
A Practical Testing Framework for Isolating
Hardware Timing Channels

Jason Oberg∗, Sarah Meiklejohn∗, Timothy Sherwood† and Ryan Kastner∗
∗Computer Science and Engineering, University of California, San Diego

{jkoberg,smeiklej,kastner}@cs.ucsd.edu
†Computer Science, University of California, Santa Barbara

sherwood@cs.ucsb.edu

Abstract—This work identifies a new formal basis for hardware
information flow security by providing a method to separate
timing flows from other flows of information. By developing a
framework for identifying these different classes of information
flow at the gate-level, one can either confirm or rule out the
existence of such flows in a provable manner. To demonstrate
the effectiveness of our presented model, we discuss its usage on
a practical example: a CPU cache in a MIPS processor written
in Verilog HDL and simulated in a scenario which accurately
models previous cache-timing attacks. We demonstrate how our
framework can be used to isolate the timing channel used in
these attacks.

I. INTRODUCTION

Recent work on hardware and embedded system security
analysis has shown that it is now possible to constrain the
flow of information in both provable and useful ways. When
these systems control our pacemakers, our automobiles, our
insulin pumps, and our commercial airlines, engineers may be
asked to go to more extreme measures to ensure the saftey
and security of their computations. Information flow tracking
at the gate level [1] can capture many potential issues in a
system, and useful designs can be created with very strong
security properties. Unfortunately strong properties, such as
non-interference, come at a cost.

To ensure that two parts of a system are non-interfering, it
has to be shown that one part can have absolutely no effect on
the other. There are many sources of interference which range
from directly modifying functionality to simply changing the
timing of events. For example, two parts of a system that
opportunistically share a cache might never interfere with one
another’s data, but are not non-interfering because they can
affect the time it takes for them to perform their duties. These
timing variations are not always benign, and in fact, as we
have seen in prior work, they can lead to leaked keys and
other serious problems [2]. Unfortunately, fixing these timing
leaks does not come without a cost. And in some cases, a
designer may not wish to sacrifice peformance in order to gain
security, i.e., there are cases where affecting only the time a
system takes to perform its work may not be an important
consideration. Unfortunately existing techniques (including

978-3-9815370-0-0/DATE13/ c©2013 EDAA

gate-level information flow tracking (GLIFT) [1]) make no
separation between timing and function for the purposes of
examining system behavior, thus all of the provable work at
the hardware level breaks down.

Even though these timing channels may or may not be
in the system’s threat model, security-conscious hardware
designers must have methods to separate these timing-only
flows from more direct information flows to be able to make
informed decisions about the system’s security. To help make
this separation possible, we present a formal technique that
can identify the existence of functional information and, when
used in conjunction with previous information flow tracking
work in hardware, isolate timing information.

Our technique is quite different from that of past work.
The most prominent work in identifying timing channels is
by Kemmerer et al. [3], who use an informal shared-resource
matrix to pin-point where the potential timing channels may
appear. This method helps at the higher computing abstrac-
tions, but becomes difficult to use when designs become
more embedded and application-specific. Our formal method
focuses on the hardware design itself so that the system can be
built with a secure root-of-trust, thus providing security assur-
ance for the higher abstractions. More ad-hoc approaches [4]
focus on introducing random noise into the system to make
extracting information stochastically difficult. These methods
make a timing channel harder to exploit (lower signal-to-noise
ratio), but fail at identifying if a channel is timing-based, as we
do in this work. The information flow tracking strategies which
target hardware description languages [5], [6] themselves work
well at preventing timing channels but are quite different than
our work. These languages force the designer to rewrite their
code in the new language. On the other hand, the formal
method we present here can be directly applied to existing
IP cores without requiring code rewriting.

Constructing a formal method to separate timing and func-
tional flows requires some assumptions in order for its usage to
be practical given the resources system and hardware designers
have. Ideally, a designer would be given a system with some
secret inputs and determine with complete confidence how
the inputs flow (if at all) to unprivileged outputs through
its functional behavior or its timing. Unfortunately, such a

guarantee is likely to be too strong to prove in practice,
especially with the growing complexity of embedded systems.
Rather than demonstrating provable non-interference, this
work therefore strives to provide a practical testing framework
that fits well with existing testing techniques and tools. By
relaxing such strong guarantees, our framework can be easily
used by engineers and system designers to test for and separate
functional and timing flows.

