
Enforcing memory policy specifications in reconfigurable
hardware

Ted Huffmirea,*, Timothy Sherwoodb, Ryan Kastnerc, Timothy Levina

aNaval Postgraduate School, Department of Computer Science, Monterey, CA 93943, USA
bUniversity of California, Santa Barbara, Department of Computer Science, Santa Barbara, CA 93106, USA
cUniversity of California, San Diego, Department of Computer Science and Engineering, La Jolla, CA 92093, USA

a r t i c l e i n f o

Article history:

Received 14 February 2008

Accepted 9 May 2008

Keywords:

Reconfigurable hardware

Protection mechanisms

Security and privacy protection

Access controls

Covert channels

a b s t r a c t

While general-purpose processor based systems are built to enforce memory protection to

prevent the unintended sharing of data between processes, current systems built around

reconfigurable hardware typically offer no such protection. Several reconfigurable cores

are often integrated onto a single chip where they share external resources such as mem-

ory. While this enables small form factor and low cost designs, it opens up the opportunity

for modules to intercept or even interfere with the operation of one another. We investi-

gate the design and synthesis of an FPGA memory protection mechanism capable of

enforcing access control policies and a methodology for translating formal policy descrip-

tions into FPGA enforcement mechanisms. The efficiency of our access language design

flow is evaluated in terms of area and cycle time across a variety of security scenarios.

We also describe a technique for ensuring that the internal state of the reference monitor

cannot be used as a covert storage channel.

Published by Elsevier Ltd.

1. Introduction

Reconfigurable hardware is at the heart of many high perfor-
mance embedded systems. Satellites, set-top boxes, electrical
power grids, and the Mars Rover all rely on Field Programma-
ble Gate Arrays (FPGAs) to perform their respective functions
for everything from encryption to FFT, or even entire custom-
ized processors. The bit-level configurability of these devices
can be used to implement specific logic circuits that are highly
optimized compared to the processing required in a general-
purpose CPU. Because the logic of the fabricated device is
reconfigurable, special-purpose circuits can be developed
and deployed at a fraction of the cost associated with custom

fabrication (e.g., ASIC). Furthermore, the logic on an FPGA
board can even be changed in the field. These advantages of

reconfigurable devices have resulted in their proliferation

into critical systems, yet many of the security primitives
which software designers take for granted in general-purpose
processors are simply nonexistent.

Due to Moore’s law, FPGAs today have enough transistors
on a single chip to implement over 200 separate RISC proces-
sors. Increased levels of integration are inevitable, and recon-
figurable systems are no different. Current reconfigurable
systems-on-chip include diverse elements such as specialized
multiplier units, integrated memory tiles, multiple fully pro-
grammable processor cores, and a sea of reconfigurable gates
capable of implementing significant ASIC or custom data-
path functionality. The complexity of these systems and the

lack of separation between different hardware modules on
the FPGA device has increased the possibility that security

* Corresponding author.
E-mail addresses: tdhuffmi@nps.edu, televin@nps.edu (T. Huffmire), sherwood@cs.ucsb.edu (T. Sherwood), kastner@cs.ucsd.edu

(R. Kastner).

ava i lab le at www.sc ienced i rec t . com

journa l homepage : www.e lsev ie r . com/ loca te /cose

0167-4048/$ – see front matter Published by Elsevier Ltd.
doi:10.1016/j.cose.2008.05.002

c om p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 1 9 7 – 2 1 5

http://www.elsevier.com/locate/cose
mailto:tdhuffmi@nps.edu
mailto:televin@nps.edu
mailto:sherwood@cs.ucsb.edu
mailto:kastner@cs.ucsd.edu
mailto:kastner@cs.ucsd.edu
mailto:kastner@cs.ucsd.edu

vulnerabilitiesmay surface in one ormore components,which

could threaten the entire device. New methods are needed to
provide separation and security in these highly integrated
reconfigurable devices.

One of the most critical aspects of separation that needs
to be addressed is in the management of external resources
such as off-chip DRAM. While a general-purpose processor
will typically provide virtual memory mapping primitives
such as TLBs that are used to enforce some form of memory
protection, reconfigurable devices usually operate in a flat
physical address space with a flat program structure (e.g.,
without underlying operating system support). Lacking these

mechanisms, the FPGA environment is assumed to be be-
nign, since any hardware module can normally read or write
to the memory of any other module at any time. Whether
purposefully, accidentally, or maliciously, destructive inter-
ference between cores can result. This situation calls for
a memory access policy and related control mechanisms that
all modules on chip must obey. In this paper we present
a method that utilizes the reconfigurable nature of field
programmable devices to provide a mechanism to enforce
such a policy.

In the context of this paper, a memory access policy is a de-

scription of what accesses to memory are legal and which
are not. Our method rests on the ability to formally describe
the access policy using a specialized language. The formalism
results in two significant capabilities: the ability to reason
about policy soundness and the ability to automatically derive
refinements to the policy. We present a set of tools through
which thepolicydescriptioncanbeautomatically transformed
and directly synthesized to a circuit. This circuit, represented as
a bit-stream, can then be loaded into a reconfigurable hard-
ware module and used as an execution monitor to analyze
memory accesses of individual cores on the FPGA and enforce

the memory access policy.
The techniques presented in this paper are steps towards

a cohesive methodology for those seeking to build reconfigur-
able systems that can securely control data at different sensi-
tivity labels andmodules acting at different security clearance
levels on a single chip (i.e., systems that can provide multi-
level security). In order for such a methodology to be accepted
by the embedded design community it is critical that the
resulting hardware provides both high performance and effi-
cient use of the FPGA fabric. Within the security community,
the methods must be formally grounded. Finally, the integra-
tion of these requirementsmust be understandable to those in

both communities. Throughout this paper we strive to strike
a balance between engineering and formal evaluation;
between performance, security, and clarity. Specifically, this
paper makes the following contributions:

! We specify a memory access policy language, based on
formal regular languages, for expressing the set of legal
accesses and allowed policy transitions for stateful policies.

! We demonstrate how our language can express classical
security scenarios, such as isolation, controlled sharing,
and Chinese wall.

