
Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Eliminating Timing Information Flows in a Mix-trusted
System-on-Chip

Jason Oberg∗, Timothy Sherwood† and Ryan Kastner∗
∗Computer Science and Engineering, University of California, San Diego

{jkoberg,kastner}@cs.ucsd.edu

†Computer Science, University of California, Santa Barbara
sherwood@cs.ucsb.edu

Abstract—Modern computing systems continue to find themselves in
control of applications which we rely on for our personal health and
safety. These systems which require high-assurance have a very high-
cost of failure. In order to build such a system with complete security,
it must be built with a secure computing foundation. Creating such a
secure hardware foundation is non-trivial for a number of reasons. One
of which is due to the use of third-party intellectual property cores to
reduce both the cost and design time of modern system-on-chips (SoCs) .
Ensuring the integrity of trusted cores in these systems becomes difficult
since the behavior of other untrusted cores is undefined. In this work,
we show how information can be monitored at the level of Boolean gates
to isolate trusted and untrusted cores in a modern SoC. We specifically
target the Opencores WISHBONE cross-bar interconnect architecture
and demonstrate how such isolation can be achieved. Further, we evaluate
how effective the solution is by testing the system using a number of
different scenarios.

I. INTRODUCTION

Computing systems govern some of the most critical aspects of
our lives. These high-assurance systems, which are found in medical
devices, automobiles, planes, satellites, and military systems, have
an extremely high cost of failure. Incorrect construction or unnoticed
security holes can completely compromise their reliability, potentially
putting humans in harms way of both their safety and privacy.

These systems have already seen their fair-share of security issues.
For example, cardiac pacemakers have been shown to have weak
radio-frequency (RF) security. This can be exploited to compromise
both a patient’s personal safety and their secrecy [1]. Aside from
medical devices, security holes in automobiles have been exploited
to show that many of the critical components (such as the braking
system) can be remotely controlled by an attacker [2]. As is apparent
with these examples, taking the utmost care in security when design-
ing these systems is mandatory. However, in order to do so, designers
need methods and tools which can help them expose security issues.

Some standards exist, such as the Common Criteria standard which
specifies a set of rules in which secure systems must be constructed
and evaluated. For example, the Evaluation Assurance Level (EAL)
is awarded to systems based on how thoroughly they have been
evaluated (assigned a number from 1 to 7). Not surprisingly, achieving
a high-assurance level is not only time consuming but extremely
expensive. Even further, it is nearly impossible to evaluate a system
with components from untrusted entities since their behavior must be
essentially assumed to be undefined. Since it is substantially faster
and more cost efficient to use third-party components, it is desirable
to construct a system which shows isolation between trusted, in-house
built components, and potentially untrusted third party ones.

System-on-chips (SoCs) find themselves at the heart of these issues
since they rely on the re-use of third-party intellectual property (IP)
cores. These cores include memories, digital signal processors (DSP),

graphical processing units (GPUs), analog RF blocks, I/O interfaces,
and other various hardware accelerators (such as hardware encryption
units). The SoC tightly integrates these cores together using a SoC bus
architecture such as the Opencores WISHBONE. Ideally, integration
of these components would be done in a realible and secure manner.
Unfortunately, since many of these cores come from potentially
untrusted sources, their use in high-assurance applications becomes
extremely limited. This stems from the fact that these cores either
come from an untrusted vendor or they have not been evaluated
to the same extent as the trused cores. For example, the Mars
Rover requires separation between the flight critical and scientific
measurement systems simply because the flight critical components
require detailed evaluation far beyond that of the measurement ones.
A missed bug or vulnerability in the measurement components could
affect the flight control components and desecrate the integrity the
entire system.

One concern in mix-trusted SoC integration is due to malicious
inclusions such as hardware trojans. These trojans can violate security
by using hidden circuitry to either covertly transmit information or
insert a kill switch into the system. A survey by Tehranipoor et
al. [3] covers many of the detection techniques including power and
timing-based analyses. The work we present here can help deal with
hardware trojans, but requires additional techniques to help mitigate
their effect. We can ensure hardware trojans in untrusted cores do
not affect trusted ones but we must explicitly assume trusted cores
do not have trojans.

Secure mix-trusted integration is not impossible if appropriate
techniques are in place to build the system securely from the ground
up. By designing a secure computing foundation, information flow
can be tightly bounded in the system. Such techniques are hard to
come by since information can flow through difficult to detect side-
channels1 in hardware; e.g. the amount time a computation takes to
execute. Recently, researchers have put effort in developing these
strategies, specifically with the use of information flow tracking at
the lowest digital abstraction: logic gates.