To show the practicality of our framework, we explore in
Section III a common shared resource which is at the heart of
interference in modern systems: the CPU cache. As previously
mentioned, the cache is a common vulnerability in systems,
as it is typically susceptible to leaking secret information
through time. We show how the information leak in the cache
is directly from a timing channel. For this example, we do not
make claims about complete information security, but rather
higher assurance in identifying the presence of functional
information and separating it from timing channels.

II. ISOLATING TIMING CHANNELS

As discussed in past work [7], GLIFT allows system de-
signers to determine if any information flows exist within
their systems; we clarify here that we use information flow
to mean a logical flow, as we consider other types of flows
(e.g., physical phenomena such as electromagnetic radiation or
power fluctuations) as out of the scope of this work. Logical
flows can be further broken down into two types: functional
flows and timing flows. Intuitively, a functional flow exists for
a given set of inputs to a system if their values affect the
values output by the system (for example, changing the value
of a will affect the output of the function f(a, b) := a + b),
while a timing flow exists if information about the input can
be learned from the latency of the execution. While GLIFT
will tell the designer only if any such flow exists, we describe
in this section how to determine whether or not the system
contains specifically functional flows. Used in conjunction
with GLIFT as shown in Figure 1, this technique allows us
to also determine if timing flows (and therefore channels)
exist. If GLIFT determines that a flow does exist but we can
demonstrate that no functional flow exists, then we know that
a timing flow must exist. What is left open, however, is the
case in which GLIFT determines that a flow exists but we
determine that a functional flow does exist; in this case, we
are unable to determine if a timing flow exists as well.

A. Finding functional flows

Before we describe how to determine whether or not func-
tional flows exist, we must first define functional flows and
related notions formally. We start with the notion of time; as
we are working at the gate level, the only notion of time that
we consider is the system clock.

Definition 1. The clock is a function with no inputs that
outputs values of the form b ∈ {0, 1}. A clock tick is the
event in which the output of the clock changes. Finally, a time
t is the number of clock ticks that have occurred, and T is the
set containing all possible values of t.

Design in HDL

Synthesize
to Gates

Apply GLIFT Logic

Gate netlist

Choose
Pair of Traces

Design w/ GLIFT

Simulate
Identify tainted flows

Taint
inputs

Apply GLIFT Find Functional Flows

Simulate on Input
traces; log events

2 Input Traces

Follow Def. 6
Find 2 Different Events

2 Output Traces

Tainted
flow?

Difference
found?

No Information Flow

No

Yes

Cannot conclude if timing flow

Yes

No

Flow through Timing Channel

Fig. 1. How our method can be used with GLIFT to isolate timing channels.
If GLIFT says theres a flow and we do not find a functional flow, we know
there exists a timing channel. If we find a functional flow (GLIFT will also
indicate a flow) we cannot conclude the existence of a timing channel.

Our formal definition of time captures what we intuitively
expect: some stateless hardware component will output a
stream of ticks, and a separate stateful component will measure
the number of ticks and use this to keep track of time. By
keeping track of time, we can define an event as a given value
at a certain point in time.

Definition 2. (from [8]) For a set Y , a discrete event is the
pair e := (y, t) for y ∈ Y and t ∈ T (where we recall T is
the set of all possible time values). We also define functions
that recover the value and time components of an event as
val(e) = y and time(e) = t respectively.

To keep track of how values change over time, we can also
define a sequence of events as a trace.

Definition 3. For a value n ∈ N and a set Y , a trace A(Y, n)
is a sequence of discrete events {ei = (yi, ti)}ni=1 that is
ordered by time; i.e., time(ei) < time(ei+1) for all i, 1 ≤
i < n, and such that val(ei) ∈ Y , time(ei) ∈ T for all i,
1 ≤ i ≤ n. When the values of Y and n are clear, we omit
them and refer to the trace simply as A.