! We present a policy compiler that translates an access
policy described in this language into a synthesizable hard-
ware module.

! We evaluate the effectiveness and efficiency of this novel

enforcement mechanism by synthesizing several policies
down to a modern FPGA and analyzing the area and
performance.

In this article, we extend our preliminary work (Huffmire
et al., 2006) to incorporate:

! A more thorough discussion of the architecture of reconfig-
urable systems.

! A motivating example of a reconfigurable system from the
field of computer vision.

! Additional example policies and synthesis results, including
B&L, Biba, high water mark, and dynamic policies.

! A description of a technique to prevent the internal state of
the reference monitor from being used as a covert storage
channel.

! Substantial revisions and corrections throughout the paper.

The remainder of the paper is organized as follows: Section
2 provides background on FPGAs and describes the threat
model that we are addressing. In Section 3, we explain the
algorithms behind our reference monitor design flow. In

Section 4, we describe our access policy language including
several example policies. We present our reference monitor
synthesis results in Section 5. We describe our technique for
preventing the reference monitor from being used as a covert
storage channel in Section 6. Finally, we conclude in Section 7
and discuss where there is room for future work.

2. Reconfigurable systems

Increasingly we are seeing reconfigurable devices emerge as
the flexible and high performance workhorses inside a vari-
ety of high performance embedded computing systems
(Bondalapati and Prasanna, 2002; Compton and Hauck,
2002; DeHon and Wawrzynek, 1999; Kastner et al., 2004;
Mangione-Smith et al., 1997; Schaumont et al., 2001). The
power of reconfigurable systems lies in the immense amount
of flexibility that is provided. Designs can be customized
down to the level of individual bits and logic gates. They

combine the post-fabrication programmability of software
running on a general-purpose processor with the spatial
computational style most commonly employed in hardware
designs (DeHon and Wawrzynek, 1999). Reconfigurable sys-
tems use programmability and regularity to create a flexible
computing fabric that can lower design costs, reduce system
complexity, and decrease time to market, while achieving
100" performance gain per unit silicon as compared to
a similar microprocessor (Buell and Pocek, 1995; DeHon,
1998; Vuillemin et al., 1996). The growing popularity of
reconfigurable logic has forced practitioners to start to con-
sider the security implications, yet the resource constrained

nature of embedded systems is a challenge to providing
a high level of security (Kocher et al., 2004). To provide
a security technique that can be used in practice, it must be
both robust and efficient. To understand what is a practical
design, we must first examine the architecture of a modern
reconfigurable system.

c om p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 1 9 7 – 2 1 5198

2.1. Architecture of a reconfigurable system

Field Programmable Gate Arrays (FPGAs) are the most
common reconfigurable devices. An FPGA is a collection of
programmable gates embedded in a flexible interconnect net-
work. FPGAs use truth tables (known as lookup tables or LUTs)
to implement logic gates, flip-flops for timing and registers,
switchable interconnect to route logic signals between differ-
ent units, and I/O blocks (IOB) for transferring data into and

out of the device. A circuit can be mapped to an FPGA by load-
ing the LUTs and switch-boxes with a configuration, a method
that is analogous to the way a traditional circuit might be
mapped to a set of and and or gates. Fig. 1 shows a modern
FPGA-based embedded system.

LUTs employ static RAM cells as programming bits. A LUT
is an extremely generic computational component. It can
compute ‘‘any’’ function; i.e., any n-input LUT can be used to
compute any n-input function. A LUT requires 2N bits to de-
scribe, but it can implement 22

N
different functions. LUTs are

limited to a small number of inputs due to the size of SRAM

cells as a programming point. A typical LUT has either 4 or 5
inputs, a number based on extensive empirical work aimed
at optimizing physical aspects of the FPGA architecture (Betz
et al., 1999). An FPGA is programmed using a bit-stream. This
binary data is loaded into the FPGA to execute a particular
task. The bit-stream contains all the parameters needed
such as the configuration interface and the internal clock
cycle supported by the device.

2.1.1. Reconfigurable devices and security
FPGAs are a natural platform for performing many crypto-

graphic functions because of the large number of bit-level op-
erations that are required in modern block ciphers. While
there is a great deal of work centered around exploiting FPGAs
to speed cryptographic or intrusion detection primitives, re-
searchers are now starting to realize the security ramifications
of building systems around hardware which is reconfigurable.

One major problem is that hardware, not just software, can
now be copied from existing products, and there has been
a flurry of research to protect this intellectual property
(Bossuet et al., 2004; Kean, 2002; Lach et al., 1999a) and to
secure the FPGA’s program logic update channels (Harper
et al., 2003; Harper and Athanas, 2004). However, few re-
searchers have begun to consider the security ramifications
of compromised hardware (Hadzic et al., 1999).

It is important to understand the different attacks against
FPGAs that are possible in order to develop counter measures

(Wollinger et al., 2004). In a covert channel attack, an observ-
able property such as power consumption is analyzed by
a malicious module in order to steal secrets such as crypto-
graphic keys or the bit-stream contained in the FPGA, which
is valuable intellectual property (Standaert et al., 2003). In
some systems, the bit-stream can be modified remotely, and
authentication mechanisms should be employed to prevent
unauthorized users from uploading amalicious design, which
could change the intended functionality of the device. Even
worse, the malicious design could physically destroy the
FPGA by causing the device to short-circuit (Hadzic et al.,
1999). Solutions to these problems include encryption

(Bossuet et al., 2004; Kean, 2001, 2002), fingerprinting (Lach
et al., 1999a), and watermarking (Lach et al., 1999b). While
there are a variety of attacks possible, our work is concerned
with addressing the problem of memory protection on recon-
figurable systems. In particular this paper is concerned with
techniques to provide separation while allowing controlled
interaction between multiple interacting cores and modules
with respect to their use of off-chip memory.1 In our attack
model, there may be subverted modules or remote attacks
that originate from the network through I/O, but we assume
that the attacker cannot physically modify or monitor the

device.