Gate level information flow tracking (GLIFT) [4] uses additional
logic to monitor the security level of every bit in the system as they
flow through Boolean gates. Similar to information flow tracking at
higher abstractions [5], [6], GLIFT associates a single-bit security
label (known as taint) to each data-bit and tracks this information

1A side-channel is defined as an entity which leaks information but was not
intended for communication. The two most common side channels found in
hardware are from timing (the data-dependent latency of a computation) and
power (the data-dependent power consumed during a computation). In this
work we address only logical side-channels (timing), physical ones (power)
are out of the scope of this paper.

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

as it flows through the system. This meta-data specifies the security
level of every bit in the system and the extra logic gates to presicely
monitor this meta-data to determine where the original data is
moving. Since GLIFT works at the lowest digital abstraction, it is also
capable of tracking information through timing channels as recently
demonstrated [7]. This strong property makes it possible for testers
and designers to determine whether or not untrusted information is
flowing to trusted components so they have a sense of the potential
security flaws in their designs. In the past, GLIFT has been used to
show how to build a provably secure processor [8] and show isolation
in the I2C and USB bus protocols [9]. There has not, to the best
of our knowledge, been work showing how GLIFT can be used to
show isolation in a larger, realistic SoC which uses components from
varying trust.

The goal of this paper is to show how a SoC can be designed
using cores from different trust levels and have its security tested
using GLIFT. In doing so, we demonstrate that untrusted cores never
affect trusted ones. Specifically, we target the WISHBONE [10]
SoC protocol using a cross-bar interconnect. We design a realistic
system which resembles that of what one might find in high-assurance
applications. Specifically, two processors (trusted and untrusted)
which wish to share a hardware accelerator (AES encryption unit)
in the SoC. Ideally, this sort of behavior should be allowed as long
as the untrusted component does not interfere with the trusted one
(and thereby compromise the integrity of the system). Using GLIFT,
we show how a cross-bar can be designed and tested to be information
flow secure such that the untrusted processor never affects the trusted
one. This allows the hardware accelerator to be shared in a secure way
without causing harmful side effects to the trusted computation. We
demonstrate that this isolation is maintained across several different
scenarios in which the untrusted processor is attempting to interfere
with the trusted one.

II. GATE LEVEL INFORMATION FLOW TRACKING

Gate level information flow tracking (GLIFT) is an information
flow tracking technique targeted at the movement of information
through Boolean gates. It has been used in a variety of applications,
e.g., demonstrating isolation between devices in bus protocols [9] and
processes in a microprocessor [8].

As with other information flow tracking methods, GLIFT asso-
ciates a bit of meta-data (henceforth referred to as taint) and tracks
this taint through the system as it executes. This bit of meta-data
represents the security of the data (either trusted or untrusted) so
that the flow of untrusted information can be precisely monitored.
For example, consider a simple AND gate and partial truth table as
shown in Figure 1.

a b

f

b a

f

b t a

t

a b at bt ft

1 0 1 0 0

1 0 0 1 1

0 1 1 0 1

Partial Truth Table

t

(b) (c) (a)

Fig. 1. (a) A simple AND gate. (b) A partial truth table for the tracking
logic of an AND gate. ft = 1 iff a tainted input affects f . (c) The tracking
logic for an AND gate

Here we have a simple AND gate (a) with inputs a and b and
also the tracking logic for this AND gate (c) with taint inputs at and
bt in addition to the original data inputs. The partial truth table (b)
specifies how the GLIFT logic (c) tracks the taints of the intputs to
the output. For example, as shown in row 1, if a is tainted (at = 1
or a is untrusted) with a = 1 and b is not tainted with b = 0
then no tainted information (from a) flows through the logic gate
since the output is always 0 since b = 0. In other words, a cannot
affect the output f of the AND gate in this scenario. The tracking
logic captures this property by indicating f as untainted (ft = 0).
Conversely, if we consider row 2 in which b is tainted instead of
a, then tainted information does flow through the AND gate since b
affects the output f . This is captured by the GLIFT logic by labeling
f as tainted (ft = 1). Similar truth tables can be constructed for
other gate primitives (OR, XOR, etc.) so that GLIFT logic can be
created for any gate in the design.