The way in which we have currently defined an event is
quite broad: any value at any time can be considered an event.
In many cases, however, events in this trace may be redundant,
as the system might output the same value for many clock ticks
while performing some computation. In this case, we would
be interested not in the entire progression of events, but only
in the case when the value of the output changes. To capture
this, we define the distinct trace.

Definition 4. For a trace A(Y, n), the distinct trace of A is
the largest subsequence d(A) ⊆ A(Y, n) such that for all
ei−1, ei ∈ d(A) it holds that val(ei) 6= val(ei−1).

Constructing the distinct trace d(A) of A is quite simple:
first, include the first element of A in d(A). Next, for each
subsequent event e, check whether the last event e′ in d(A) is
such that val(e′) = val(e); if this holds, then skip e (i.e., do
not include it) and if it doesn’t then add e to d(A).

With these definitions in hand, we can now attempt to model
some system S that takes as input a value x in some set X
and returns a value y in some set Y . To be fully general and
consider systems that take input and output vectors rather than
single elements, we assume that X = X1× . . .×Xn and that
Y = Y1 × . . . × Ym for some m,n ≥ 1, which means that
an input x looks like x = (x1, . . . , xn) and an output y looks
like y = (y1, . . . , ym). To furthermore acknowledge that the
system is not static and thus both the inputs and outputs might
change over time, we instead provide as input a trace A(X, k)
for some value k, and assume our output is a trace A(Y, k).

We are now ready to begin discussing functional flows.
Recall first our intuition: a functional flow exists for a set of
inputs I to the system S if their values affect the value of the
output. One natural way to then test whether or not the value
of these inputs affects the value of the output is to change their
value and see if the value of the output changes; concretely,
this would mean running S on two different traces, in which
the values of these inputs are different. In order to isolate just
this set I , however, it is necessary to keep the value of the
other inputs the same. To ensure that this happens, we define
what it means for two traces to be value preserving.

Definition 5. For a set of inputs {xi} for i ∈ I and two traces
A(X, k) = (e1, . . . , ek) and A(X, k)′ = (e′1, . . . , e

′
k), we say

the traces are value preserving with respect to I if for all
ej ∈ A and e′j ∈ A′ it is the case that time(ej) = time(e′j),
and if val(ej) = (a1, . . . , an) and val(e′j) = (a′1, . . . , a

′
n), then

ai = a′i for all i 6∈ I .

If two traces are value preserving, then by this definition
we know that the only difference between them is the value
of the inputs {xi}, which is exactly what we need to test for
functional flows. We start by defining a relatively weak defi-
nition for a functional flow where S(A) denotes S executing
on input trace A:

Definition 6 (Functional flow). For a deterministic system
implementation S with input space X and output space Y ,
we say that a functional flow exists with respect to a set of
inputs {xi}i∈I and input traces A(X, k) and A(X, k)′ that
are value preserving with respect to I if for B := S(A) and
B′ := S(A′) it is the case that there exists events ej ∈ d(B)
and e′j ∈ d(B′) such that val(ej) 6= val(e′j).

Having no functional flow says that, given the output B, by
observing B′ as well, we do not learn any additional functional
information about the inputs {xi} beyond what we learned
just from seeing B. It does not, however, strictly guarantee
that a functional flow does not exist, as it might exist in the
context of two other traces beyond the ones we consider; a
definition that would truly rule out functional flows would
therefore say that a functional flow does not exist if two such
input traces do not exist (due to space constraints we omit this
formal definition here). While our definition therefore provides
weaker guarantees on the existence of a functional flow, it
allows for the most efficient testing: we need to pick only two
traces, rather than attempt to enumerate over the entire space.

While this does not imply the complete lack of any functional
flow, running this procedure with more pairs of traces would
only strengthen the evidence.