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

SR
AM

 B
lo

ck
P

P

P

P

B
R
A
M

B
R
A
M

B
R
A
M

B
R
A
M

B
R
A
M

B
R
A
M

B
R
A
M

B
R
A
M

B
R
A
M

B
R
A
M

B
R
A
M

B
R
A
M

B
R
A
M

B
R
A
M

B
R
A
M

B
R
A
M

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

Switchbox

P

chipFPGA

P

PP

Fig. 1 – A modern FPGA-based embedded system: reconfigurable logic, blocks of SRAM, and hard-wired microprocessors all
share the same piece of silicon, and, more importantly, the same off-chipmemory. The reconfigurable logic is a fabric of tiny
lookup tables and statically scheduled routing hardware that can be configured to emulate almost any possible circuit.

1 The same approach is applicable to on-chip memory, but we
leave this to future work.

c om p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 1 9 7 – 2 1 5 199

2.1.2. Protecting memory on an FPGA
A secure runtime management system must protect different
logical modules from interfering, intercepting, or corrupting
any use of a shared resource without authorization. On an
embedded system, the primary resource of concern is
memory. Whether it is on-chip block RAM, off-chip DRAM,
or backing-store such as Flash, the allocation and sharing
of memory must be performed in a way that is efficient, flex-
ible, and protected. On a general-purpose processor, interac-
tion via shared memory can be controlled through the use of
page table and associated TLB attributes. Use of Superpages,

which are very large memory pages, makes it possible for the
TLB to have a lower miss rate (Navarro et al., 2002).
Segmented Memory (Saltzer, 1974) and Mondrian Memory
Protection (WitchelCates and Asanovic, 2002), a finer-grained
scheme, address the inefficiency of providing per-process
memory protection via global attributes by associating each
process with distinct permissions on the same memory
region.

While a TLB may be used to speed up page table accesses,
this requires additional associative memory (not available
on FPGAs) and greatly decreases the performance of the sys-

tem in the worst case. Therefore, few embedded processors
and even fewer reconfigurable devices support even this
most basic method of protection. Instead, reconfigurable
architectures on the market today support a simple linear
addressing of the physical memory. Hence, on a modern
FPGA the memory is essentially flat and unprotected by hard-
ware mechanisms.

Preventing unauthorized accesses to memory is funda-
mental to both effective debugging, error prevention, and
computer security. However, memory management in soft-
ware is complex and difficult: many of the most insidious

bugs are a result of errantmemory accesses which affect mul-
tiple sub-systems. Ensuring protection and separation of
memory when multiple concurrent logic modules are active
requires a new approach to ensure that the security properties
of the system are enforced.

To provide separation in memory between multiple inter-
acting modules, we adapt some of the key concepts from sep-
aration kernels. Rushby originally proposed that a separation
kernel (Irvine et al., 2004; Timothy Levin et al., 2004; Rushby,
1984) creates within a single shared machine an environment
which supports the various components of the system, and it

provides the communication channels between them in such
a way that individual components of the system cannot dis-
tinguish this shared environment from a physically separated
one. A separation kernel partitions all resources under its con-
trol into blocks (subsets) such that the actions of a subject in
one block are isolated from (viz., cannot be detected by or
communicated to) a subject in another block, unless an ex-
plicit means for that communication has been established.
For amultilevel secure system, each block typically represents
a different classification level, and the allowed communica-
tions conform to the MLS-label lattice (Denning, 1976).

We propose to treat the separate cores of the FPGA and re-
lated memory regions just as blocks of a separation kernel.
The cores are isolated through a means we call ‘‘moats,’’
and then we control interaction between cores in a highly

assured manner. By building a specialized circuit that recog-

nizes a language of legal accesses between blocks, and then by
realizing that circuit directly onto the reconfigurable device
as a specialized state machine through which all off-chip
memory accesses are routed, every memory access can be
checkedwith only a small additional latency. Although imple-
menting the enforcement module into a separate off-chip
hardware module would lessen the impact of covert channel
attacks between modules on the chip, this would introduce
additional latency. We describe techniques to isolate the
enforcement module described by Huffmire et al., 2007.

2.2. Video redaction: a motivating example

The purpose of redaction is to delete sensitive information
from a document, audio recording, video feed, or other data
stream. For example, a document containing sensitive infor-
mation would need to have all top secret and secret data
removed before a person with only a confidential clearance
could read the document. In video redaction, the faces of
people in video feeds from surveillance cameras are blurred

if the person viewing the video does not have a high enough
clearance level. IBM’s PeopleVision project has developed
such a video privacy system (Senior et al., 2003). FPGAs are
a natural choice for streaming applications because they can
provide deep regular pipelines of computation, with no short-
age of parallelism.

Consider how such a system might be developed. There
would need to be at least three modules on the FPGA: a video
interface for decoding the video stream, a redaction mecha-
nism for blurring faces in accordance with a policy, and
a network interface for sending the redacted video stream to

the security guard’s station. Each of these modules would
need buffers of off-chip memory to function, and our enforce-
ment module could prevent sensitive information from being
shared between modules improperly (e.g., directly between
the video interface and thenetwork). In Section 4.4wedescribe
how such a situation might be handled using our methods.

3. Policy description and synthesis

While reconfigurable systems typically do not have traditional
memory protection enforcement mechanisms, the program-
mable nature of the devicesmeans thatwe can buildwhatever
mechanisms we need as long as they can be implemented ef-
ficiently. In fact, we exploit the fine grain re-programmability
of FPGAs to provide word-level stateful memory protection by
implementing a compiler that can translate a memory access
policy directly into a circuit. The enforcement mechanisms
generated by our compiler will help prevent a corrupted
module or processor from compromising other modules on
the FPGA with which it shares memory. We have developed

a security primitive for providing isolation of cores at the
gate level by surrounding each core with a ‘‘moat’’ that blocks
wiring connectivity from the outside (Huffmire et al., 2007).

We begin with an explanation of our memory access
policies, and we describe how a policy can be expressed and
then compiled down to a synthesizablemodule. In this section

c om p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 1 9 7 – 2 1 5200

we explain both the high level policy description and the auto-

mated sequence of steps, or design flow, for converting amem-
ory access policy into a hardware enforcement module.
Assurance that the conversion is accurate and complete is dis-
cussed as future work.