To use GLIFT in practice the existing logic synthesis tools are
leveraged to tightly integrate it into the design flow. First, we take
a design written in a hardware-description language (HDL) such as
Verilog or VHDL at the register-transfer level (RTL). This hardware
design is then synthesized to logic gates using Synopsys’ Design
Compiler and target its and_or.db library which contains simple
2-input ANDs, ORs, and inverters. Note that we use this library for
the sake of simplicity; more complex libraries can be used as long as
the GLIFT logic has been derived a priori as previously discussed.
Once the logic is in the form of a gate-level netlist, we process this
netlist to add the additional GLIFT logic. This process simply takes
every gate primitive and replaces it with the appropriate GLIFT logic
(this new logic contains both the original and tracking logic).

Once all the pieces are in place, the design can be tested to
determine whether or not an information flow exists. This is done
by tainting known untrusted regions of the design and simulating
execution on input test vectors using a simulation tool such as Mentor
Graphics Modelsim. If this tainted information flows to an trusted
region, the design has a security vulnerability that the designer must
assess. While GLIFT itself does not provide any mechanism for
determining why there is a security violating information flow, it will
always correctly indicate the absence of one. We reserve providing
techniques for showing why for future work. As of now, it is up to
the designer to reason about the flow and put mechanisms in place to
eliminate it. GLIFT will, as mentioned, correctly identify the absence
of this flow once these mechanisms are added. Note that using GLIFT
in this manner will show the absence of a flow for the test vectors
used. It does not necessarily guarantee the absence of unintended
information flow for all input combinations. Past work has created
a solution to this problem called Star-Logic [8], but it is out of the
scope of this paper.

To show how this works more concretely, we show how to apply
this technique to a realistic SoC with the WISHONE bus architecture.
We undergo this test in a similar manner as past work [9]. However,
the system we present here is much more realistic and complex;
providing a clearer sense as to how GLIFT can be applied to modern
designs. The details of this system and how we create an information
flow secure interconnect for WISHBONE are presented in the next
section.

III. DESIGNING A SECURE CROSSBAR IN WISHBONE

WISHBONE is a SoC protocol originally developed by the Open-
cores community. It is a relatively simple protocol that allows easy
integration of different cores into a design. WISHBONE itself is very
flexible and allows many different interconnect configurations and

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

bus transactions. WISHBONE allows many connectivity configura-
tions including: point-to-point, data-flow, shared bus, and cross-bar
interconnect. In this paper, we focus on the cross-bar interconnect
since it provides a flexible interface for systems which contain large
numbers of cores interacting in parallel.

We wish to demonstrate that multiple cores can access a shared
resource in a safe and secure manner. We designed a system which
consists of two MIPS-based processors and a 128-bit Advance
Encryption Standard (AES) core. The two processors share the
AES core over the WISHBONE interface. We assume that one of
these processors runs critical code while the other is untrustworthy,
e.g., running unknown (potentially malicious) code or not being as
thoroughly evaluated as the trusted core. Further details of this system
are discussed in the next subsection.

A. Mix-Trusted System with Hardware Accelerator

Our system consists of two MIPS-based processors and a 128-
bit AES core. We designed the MIPS based processor and the 128-
bit AES was obtained from the Opencores [11] website. All cores
are written in Verilog HDL. We chose this configuration because it
well suits the common issues found in high-assurance applications.
Namely, it is often desirable to share a hardware accelerator in a
large SoC with mix-trusted components. Although this system is does
not have all the complexity of commercial SoCs it does capture the
main idea that multiple mix-trusted cores share common hardware
resources and isolation between them should be maintained.

Figure 2 (a) shows the overview of our system. It consists of
two of our processors and a 128-bit hardware AES unit. One of
these processors is treated as untrusted (U) and the other trusted
(T). In other words, we do not trust the behavior of processor U
and assume its intentions are to corrupt the execution of T . Our
MIPS based processor is fully functional and can execute many of
the SPEC 2006 benchmarks (e.g. mcf, specrand, bzip2) [12]. To
execute these applications (which are written in C), we used the SESC
gcc cross-compiler to compile to MIPS binaries. These binaries are
loaded into our processor’s memory and the executions are simulated
using Mentor Graphics’ Modelsim. In order to communicate off-chip,
we memory-mapped our processors WISHBONE I/O controller to a
region of unused memory space. Since we have a cross-compiler
for our processor, we wrote C-applications to push data out of the
WISHBONE I/O interface. We wrote different applications for U and
T to execute as we discuss later.