III. CACHE TIMING CHANNEL

Recent work has shown CPU caches to be one of the biggest
sources of hardware timing channels in modern processors [2].
Many data encryption algorithms, such as the advanced en-
cryption standard (AES), use look-up tables based on the
value of the secret key. Since a look-up table will return a
value in an amount of time that is directly correlated with
whether or not the value is already cached, observing the
timing of interactions with the look-up table could produce
valuable information about the secret key. In previous work,
this vulnerability has been used to completely extract the secret
key of AES using three different types of attacks. In this work,
we chose to look at an access-driven attack used by Osvik
et. al [2] — although the methods presented here can also be
applied to the other classes of attacks — as it is the easiest for
us to demonstrate given our current test setup.

A. Identifying the Cache Attack as a Timing Channel

In the access-driven cache timing attack on AES used by
Osvik et al. [2] (specifically their Prime+Probe variant), a
malicious process (M) first fills the contents of the cache
by reading a fixed block of data. Next, a secret process (V)
uses an unknown key to perform encryption. Finally, M reads
the same block of data and observes which cache lines were
evicted based on the latency of its memory accesses. Since
the key is used to index into look-up tables, the malicious
process can correlate fast accesses with the value of the secret
key. This cache attack is clearly a type of timing attack, as
it critically relies on the timing information available to M .
In this section, we demonstrate this more formally by using
GLIFT and our model from Section II to prove that these flows
are temporal.

We first designed a complete MIPS-based processor written
in Verilog. The processor is capable of running several of
the SPEC 2006 benchmarks including mcf, specrand, and
bzip2, in addition to two security benchmarks: sha and aes,
all of which are executed on the processor by being simulated
in ModelSim SE 10.0a. All benchmarks are cross-compiled to
MIPS assembly using the SESC gcc compiler; the binary is
then loaded into instruction memory using a Verilog testbench.
The architecture of the processor consists of a 5-stage pipeline
and 32 entry direct mapped cache (e.g. 1-way), although we
note that our analysis applies directly to a cache with greater
associativity. We chose to use a small cache to speed up the
simulation and reduce synthesis time.

Since our particular region of interest is the cache, we focus
our analysis directly on this subsystem. To do so, we apply
GLIFT logic to the cache system as described in past work [7].
Specifically, we remove the hardware modules associated with
the cache (cache control logic and the memory itself) and
synthesize them to logic gates and flip-flops using Synopsys’
Design Compiler targeting its and or.db library. We then

use our own Python script to process each gate and flip-flop
in the design and add its associated tracking logic. This new
“GLIFTed” cache is re-inserted into the register-transfer level
(RTL) processor design in the place of the original RTL cache.
Pictorially, this can be seen in Figure 2. The input and output
to the cache system include address and data lines and control
signals (write-enable and memory stall signals); each such
input and output is now associated with a taint bit which will
be essential to testing whether or not information flows from
our victim process V to our malicious process M .

FE
TC

H

DE
CO

DE

EX
EC

U
TE

M
EM

O
RY

W
RI

TE
-B

AC
K

CACHE

secret / adversary

0 (low) 1 (high)

GLIFT CACHE

data
addr

WE
data_out

addrt
datat
WEt

data_outt

HDL Test Bench

stallt

stall

context switch

… … …

CONTROL

Tracking
 Logic

Fig. 2. A block diagram of a simple MIPS-based CPU. The cache is replaced
by one which contains the original cache and its associated tracking logic,
and our testbench simulates the processor to capture the output traces.

To execute the test scenario, we follow the same procedure
as the previously discussed access-driven attack. We begin
the simulation by having M read a fixed block of bytes D
(|D| = 256) in a loop to fill the cache. Next, we have
V execute the aes benchmark with all inputs to the cache
marked as tainted (i.e., secret). Next, we again have M read
the same data D, which models M attempting to determine
the latency of its memory accesses. Since the entire system
contains GLIFT logic, in simulation we are able to observe
the flows of tainted (secret) information. After executing this
simulation, our waveform in Modelsim indicates that tainted
information does flow to M ; furthermore, this information
must have come from V , as there is no other possible origin.
We therefore know that a flow exists, but at this stage it is
still unclear whether the flow is functional or temporal.