3.1. Memory access policy

Once a high level policy is developed based on the require-

ments of the system and the organizational security policy
(Stern, 1991), it must be expressed in a precise form to allow
engineers to build concrete enforcement mechanisms. In the
context of this paper we concentrate on policies as they relate
to memory accesses. In particular, the enforcement mecha-
nisms we consider in this paper belong to the Execution Mon-
itoring (EM) class (Schneider, 2000), which monitor the
execution of a target, which in our case is one ormoremodules
on the FPGA. The enforcement mechanism is also a Reference
ValidationMechanism (RVM) (Anderson, 1972), whichmust be
tamper-proof, always invoked, and small enough to be subject

to analysis and test, the completeness of which can be as-
sured. We describe techniques for isolating the reference
monitor in Ref. by Huffmire et al. (2007).

Although Erlingsson et al. have proposed the idea of merg-
ing the reference monitor in-line with the target system
(Erlingsson and Fred Schneider, 1999), in a system with multi-
ple interacting cores, this approach has the drawback that the
reference monitors are distributed, which is problematic for
stateful policies. It may also prohibit the use of third-party
bit-streams or require access to source code and the re-compi-
lation of third-party bit-streams. Although there exist security

policies that execution monitors are incapable of enforcing,
such as information flow policies (Sabelfeld and Myers, 2003),
we argue that in the future our execution monitors could be
combined with static analysis techniques to enforce a more
broad range of policies if required. We therefore begin by de-
scribing a well defined method for describing memory access
policies.

The goal of our memory access policy description is to pre-
cisely describe the set of legalmemory access patterns, specif-
ically those that can be recognized by an execution monitor
capable of tracking address ranges of arbitrary size within

an enforcement framework that prohibits all other access.
Furthermore, it should be possible to describe complex behav-
iors such as sharing, exclusivity, and atomicity, in an under-
standable fashion. An engineer can then write a policy
description in our input form (as a series of ‘‘re-writing’’ pro-
ductions) and have it transformed automatically to an ex-
tended type of regular expression. By extending regular
languages to fit our needs we can have a human-readable in-
put format, and we can build off of theoretical contributions
which have created a refinement path to state machines and
hardware (Aho et al., 1988).

There are three pieces of information that we will incorpo-

rate into our executionmonitor. The Accessing Modules (M) are
the unique identifiers for a specific principal on the chip, such
as a specific intellectual property core or one of the on-chip
processors. Throughout this paper we simply refer to these
distinct units of activity on the FPGA as ‘‘Modules.’’ The Access
Methods (A) are typically Read and Write, but may include

special memory operators such as execution, zeroing or incre-

menting if required. Elements of A are used to describe ‘‘per-
missions.’’ The set P is a partitioning of physical memory
into ‘‘ranges.’’ The Memory Range Specifier (R) describes a set
of contiguous physical addresses to which a specific permis-
sion can be assigned. Our language describes an access policy
through a sequence of productions, which specify the relation-
ship between principals (M: modules), access rights (A: read,
write, etc.), and objects (R: memory ranges2).

The terminalsof the languagearememoryaccessesdescriptors
which ascribe a specific right for a specific module to access
a specific object until the descriptor is negated or deleted.3 For-

mally, the terminals of the productions are tuples of the form
(M, A, R), and the universe of tuples forms a power set
S¼M"A" R. Given two sets of tuples, a and b, ‘‘ab’’ indicates
theunionofaandb. Amemoryaccesspolicy ispreciselydefined
as a formal language L4S which can be either generalized as
being infinite or focussed on a fixed number of modules,
ranges, and accesses. L needs to satisfy the property that
cx; t : tuple setjt4S; xt4L/x4L, so that any legal access se-
quencewill be incrementally recognizedas legalalong theway.

One thing to note is thatmemory accesses refer to a specific
memory address, while memory access descriptors are de-

fined over the set of all memory ranges R (i.e., the power set
of addresses). A memory access (M, A, k), where k is a particu-
lar address, is contained in a memory access descriptor (M0, A0,
R) iff M¼M0, A¼A0, and Rlow$ k$ Rhigh. A sequence of mem-
ory accesses a¼ a0, a1, ., an is said to be legal iff
c0in dsi˛Ljai˛si. In order to enforce this policy during the
execution of an FPGA, we need three things.

1. A notation with the details for a specific policy can be pre-
cisely defined under L.

2. A method for automatically creating a circuit which recog-

nizes memory access sequences that are legal under L.
3. A method for preventing all accesses that are not legal

under L.

We begin with a description of (1) through the use of a sim-
ple example. Consider a straightforward isolation policy that
simply enforces the separation in memory of two different
modules. Module1 is only allowed to access memory in the
range of [0x8e7b008,0x8e7b00f], and Module2 is only allowed
to access memory in the range of [0x8e7b018,0x8e7b01b]. In
our memory access policy definition format, this is coded as
the following set of productions:

rw/rjw;
Range1/[0x8e7b008,0x8e7b00f];
Range2/[0x8e7b018,0x8e7b01b];
Access1/{Module1,rw,Range1};
Access2/{Module2,rw,Range2};
Policy/(Access1jAccess2)*;

Each of these productions is a re-writing rule as in a stan-
dard grammar. The non-terminal Policy is the start symbol of

2 An interval of the address space including high (Rhigh) and low
(Rlow) bounds.

3 Details of revocation will be discussed in Section 4.

c om p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 1 9 7 – 2 1 5 201

the grammar that defines the overall access policy (L as de-

scribed above). Through the use of a grammarwe allow the hi-
erarchical composition of more complex policies. In this case
Access1 and Access2 are simple access descriptors, but we want
to allow more complex sets of memory accesses, such that all
sequences of accesses that can be derived from Policy by appli-
cation of the grammar’s productions are legal.