We also designed the cross-bar interconnect to handle requests
from the processors. The cross-bar interconnect is connected to each
processor’s WISHBONE controller (Figure 2 (a)). This cross-bar
interconnect handles requests from the two processors in a round-
robin fashion. This is simply for correctness and to prevent any
sort of denial of service. Each processor can perform at most one
transaction before having to relinquish control of the bus. It waits for
requests from a master and grants access to the slave at the address
specified if the slave is available. In our scenario, we have only a
single slave: a 128-bit hardware AES unit. Depending on the request
type, this AES unit will take the data passed to it (in 32-bit chunks)
and encrypt/decrypt a 128-bit block. The processor which requested
the bus cycle polls until the transaction is complete and then retrieves
the data from the AES unit. Upon completion, the next processor (if
it has a pending request) will get access to the AES core.

Note that all the communication between the processor and AES
unit are through WISHBONE and its cross-bar interconnect. In this
system, since we have both trusted and untrusted processors contend-
ing for the use of the AES unit, there is likely to be information flows

WB Interface

Untrusted
CPU (U)

WB Interface

Trusted
CPU (T)

WB Interface

AES

Standard xBar

U affects T

(a)

WB Interface

Untrusted
CPU (U)

WB Interface

Trusted
CPU (T)

tainted
(untrusted)

untainted
 (trusted)

Original
In/Outs

Original
In/Outs

Trusted
interface

Untrusted flow?

GLIFT Logic of
xBar and AES

WB Interface

Untrusted
CPU (U)

WB Interface

Trusted
CPU (T)

WB Interface

AES

Secure xBar

(c)

(b)

Arbiter timer

reset

Fig. 2. (a) The system used in our test scenario. This consists of two MIPS-
based processors and a 128-bit AES encryption core. U and T contend for the
use of the AES core. (b) The system after the AES core, xBar, and interface
controllers have their GLIFT logic added. Information is observed to flow from
U to T . (c) The final information flow secure system uses a time-multiplexed
arbiter with a trusted reset to ensure information flow isolation between U
and T . Adding the GLIFT logic to this system shows no information flowing
from U to T .

from U to T . Such a flow would violate the integrity of T and should
be prevented. Moreover, this interference is not a denial of service
attack since it is not possible for U to keep T from completing its
work. Still, U can effect when T gets access to the AES block because
it must wait for U ’s transaction to complete. For example, if U never
wants to use the bus, and T performs continuous bus transactions, T
can finish in some time t. However, if U performs bus transactions
every time it is scheduled, T will finish its bus transactions in time
≈ 2t. Thus U can affect the time in which T finishes execution but
cannot prevent it from doing so. The next section discusses how we
identify information flows in this system and how to eliminate them.

B. Building a Secure Cross-Bar for WISHBONE

To first illict how an information flow occurs from U to T , we test
a scenario in which T encrypts a 128-bit block of text using the AES
unit and subsequently decrypts the cipher-text to verify the result. In
parallel with T , U continuously reads a configuration register on
the AES core. We call this program executing on processor U as
R CONF . This scenario was chosen to show an information flow
because U is not overwriting any of T ’s data since it is only reading.
In other words, U is not directly corrupting T ’s data on the AES
block and at first glance U seems to be non-interfering with T .

Since we are concerned with the information flow from U to T ,
we need to look at the information flowing out of U and in to T .
To be precise, let Tint = {data it, ack it} be the taint input wires
to T from the wishbone logic. We determine whether or not a flow
occured by identifying whether any wire in Tint is every set to 1. To
do so, we must track the flow of information through the cross-bar,
the AES unit’s WISHBONE controller, and the AES unit itself. To
track this flow of information, we follow the same method presented
in Section II. Namely, we process the cross-bar and the AES unit with
its WISHBONE interface through synthesis using Synopsys’ Design
Compiler to achieve a gate-level netlist. Subsequently, we add the
GLIFT logic to these components and re-insert this logic into the

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

p on U τ on T Description Flow in Secure xBar Flow in Base xBar

AES MM U encrypts, decrypts, and validates result; T executes matrix-multiply NO NO
MM AES MM executes on U while T encrypts, decrypts, and validates result NO YES
R CONF AES Repeatedly read the status register on AES core NO YES
R ALL AES Read entire address space of AES core NO YES
W ALL AES Write entire address space of AES core NO YES
AES AES Both encrypt, decrypt, and verify result NO YES