To find exactly which type of channel was identified by
GLIFT, we leverage the benefits of our model by working
to identify a functional flow; as previously discussed, if we
detect no functional flow, then we know the flow must be from
a timing channel. To fit our model (following Figure 1), we
abstracted the output of the cache as y = 〈data outM 〉 to indi-
cate the cache output observable by M . Following our model,
we then defined two traces: A1(X, k) := 〈V using K1〉
and A2(X, k) := 〈V using K2〉; i.e., the cases in which V
encrypts using two different keys. We then simulated both
of these scenarios and logged all of the discrete events of y
captured by ModelSim using its discrete event list feature to

obtain the output traces AC1 and AC2. Once we collected these
traces, we checked whether or not a functional flow exists for
these particular traces by using a script to compare the events
in each respective file. We have our script indicate a functional
flow with regards to Definition 6; if there exists events
ej ∈ d(AC1) and e′j ∈ d(AC2) such that val(ej) 6= val(e′j).
For these particular traces, our script indicates the absence of
a functional flow. Since GLIFT identified a flow, we know
that this must have occurred through a timing channel. Again,
although the fact that no functional flow exists with respect to
these particular traces does not imply the lack of a functional
flow for any traces, it does lend evidence to the theory that
the flow must be timing-based rather than functional (and
additional testing with different keys would provide further
support). Further, the implications of the existence of only
a timing channel greatly depends on the threat model of the
system. In many cases this issue might not be of a concern, but
by concretely showing the designer that a flow is in fact from
timing he can make an informed decision about its security.

IV. CONCLUSIONS AND FUTURE WORK

In this work, we presented a framework that can be used to
effectively separate timing flows from functional flows. Much
future work is possible for both information flow tracking and
for our framework in particular. First, the approach presented
here focuses only on two specific traces, covering all input
traces is an avenue for future work. Secondly, if a functional
flow exists then we cannot say anything about the existence of
a timing flow; one natural question to ask is therefore if we can
identify timing channels even in the presence of a functional
flow. This would have implications for applications such as
data encryption, in which the output ciphertext is always a
function of the secret key, yet it is critical that an adversary
observing encryption not be able to deduce the secret key using
a timing channel. At the present, solving such a problem seems
non-trivial and we leave it as an important open problem.

REFERENCES

[1] M. Tiwari, H. Wassen, B. Mazloom, S. Mysore, F. Chong, and T. Sher-
wood, “Complete information flow tracking from the gates up,” in
Proceedings of ASPLOS 2009, 2009.

[2] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermea-
sures: the case of aes,” in Proceedings of the 2006 The Cryptographers’
Track at the RSA conference on Topics in Cryptology, pp. 1–20, 2006.

[3] R. A. Kemmerer, “Shared resource matrix methodology: an approach
to identifying storage and timing channels,” ACM Trans. Comput. Syst.,
pp. 256–277, 1983.

[4] W.-M. Hu, “Reducing timing channels with fuzzy time,” in Proceedings
of the 1991 IEEE Symposium on Security and Privacy, pp. 8 –20, 1991.

[5] X. Li, M. Tiwari, J. K. Oberg, V. Kashyap, F. T. Chong, T. Sherwood,
and B. Hardekopf, “Caisson: a hardware description language for secure
information flow,” in PLDI 2011, pp. 109–120, 2011.

[6] T. K. Tolstrup, Language-based Security for VHDL. PhD thesis, Infor-
matics and Mathematical Modelling, Technical University of Denmark,
DTU, 2007.

[7] J. Oberg, W. Hu, A. Irturk, M. Tiwari, T. Sherwood, and R. Kastner,
“Information flow isolation in I2C and USB,” in Proceedings of Design
Automation Conference (DAC) 2011, pp. 254 –259, 2011.

[8] E. A. Lee and A. Sangiovanni-Vincentelli, “A framework for comparing
models of computation,” IEEE Transactions on Computer-Aided Design
of Circuits and Systems, vol. 17, no. 12, pp. 1217–1229, 1998.

