example of a class. The feature values of 
a pixel are HSV values (converted from RGB). For each 
pixel on an image, the hue, saturation and value of intensity 
are calculated and passed to trained binary classifiers. The 
classifier then outputs whether the pixel has the color of 



 
Figure 1.  Block diagram of proposed color detection system. 

interest. The binary classifier is trained using boosting on 
images obtained from the actual setup of the system. There 
are two reasons for doing this. First, we do not need to make 
any assumptions about the underlying distribution of the 
color space. Second, by using data from the actual setup, this 
automatically calibrates the system and no further calibration 
is needed. 

We generate the color classifier offline by feeding our 
training images and their positive and negative annotations to 
AdaBoost [8]. The training is performed using active training 
[9]. In the beginning, we start by marking color of interest 
and non-color of interest regions on each image. Then, a 
training set of color of interest and non-color of interest is 
sampled from all images. In each iteration of active training, 
the trained classifier is improved since hard examples and 
mistakes are introduced into the training set. Typically, our 
initial training set has about 15 images containing 20,000 
samples of each type (color of interest and non-color of 
interest). When the training is done, boosting outputs a 
trained classifier which is represented as an alternating 
decision tree [10]. The alternating decision tree structure 
consists of two components: decision nodes and prediction 
nodes. Decision nodes specify a predicate condition. 
Prediction nodes specify a value to add to the score based on 
the result of the decision node. Each decision node can be 
seen as a conjunction between a precondition (the decision 
node was reached) and the condition specified in the decision 
node. The actual order that the alternating decision tree 
nodes are evaluated will likely be different than the order in 
which they were created, but all nodes in the higher branches 
of the tree must be evaluated before the nodes in the lower 
branches. In general, either breadth-first or depth-first 
evaluation will yield the correct interpretation. If a decision 
node is not reached then the node's predicate and subsequent 
prediction nodes will not be evaluated. The trained classifier 
describes if a particular pixel belongs to the color of interest 
or not. Our color classifier includes 99 binary classifiers to 
classify a pixel as having color of interest or not. It outputs a 
large value if the pixel belongs to the color of interest and a 
small value if the pixel does not. 

III. HARDWARE ARCHITECTURE / IMPLEMENTATION 
Figure 1 shows the overview of the proposed architecture 

for color classification. It consists of six modules: image 
interface, frame grabber, RGB to HSV converter, color 
classifier, display, and DVI interface. The image interface 
and DVI interface are implemented using ASIC custom 
chips with the FPGA board. The others are designed using 
Verilog HDL and implemented on an FPGA in order to 
perform color classification in real-time. 

The frame grabber controller generates the control 
signals for the image interface, and transfers images and sync 
signals from the image interface module to all of the modules 
of the color classification system. The RGB color space has a 
weakness in representing shading effects or rapid 
illumination changes [11]. To solve this problem, we 
consider converting from the RGB to HSV color space. The 
HSV model defines a color space in terms of three 
constituent components. Hue is the color type such as red, 

blue, or yellow that ranges from 0 to 360 degrees. Saturation 
is the vibrancy of color that ranges from 0 to 100%. The 
lower the saturation of a color, the more grayness is present 
and the more faded the color appears. Value of intensity is 
the brightness of the color that ranges from 0 to 100%. These 
ranges are not suitable for a hardware implementation, so 
they are normalized to 0 to 255 (8-bit) in the RGB to HSV 
converter. The HSV color image is obtained from the RGB 
color image using the converting equation [11]. The RGB to 
HSV converter module has a latency of 25 clock cycles and 
thus uses a pipeline structure to improve the processing 
speed of the RGB to HSV conversion. The RGB to HSV 
converter module also produces sync signals to synchronize 
all processes of the color classification in the HSV color 
space. 