TABLE I
DESCRIPTION AND RESULTS OF DIFFERENT APPLICATIONS EXECUTED ON U AND T . UNTRUSTED FLOWS ARE IDENTIFIED IN THE BASE CROSS BAR FOR

MOST SCENARIOS AND NONE ARE IDENTIFIED IN THE SECURE CROSS-BAR. FLOWS DO NOT OCCUR IF T DOES NOT USE THE WISHBONE INTERFACE AS
IN THE CASES OF RUNNING MM .

system as shown in Figure 2 (b). We then execute R CONF on U by
simulating the Verilog in Modelsim. From the simulation, as shown in
Figure 3, a tainted flow is observed entering T ’s inputs as soon as it
requests an AES transaction ({data it, ack it} = {0xF · · ·F, 1}).
Since we only tainted the ouputs of U , it must be the source of this
tainted information flow.

Fig. 3. Waveform showing tainted information flow. As soon as T
requests access to the AES unit (wb_stb_o = wb_cyc_o = 1) tainted
information flows to its inputs ({data_i_t, ack_i_t} = {0xF· · ·F,
1}). U ’s outputs were the only marked as tainted, so this flow must have
originated from U .

This flow occurs because U and T contend for the use of the
encryption unit. Specifically, U affects the execution of T indirectly
by its use of the AES unit. This flow can be regarded as occuring
through a timing channel. That is, U is able to affect the time in which
T finishes its computation (U is only reading and therefore does not
directly affect the computation of T). Such channels can violate the
integrity of the design because they can potentially violate real-time
constraints where T must meet a critical deadline but is unable to
because of U . To solve this problem, we put in place a way for U
to never affect T ’s use of this resource. Specifically, we introduce a
time-multiplexed arbiter with a trusted reset to the cross-bar which
forces T and U to operate in mutually exclusive time slots as shown
in Figure 2 (c). Upon expiration of a time-slot, the logic is restored
to a known state to ensure harmful content is left behind. As we see
in the next section, this new cross-bar eliminates this untrusted flow.

C. Secure Cross-Bar Evaluation

To demonstrate the lack of information flow using this new cross-
bar, we construct several different programs which have malicious
characteristics of causing interference to the trusted computation on
T . Specifically, we show non-interference for a fixed set of programs.
Non-interference states that U should never affect T through any
sort of digital information. This includes both directly corrupting the
data of T or affecting the time in which programs on T take to
complete. This ensures not only the integrity of the data on T , but
also the integrity of the timing of the computation. To demonstrate
this property for a set of programs, let P = {p1, p2, · · · , pn} be a set
of programs to be run on U . We want to show non-interference with
respect to P by demonstrating that no untrusted information flows to
the inputs of T :

∀p ∈ P. S(p || τ) c⇒ Tint ={0, 0} (1)

where S(p || τ) is the system executing with p on U and τ on T
and c⇒ is an implication over all clock cycles c. Tint is the set of
taint inputs from the wishbone cross-bar as previously defined. This
definition says that for any program p in a set P , when executing p on
U with some trusted computation on τ on T , no untrusted information
from U flows to the inputs of T during any clock cycle. Since
GLIFT can also capture information flowing through timing channels
as mentioned in the previous section, this includes information which
affects the time in which τ takes to complete.

For our particular test scenario, we build the set P =
{MM,R CONF, R ALL, W ALL, AES}. MM is a simple
matrix multiply program. R CONF is the same program as before
which continuously reads a configuration register on the AES core.
R ALL attempts to read the entire address space associated with
the AES core. W ALL attempts to write the entire address space
associated with the AES core. Lastly, AES uses the AES core to
encrypt then decrypt some information. All of these applications are
written in C, compiled to MIPS, and loaded on to their respective
processor’s instruction memory. Table I presents an interesting subset
of our test cases and summarizes the outcomes. We do not present all
results due to space constraints but observed that Definition 1 holds
for each τ we tested.

For all cases in which τ accesses the WISHBONE fabric, untrusted
information flows from U to T in the unsecure cross-bar, thus
violating Definition 1. One interesting case is when MM and AES
are run on T and U respectively. In this case, no untrusted information
flows to T simply because τ never accesses the AES core. Its
execution is independent of the behavior of U . Conversely, another
interesting case arises when U runs MM and T runs AES. In this
case, even though p is not using the AES core, the lack of its use still
affects the behavior of τ . This lack of use allows τ to finish faster than
if p were accessing it; a flow of information. GLIFT indicates no flow
(Tint = {0, 0}) for all applications when the secure cross-bar is used.
In other words, non-interference is upheld for these computations on
U .