Since we eventually want to transform the access policy to
hardware logic in a limited space, we limit our language to se-
quences that can be described with grammatical constructs
no more complex than a regular expression (Linz, 2001),
with the added ability to express ranges. Although a regular

language is limited to a type-3 regular grammar in the Chom-
sky hierarchy, it is inconvenient for security administrators to
express policies in right-linear or left-linear form, which
would not allow ‘‘range’’ expressions. Since a language can
be recognized by many grammars, any grammar that can be
automatically transformed into type-3 form is acceptable, so
we present the end user with an extended regular grammar
that is later transformed by extracting first terminals from
non-terminals.

Note that the atomic unit of enforcement is an address
range, and that the ranges are of arbitrary granularity. The

smallest granularity that we currently allow in the policy def-
inition format is at the word boundary, and we can support
any sized range from a singleword to the entire address space.
Also, ranges may be of the same or different size, unlike tradi-
tional memory pages. We will later show how this ability can
be used to set up special control words that help in securely
coordinating between modules.

Althoughwe are restricted to policies that are equivalent to
a finite automata with range checking, we have constructed
many example policies including isolation and Chinese wall
in order to demonstrate the versatility and efficiency of our

approach. In Section 4.4 we describe a ‘‘redaction policy,’’ in
which modules with multiple security clearance levels are
interacting within a single embedded system. However, now
that we have introduced our memory access policy definition
format, we describe how it can be transformed automatically
to an efficient circuit for implementation on an FPGA.

3.2. Hardware synthesis

We have developed a policy compiler that converts an access
policy, as described above, into a circuit that can be loaded
onto an FPGA to serve as the policy enforcement module. At
a high level the technique partitions the module into two
parts, range discovery and language recognition. Specifically
the steps of our design flow are:

! User creates the access policy (described above) and inputs
it to the compiler, which:

! Builds a syntax tree from the policy.

! Transforms the syntax tree to an expanded intermediate
form.

! Expands Policy to a regular expression defined over the
alphabet S.

! Converts the regular expression to a non-deterministic
finite automaton (NFA).

! Constructs an equivalent minimized state machine from
the NFA.

! Factors the ranges into sizes that are a power of two.
! Organizes the set of ranges as a trie,4 and creates a logic tree
that recognizes them.

! Exports the state machine and range detection logic as
Synthesizable Verilog.

! Inputs hardware description expressed in Verilog to Quartus
software, which synthesizes, places, and routes circuit.

! Bit-stream loader loads the synthesized bit-stream onto the
FPGA.

3.3. Design flow details

3.3.1. Access policy
To describe the process of transforming a policy to a circuit,
we again consider a simple isolation policy with twomodules,
which can only access their own single range:

Access/{Module1,rw,Range1}j{Module2,rw,Range2};
Policy/(Access)*;

3.3.2. Building and transforming a parse tree
Next, we use Lex (Lesk and Schmidt, 1975) and Yacc (Johnson,

1975) to build a parse tree from our security policy. Internal
nodes represent operators such as concatenation, alternation,
and repetition. Fig. 2 shows the parse tree for our example
policy.

We must then transform the parse tree into a large single
production with no non-terminals on the right hand side,
fromwhichwe can generate a regular expression. This process
ofmacro expansion requires an iterative replacement of all the
non-terminals in the policy. We apply the productions to the
parse tree by substituting the left hand side of each production
with its righthandside. Fig. 3 shows the transformedparse tree
for our policy.

3.3.3. Building the regular expression
Next, we find the subtree corresponding to Policy and traverse
this subtree to obtain the regular expression. By this stage we

Access

->

OR

{M1,rw,R1} {M2,rw,R2}

AND

->

Policy

Access *

Fig. 2 – Parse tree of the simple access policy.

4 An ordered tree data structure for storing lookup tables.

c om p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 1 9 7 – 2 1 5202

have completely eliminated all of the RHS non-terminals, and
we are left with a single regular expression which can then be

converted to an NFA. The regular expression for our access
policy is: (({Module1,rw,Range1})j({Module2,rw,Range2}))*.

3.3.4. Constructing the NFA
Once the regular expression has been formed, we construct an
NFA from this regular expression using Thompson’s Algo-
rithm (Aho et al., 1988) as implemented by Gerzic (2003).
Fig. 4 shows the NFA for our policy. Notice that the policy tran-
sitions can occur in parallel. We will use the FPGA to exploit
this for faster processing.

3.3.5. Converting the NFA to a DFA
From this NFA we can construct a DFA through subset con-
struction (Aho et al., 1988) as implemented by Gerzic (2003).
Following the creation of the DFA, we apply Hopcroft’s Parti-
tioning Algorithm (Aho et al., 1988) as implemented by Grail
(Raymond andWood, 1995) to minimize the DFA. Fig. 5 shows
the minimized DFA for our policy.

3.3.6. Processing the ranges
Before we can convert the DFA into Verilog, we must perform
some processing on the ranges so that the circuit can effi-

ciently determine which range contains a given address. Our
system converts the ranges to an internal format using ‘‘don’t
care’’ bits. For example, 10XX can be 1000, 1001, 1010, or 1011,
which is the range (Bossuet et al., 2004; Compton and Hauck,
2002). Hardware can be easily synthesized to check if an
address is within a particular range by performing a bit-wise
XOR on just the significant bits.5 Using this optimization,
any aligned power of two range (i.e., the cardinality of the
range is a power of two) can be efficiently described, and
any non-power of two range can be converted into a covering
set of O(log2jrangej) power of two ranges. For example the

range (Bondalapati and Prasanna, 2002; Cormen et al., 1990)
(0111, 1000, 1001, 1010, 1011, 1100) is not an aligned power of
two range but can be converted to a set of aligned power of
two ranges: {[7,7],[8,11],[12,12]} (or equivalently {0111j10XXj
1100}).

3.3.7. Converting the DFA to Verilog
Because state machines are a very common hardware primi-
tive, there are well-established methods of translating a de-
scription of state transitions into a hardware description
language such as Verilog. Fig. 6 shows the hardware decision

module we wish to build.
As previously described, an access descriptor specifies the

allowed accesses between a module and a range. Each DFA
transition represents an access descriptor, consisting of
a module ID, an op, and a range ID bit vector. The range ID
bit vector contains a bit for each possible range (currently
a max of N ranges), and the descriptor’s range is indicated
by the (one) bit that is set.