The color classifier module performs the classification of 
color of interest. This module consists of classifiers, training 
data, comparators, accumulators, delayer, and comparator 
blocks to perform the color classification as shown in Fig. 2. 
The skin color classification is based on the AdaBoost 
algorithm [8] which identifies a pixel as having the color of 
interest or not. The color classifier includes k (100) binary 
classifiers to classify the color of interest in the images. The 
color classifier requires substantial computation because all 
pixels in the image should be classified with these classifiers 
sequentially. A general purpose computer of Von Neumann 
architecture has to process k×width×height (100×640×480= 
30,720,000) classifications for each image when it processes 
an image with width×height (640×480) pixels. It may take a 
long latency delay every frame. In order to reduce processing 
time, we propose a specific architecture for the color 
classification. The architecture has a pipeline scheme which 
includes n (10) parallel classifiers blocks, n (10) 
corresponding to a constraint parameter given to AdaBoost 
algorithm. Each classifiers block has k (100) binary 
classifiers which are performed concurrently. A classifiers 
block evaluates k (100) binary classifiers by comparing the 
appropriate hue, saturation, or value of intensity value. The 
classifiers block then stores the result of the k-1 (99) binary 
classifiers (the result of the root node is always true) in the 
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Figure 2.  Block diagram of the color classifier module. 

 
Figure 3.  Block diagram of the classifiers blocks. 

 
Figure 4.  Block diagram of the display module. 

result register and stores information about links between 
nodes in the link register. Figure 3 shows the block diagram 
of the classifiers blocks in the color classifier module. This 
block consists of binary classifiers, and result and link 
registers. If a binary classifier has true value, its bit of the 
result register has the value of 1. Otherwise, its bit of the 
result register has the value of 0. If the decision node of a 
binary classifier is reached, its bit of the link register has the 
value of 1. Otherwise, its bit of the link register has the value 
of 0. When a pixel passes each classifiers block, its result 
and link registers are updated concurrently. The value of the 
result register is calculated once in the first classifiers block 
(Classifiers 0) and then is just transferred to the result 
register of the adjacent classifiers block (Classifier n (n>1)) 
as shown in Fig 3. The link register, however, must be 
updated based on the previous link register in each classifiers 
block, to determine the list of decision nodes present in the 
solution for the current pixel. The values of the result and 
link register from the last (n-th) classifier block are used for 
an analyzer which makes an alternating decision tree of the 
current pixel. The training data for the color classification are 
stored as parameters in registers because they can be 
accessed quickly and simultaneously and modified easily. 
The accumulators perform the accumulation of the score of k 
(100) binary classifiers based on the alternating decision tree 
obtained from the analyzer. The comparator determines the 
classification of the color of interest. If the sore value 
obtained from the accumulators is larger than the threshold 
(1.0~2.0), the pixel belongs to the class of the color of 
interest. Otherwise, the pixel belongs to the class of the non-
color of interest. If the pixel is the color of interest, the 
comparator produces a detect signal and the position of the 
detected pixel. The delayer keeps the position of the 
processing pixels in the color classifier module and produces 
the position of the detected pixel. The color classifier module 
has a latency of 12 clock cycles where the n (10) parallel 
classifiers blocks require 10 clock cycles and the 
accumulators require 2 clock cycles to calculate the final 
score from k (100) binary classifiers. 

The display module stores the position of the pixels of 
the color of interest which is transferred from the color 
classifier module and makes a binary image of the color of 
interest of an image. The binary image is processed by the 
morphological operation of opening (erosion followed by 
dilation) to eliminate spot noises. The display module also 
displays the regions of the color of interest on the images by 
changing the pixel color to the green color. Therefore, the 
classified pixels of the color of interest show only green 
color while the pixels of the non-color of interest show their 
own color. The display module consist of analyzers, binary 
images, line buffers, window buffers, erosion, dilation, 
address generator, and print blocks as shown in Fig. 4. The 
analyzer receives the detect signal and the position of the 
detected pixel including the color of interest and makes a 
binary image of the color of interest from an input image in 
dual port BRAMs. The size of BRAMs for the binary image 
is the same as the resolution of the input images 
(640×480×1-bit). One port (port_a) is used to generate the 
binary image of the color of interest from an input image; the 

other port (port_b) is used to read the generated binary image 
for the morphological operation of opening to eliminate spot 
noises of the color classification. 