It is important to make a couple of notes on this solution. First,
the arbiter only time-multiplexes this specific resource and not the
cross-bar as a whole. The goal of the cross-bar interconnect is to
allow parallelism; multiplexing the entire cross-bar eliminates this
flexibility. This parallelism can still be maintained since U can be
granted access to other devices in the system in parallel with T and
isolation can still be maintained. In addition, ideally this property
(Definition 1) would be shown for all possible programs on U to
demonstrate complete non-interference. However, such an exhaustive
test would be impractical in this case. Some recent work on GLIFT

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

has made an effort to solve this problem by introducing Star-Logic [8]
which uses an abstract execution to make exhaustive testing possible.
Unfortunately most of this work is still in its early stages, but we plan
to employ these techniques in future research.

IV. CONCLUSION

Computers are finding themselves at the heart of avionics, medical
devices, military applications, automobiles, and many other critical
aspects of our lives. Building these systems in a secure manner
requires strict design practices and tools. In this paper, we showed
how mix-trusted IP cores can be integrated in a secure manner.
By using gate-level information flow tracking to show information
flow isolation between trusted and untrusted cores, we have con-
structed a secure cross-bar interconnect for the WISHBONE SoC
bus architecture. This powerful property makes it possible to integrate
mix-trusted cores and verify the security of their interactions. This
ultimately reduces the cost and time associated with development and
makes using untrusted cores in high-assurance applications more of
a possibility.

REFERENCES

[1] Daniel Halperin, Thomas S. Heydt-Benjamin, Benjamin Ransford,
Shane S. Clark, Benessa Defend, Will Morgan, Kevin Fu, Tadayoshi
Kohno, and William H. Maisel. Pacemakers and implantable cardiac
defibrillators: Software radio attacks and zero-power defenses. In IEEE
Symposium on Security and Privacy, pages 129 –142, 2008.

[2] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Ta-
dayoshi Kohno, Stephen Checkoway, Damon McCoy, Brian Kantor,
Danny Anderson, Hovav Shacham, and Stefan Savage. Experimental
security analysis of a modern automobile. In Proceedings of IEEE
Symposium on Security and Privacy (“Oakland”) 2010, pages 447–462,
2010.

[3] M. Tehranipoor and F. Koushanfar. A survey of hardware trojan
taxonomy and detection. In IEEE Design and Test, 2010 2010.

[4] Mohit Tiwari, Hassan Wassen, Bita Mazloom, Shashidhar Mysore,
Frederic Chong, and Timothy Sherwood. Complete information flow
tracking from the gates up. In Proceedings of ASPLOS 2009, 2009.

[5] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. Secure
program execution via dynamic information flow tracking. In ASPLOS
2004, pages 85–96, 2004.

[6] Jedidiah R. Crandall and Frederic T. Chong. Minos: Control data attack
prevention orthogonal to memory model. In MICRO 2004, pages 221–
232, 2004.

[7] Jason Oberg, Sarah Meiklejohn, Timothy Sherwood, and Ryan Kastner.
A practical testing framework for isolating hardware timing channels.
In Design Automation and Test in Europe (DATE), 2013.

[8] Mohit Tiwari, Jason Oberg, Xun Li, Jonathan Valamehr, Timothy E.
Levin, Ben Hardekopf, Ryan Kastner, Frederic T. Chong, and Timothy
Sherwood. Crafting a usable microkernel, processor, and I/O system
with strict and provable information flow security. In Proceedings of
ISCA 2011, pages 189–200, 2011.

[9] Jason Oberg, Wei Hu, Ali Irturk, Mohit Tiwari, Timothy Sherwood,
and Ryan Kastner. Information flow isolation in I2C and USB. In
Proceedings of Design Automation Conference (DAC) 2011, pages 254
–259, 2011.

[10] Wishbone specification. http://opencores.org/opencores ,wishbone.
[11] Opencores.org. 128-bit verilog aes core. http://opencores.org/project

,systemcaes, April 2010.
[12] John L. Henning. Spec cpu2006 benchmark descriptions. SIGARCH

Comput. Archit. News, pages 1–17, 2006.