Access

->

OR

{M1,rw,R1} {M2,rw,R2}

AND

->

Policy

OR

{M1,rw,R1} {M2,rw,R2}

*

Fig. 3 – Expanded parse tree.

8

7

5

1 3

2 4

6

ε

ε

ε

ε

ε

ε

ε

ε

{M1,rw,R1} {M2,rw,R2}

Fig. 4 – NFA derived from the regular expression.

init

0
{M1,rw,R1},
{M2,rw,R2}

Fig. 5 – NFA converted to a minimized DFA.

5 This is equivalent to performing a bit-wise XOR, masking the
lower bits, and testing for non-zero except that in hardware the
masking is unnecessary.

c om p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 1 9 7 – 2 1 5 203

Amemoryaccess request comprises three inputs: themodule
ID, theop {read,write, etc.}, andtheaddress.Theoutput isasin-
gle bit: 1 for grant and 0 for deny. First, the hardware converts
thememory access address to a bit vector. To do this, it checks
all the ranges in parallel and sets the bit corresponding to the
range ID that contains the input address (if any).

Then the memory access request is processed through the
DFA. If an access descriptor matches the access request, the

DFA transitions to the accept state and outputs a 1. If there
is no transition for an access request, the machine always
transitions to the rejecting state, which is a ‘‘dummy’’ sink
state. This is important for security because an attackermight
try to access an address not covered by the policy or try to
insert illegal characters into the input, and results in a ‘‘fail
secure’’ machine.

3.3.8. State machine synthesis
The final step in the design flow is the actual conversion of
Verilog code to a bit-stream that can be loaded onto an

FPGA. Using the Quartus tools from Altera, which does
synthesis, optimization, and place-and-route, we turn each
machine into an actual implementation. After testing the
circuit to verify that it accepts a sample of valid accesses
and rejects invalid accesses, we are ready to measure the
area and cycle time of our design.

4. Example applications

To further demonstrate the usefulness of our language, we
use it to express several different policies. We have already
demonstrated an isolation policy, which can be easily ex-
tended to include overlapping ranges, shared regions, and
most any static policy. The true power of our system comes
from the description of stateful policies that involve revocation
or conditional access or other forms of dynamic policy. Let us
first discuss a traditional example: access control lists.

4.1. Access control list

Asecuresystemthat employsaccesscontrol listswill associate
every object in the system with a list of principals along with

the rights of each principal to access the object. For example,
suppose our system has two objects, Range1 and Range2. Class1
is a class of principles (Module1 and Module2), and Class2 is an-
other class of principles (Module3 and Module4). Either Class1
or Class2 may access Range1, but only Class2 may access Range2.
We express such an access control list policy below:

Class1/Module1jModule2;
Class2/Module3jModule4;
List1/Class1jClass2;
List2/Class2;

Access1/{List1,rw,Range1};
Access2/{List2,rw,Range2};
Policy / (Access1jAccess2)*;

In general, since access control list policies are stateless, the
resultingDFAwill haveone state, and thenumber of transitions
will be thesumof thenumberofprinciples thatmayaccesseach
object. In this example, Module1, Module2, Module3, and Module4
may access Range1, andModule3 andModule4may access Range2.
The total number of transitions in this example is 4þ 2¼ 6.

4.2. Controlled sharing

Secure system design requires the prevention of unintended
flows of information between principels such as cores, but

there are times when cores need to communicate with each
other. Our language makes possible the secure transfer of
data from one core to another. Rather than requiring large
communication buffers or multiple copies of the data, we
can simply transfer the control of a specified range of data
from one module to the next. For example, suppose Module1
wants to securely transfer some data to Module2. Rather than
establishing a direct channel between Module1 and Module2,
an access policy can be created that synchronizes the transi-
tion of permissions during the exchange. Using formal lan-
guages to express security policies makes such an exchange
possible. Consider the example below:

Module1j2/Module1jModule2;
Access1/{Module1,rw,Range1}j{Module1j2,rw,Range2};
Access2/{Module2,rw,(Range1jRange2)};
Trigger/{Module1,rw,Range2};
Policy/(Access1)* (˛jTrigger (Access2)*);

0000 1000 1110 0111 1011 0000 0001 10XX

0000 1000 1110 0111 1011 0000 0000 1XXX

AddressModuleID Op

,Illegal}

1

Parallel Search

2...

Range IDRange

N

...

0001 0101 1111 0000 0001 1010 1111 XXXX

Module ID Op Range ID Bit Vector
 Access Descriptor

DFA

Logic

Match?
0
1

0

(0x8E7B018)(rw)(2)

{0,1,0,...,0}

Enforcement Module

{Legal

init 1

0

{M1,w,R4}

{M3,z,R3}

{M1,rw,R1},

{M1,r,R3},

{M2,rw,R2},

{M3,rw,R3}

{M1,rw,R1},

{M1,r,R3},

{M2,rw,R2},

{M2,r,R3},

{M3,rw,R3}

Fig. 6 – The inputs to the enforcement module are the
module ID, op, and address. The range ID is determined by
performing a parallel search over all ranges, similar to
a content addressable memory (CAM). The module ID, op,
and range ID together form an access descriptor, which is
the input to the state machine logic. The output is a single
bit: either grant or deny the access.

c om p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 1 9 7 – 2 1 5204

Initially,Module1 can access Range1 and Range2, andModule2
can only access Range2. However, the first time Module1 ac-
cesses Range2 (signaling to Module2 that Module1 is ready to ex-
change), Access1 is deactivated by this trigger event, revoking
the permissions for Module1 from both Ranges. As a result of
the trigger, Module2 has exclusive access to Range1 and Range2.