There are two operations; erosion followed by dilation. In 
order to perform these operations, we need a 3×3 window 
buffer which contains the necessary values of a binary image 
for each operation [12]. We designed the specific 
architecture that consists of the line buffers and window 
buffer to generate the 3×3 window in a single clock cycle for 
morphological operation. In this architecture, the line buffers 
store some parts of a binary image. The line buffers use dual 
port BRAMs where the number of BRAMs (2) is the same as 
the value of row-1 (3-1=2) in the window buffers. Each dual 
port BRAM can store one line of a binary image. Thus, the 
x-coordinates (0~width: 0~640) of the binary image can be 
used as the address for the dual port BRAM. Since each dual 
port BRAM stores one line of a binary image, it is possible 
to get a value from every line simultaneously. The result 



value of erosion is transferred to the other line buffers and 
window buffers to generate the other 3×3 window buffers for 
dilation. The result value of dilation is transferred to the 
other analyzer to generate the other binary image. The printer 
reads the value of the other binary image according to the 
address generator to display the regions of the color of 
interest on the image by changing the pixel color to the green 
color (RGB: 0 255 0). The regions of the color of interest 
show only green color while the regions of the non-color of 
interest show their own color. In the display module, the 
Digital Visual Interface (DVI) specification is applied to 
display the processed image sequence to the LCD monitor 
through a DVI transmitter in the DVI interface module. 

IV. EXPERIMENT / RESULTS 
The proposed architecture for color classification has 

been designed using Verilog HDL, synthesized using XST, 
and implemented on a Virtex-5 FX70T FPGA using ISE 
design suite 10.1. Note that less than 15% of the device 
resources are allocated for color classification. We 
implemented two color classification examples; skin color of 
people and orange color of a buoy underwater. The color of 
the classified pixel which has the color of interest is changed 
to the green color. It means the color can be classified 
successfully. 

We measure the performance of the proposed 
architecture for the color classification system. The color 
classification system is capable of processing an image 
consisting of 640×480 at speeds of a maximum of 233.21 fps. 
The performance of the software program is determined by 
measuring the computation time required for performing 
color classification on the PC; in this case using an Intel 
Pentium D CPU (3.0 GHz), 4 GB DDR2 RAM (800 MHz), 
and Fedora 9.0 Operating System. All of the software 
programs are developed using Java (1.6.0). The algorithm 
and parameters used in software color classification are 
exactly the same as those of the hardware color classification. 
When the color classification, using the software program, is 
applied to the same conditions as the hardware color 
classification, it is capable of processing an image at speeds 
of an average of 0.39 fps with 640×480 images, and 0.69 fps 
with 320×240 images, respectively. The hardware color 
classification system has the performance improvement of 
598 times over the software color classification system when 
applied to the 640×480 resolution images. 

In the hardware implementation by Jin et al. [5], the color 
classification system can process a 640×480 image up to 120 
fps on a Virtex-4 LX200 FPGA. Our system has the 
performance improvement of 1.9 times over the Jin et al. 
implementation. The hardware implementation by Jin et al. 
[5] used 64583 (36%) Slice LUTs of Virtex-4 LX 200 FPGA 
(178176 available). Our system uses only 6207 (13%) Slice 
LUTs of Virtex-5 FX70T (44800 available). It saves 10 
times the system resources of the Jin et al. implementation. 
Although, the hardware implementation by Paschalakis and 
Bober [7] can process a 176×144 image (25,344 pixels) up to 
400 fps on EP20K1000EBC652 FPGA, the processed image 
is 12 times smaller than a 640×480 image (307,200 pixels). 
Therefore the performance of the Paschalakis and Bober [7] 

implementation will decrease about 12 times (33 fps) when 
applied to a 640×480 image. In the hardware implementation 
by Zhou et al. [6], the classification costs 120ns. In order to 
compare the performance, the performance of our system can 
be calculated to the processing time of a pixel. In our system, 
the classification costs about 54ns. Therefore, our system has 
the performance improvement of 2.2 times over the Zhou et 
al. [6] implementation. 

V. CONCLUSION 
We present hardware architecture for increased 

performance of color classification. In our architecture, color 
classification is based on an AdaBoost algorithm that 
identifies a pixel as having the color of interest or not. We 
designed the proposed architecture using Verilog HDL and 
implemented the design in a Xilinx Virtex-5 FPGA. The 
architecture for color classification can have 598 times 
performance improvement over an equivalent software 
solution. The proposed color classification system has the 
performance improvement of 1.9 times over the Jin et al. 
implementation, 7.0 times over the Paschalakis and Bober 
implementation, and 2.3 times over the Zhou et al. 
implementation. 
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