4.3. Chinese wall

Another security scenario that can be efficiently expressed us-
ing our policy language is the Chinese wall (Brewer and Nash,
1989). Consider an example of this scenario, in which a lawyer
who looks at the set of documents of Company1 should not
view the set of files of Company2 if Company1 and Company2
are in the same conflict-of-interest (COI) class. This lawyer

may also view the files of Company3 provided that Company3
belongs to a different COI class than Company1. Fig. 7 shows
a Venn Diagram for this situation. We express a Chinese
wall policy below, where Module1 corresponds to the lawyer
and each range corresponds to a company:

Access1/{Module1,rw,(Range1jRange3)}*;
Access2/{Module1,rw,(Range1jRange4)}*;
Access3/{Module1,rw,(Range2jRange3)}*;
Access4/{Module1,rw, (Range2 j Range4)}*;
Policy/Access1jAccess2jAccess3jAccess4;

In our Chinese wall policy, there are two COI classes. One
contains Range1 and Range2, and the other contains Range3
and Range4. For simplicity, we have restricted this policy to
one module since with multiple modules, the restrictions to
a module are independent of the actions of other modules
so each module requires its own state machine. Fig. 7 shows
the DFA that recognizes legal accesses for this policy.

In general, for Chinesewall security policies, the number of
states scales exponentially to the number of COI classes. Be-
cause the number of possible legal accesses is the serial prod-
uct of the number of ranges (companies) in each separate COI

class. The number of transitions also scales exponentially to

the number of COI classes for the same reason. Fortunately,
the number of states and the number of transitions both scale
linearly to the number of ranges. In addition, the number of
transitions scales linearly in the number of ranges.

4.4. Redaction

Our security language can also be used to enforce forms of
redaction (Sami Saydjari, 2004), even at very high throughput
(such as for video). Military hardware such as avionics
(Weissman, 2003) may contain processing components that
are ‘‘cleared’’ for different levels of data, and a TS component
must not leak sensitive information to a U component (Smith,
2001). However, the TS component may be required to send

a document to the U component; a third component does
this by redacting TS data from the document. Fig. 8 shows
the architecture of a redaction scenario that is based on
separation.

Amultilevel database contains both top secret (TS) and un-
classified (U) data.Module1 has a TS label, and Module2 has a U
label. Module1 and Module2 are initially isolated, since they
have different labels. Therefore, Range1 belongs to Module1,
and Range2 belongs toModule2.Module3 acts as a trusted server
of information contained in the database, and this server
must have a security label range from U to TS. Range3 is tem-

porary storage used for holding information that has just
been retrieved from the database by the trusted server. Range4
(the control word) is used for performing database queries:
a module writes to Range4 to request that Module3 retrieve
some information from the database and thenwrite the query
result to the temporary storage. Any database query requested
by Module2 must have all TS data redacted by the trusted
server. If a request is made by Module1 for top secret informa-
tion, it is necessary to revokeModule2’s read access to the tem-
porary storage, and this access must not be reinstated until
the trusted server zeroes out the sensitive information con-
tained in the temporary storage. One way of implementing

Fig. 7 – A Chinese wall policy. The Venn Diagram shows two conflict-of-interest classes, ClassA and ClassB, and the DFA
recognizes legal accesses for this Chinese Wall policy. //A principal that accesses Range4 (black) is subsequently prohibited
from accessing Range3 (dark gray), but it may access either Range1 (white) or Range2 (light gray), because they are in a different
class. An access to Range4 results in a transition to state 2 (black), from which an access to Range1 results in a transition to
state 1 (black or white).

c om p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 1 9 7 – 2 1 5 205

the zeroing out functionality is to use a special access right (z)
in conjunction with logic that erases the contents of the tem-

porary storage. We express our redaction policy below:

rw/rjw;
Access2/{Module1,rw,Range1}j{Module1,r,Range3}

j{Module2,rw,Range2}j{Module2,w,Range4}
j{Module3,rw,Range3};

Access1/{Module2,r,Range3}jAccess2;
Trigger/{Module1,w,Range4};
Clear/{Module3,z,Range3};
SteadyState/(Access2jClear Access1*Trigger)*;
Policy/˛jAccess1*jAccess1*Trigger SteadyState

jAccess1*Trigger SteadyState Clear Access1*;

Access1 is the less restrictive accessmode, andAccess2 is the
more restrictive access mode. The Trigger event changes the
access mode from Access1 to Access2, and the Clear event
causes the machine to transition from Access2 back to Access1.
In general, the DFA for a redaction policy will have one state
for each access mode. Applying our redaction policy to
a real-world video privacy system would likely require some
additional complexity.

4.5. Bell and LaPadula confidentiality model

The Bell and LaPadula (B&L) Model is a formal model of multi-
level security in which a subject may not read an object with
a higher security label (no read-up), and a subject may not

write to an object with a lower security label (no write-
down) (Bell and LaPadula, 1973). This model is designed to
protect the confidentiality of classified information. All B&L
policies are stateless in that the rules don’t change and the
labels of individual subjects and objects upon which the rules
are based, don’t change. We express a B&L policy below:

AccessB&L/{Module1,r,Range1}j{Module1,r,Range2}
j{Module2,r,Range2}j{Module2,w,Range1}

j{Module2,w,Range2};
Policy/(AccessB&L)*;

In our simple example, Module1 has a TS label, Module2 has
a U label, Range1 has an S label, and Range2 has a U label. We
leave to future work the covert channel analysis of these
mechanisms.

4.6. High water mark

Highwatermark is similar to B&L in that no read-up is permit-
ted, but object labels change over time, and write-down is
allowed. Following a write-down, the security label of the ob-
ject written tomust change to the label of the subject that per-
formed the write; thus, high water mark policies are stateful.

We express our high water mark policy below:

Access1/{Module1,r,Range1}j{Module1,r,Range2}
j{Module1,w,Range2}j{Module2,w,Range1};

Access2/AccessB&Lj{Module1,w,Range1};
Access3/Access1 j{Module2,w,Range2};
Access4/Access1j{Module1,w,Range1}j{Module2,w,Range2};
Trigger1/{Module1,w,Range1};
Trigger2/{Module1,w,Range2};
Path1/(˛jTrigger1 Access2* (˛jTrigger2 Access4*));
Path2/(˛jTrigger2 Access3*(˛jTrigger1 Access4*));
Policy/AccessB&L*j(˛jPath1jPath2);

We use trigger events to express the write-downs. The
number of triggers T in the high water mark policy is equal
to the number of write-downs that would be illegal in the
B&L policy. The number of states S in the DFA that enforces
the high water mark policy is O(2T), and the number of

Memory Access

Policy Enforcement

C
ontrol w

ord

Range 3Range 2Range 1

Z
e
r
o
 O
u
t

RapidIO

W
r
it
e
 R
e
d
a
c
t
e
d
 X
M
L

IP Core

Top Secret
(module 1)

Processor

Unclassified
(module 2)

Trusted Server

(module 3)

L
o
c
a
l
A
c
c
e
s
s

L
o
c
a
l
A
c
c
e
s
s

C
o
n
d
it
io
n
a
l

C
o
n
d
it
io
n
a
l

Physical Link

Logical LinkSDRAM access

Database

(R
ange 4)

Fig. 8 – A redaction architecture. A database contains both Top Secret and Unclassified data. Module1 has a Top Secret (TS)
clearance, and Module2 has an Unclassified (U) clearance. Any database query requested by Module2 must have all TS data
redacted by the Trusted Server Module3. Furthermore, Module2 must be prevented from accessing the result of a database
query performed by Module1 because such a query result may contain TS data. This is accomplished by revoking Module2’s
permission to access the temporary storage (Range3) where query results are written by the Trusted Server. IP stands for
Intellectual Property.

c om p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 1 9 7 – 2 1 5206

transitions in the DFA that are triggers is O(T!T). If N is the
number of transitions in the corresponding stateless B&L pol-

icy, then the number of transitions in the high water mark
DFA that are not triggers is O((N)(S)). Therefore, the total
number of transitions is O(T!Tþ (N)(S)).

4.7. Biba integrity model

The Biba model is the dual of the Bell-LaPadula model (Biba,
1977), but the label spaces of the policies are distinct. Both
read-down and write-up with respect to the ordering of
integrity labels are prohibited. Like B&L, all Biba policies are

stateless. We express our B&L policy below:

AccessBiba/{Module1,w,Range1}j{Module1,w,Range2}
j{Module2,r,Range1}j{Module2,r,Range2}
j{Module2,w,Range2};

Policy/(AccessBiba)*;

Low water mark is to Biba as high water mark is to B&L.
Since low water mark is similar to high water mark, we do
not discuss it further.

4.8. Dynamic policies

The ability to change the policies in response to external
events is useful. For example, if the system comes under
attack, it may be necessary to change to a more restrictive
policy. We express a dynamic policy below:

Policy/Policy1(˛jTrigger1 (Policy2) (˛jTrigger2 (Policy3)));

Policy1, Policy2, and Policy3 can be any three policies. If the
policies come from different sources, pre-processing can be
used to prevent naming conflicts (e.g., if two policies define
Access1 differently). Trigger events specify the circumstances
under which a policy change can occur. Trigger1 causes the
policy to change from Policy1 to Policy2, and Trigger2 causes
the policy to change from Policy2 to Policy3. Every state in Policy1
has an additional transition (Trigger1) to the first state of
Policy2, and every state in Policy2 has an additional transition
(Trigger2) to the first state of Policy3. The number of states in

the combined policy is O((S1)þ (S2)þ (S3)), where SN is the
number of states in PolicyN. The number of transitions in the
combined policy is O((T1)þ (T2)þ (T3)), where TN is the number
of transitions in PolicyN.

In the above scenario, the system must start in Policy1. The
system may or may not transition to Policy2. If the system
transitions to Policy2, the system may or may not transition
to Policy3. Supporting the ability to go in any order requires
more complex expressions and more complex DFAs. In addi-
tion, the ability to return to an earlier policy has several
security implications, especially when stateful policies are in-

volved. Understanding the organizational requirements for
dynamic security policies is the topic of related research
(Bossuet et al., 2004; Fraser and Badger, 1998).

Although switching back and forth between an arbitrary
number of stateful policies would requiremodifiying our com-
piler, it is possible to use our language to switch back and forth
between two stateless policies Policy1 and Policy2 using the fol-
lowing expression:

SteadyState/(Policy2jTrigger2 Policy1 Trigger1)*;
Policy/Policy1jPolicy1 Trigger1 SteadyState

jPolicy1 Trigger1 SteadyState Trigger2 Policy1j˛;

Trigger1 changes the policy from Policy1 to Policy2, and
Trigger2 changes the policy back to Policy1.

5. Integration and evaluation

Now that we have described several different memory access
policies that could be enforced using a stateful monitor, we
need to demonstrate that such systems could be efficiently
realized on reconfigurable hardware.

5.1. Enforcement architecture

The placement of the enforcementmechanism can have a sig-
nificant impact on the performance of the memory system.
Fig. 9 shows two architectures for the enforcement mecha-
nism which assumes that modules on the FPGA can only
access shared memory via the bus.

In the figure on the left, the enforcement mechanism sits
between thememory and the bus, whichmeans that every ac-
cess must pass through the enforcement mechanism before
going tomemory. In the case of a read, the request cannot pro-
ceed to memory until the enforcement mechanism approves
the access. This results in a large delay which is the sum of

BusBus

M1 M2

E B

M2

E

MEMMEM

Arbiter Arbiter Arbiter Arbiter

M1

Fig. 9 – Two alternative architectures for the enforcement
mechanism. In the figure on the left, a memory access
must pass through the enforcement mechanism (E) before
going to memory. In the figure on the right, the
enforcement mechanism (E) snoops on the bus, and
a buffer (B) prevents access to the data until the access is
approved. Arbiters prevent the bus from being accessed by
more than one module at a time.

c om p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 1 9 7 – 2 1 5 207

the time to determine the legality of the access and the mem-

ory latency. We can mitigate this problem by having the en-
forcement mechanism snoop on the bus or through the use
of various caching mechanisms for keeping track of accesses
that have already been approved. This scenario is shown in
the figure on the right. In the case of a read, the request is
sent to memory, and the memory access occurs in parallel
with the task of determining the legality of the read. A buffer
holds the data until the enforcement mechanism grants ap-
proval, at which time E sends the data across the bus. In the
case of awrite, the data to bewritten is stored in the buffer un-
til the enforcement mechanism grants approval, at which

time E sends the data from the bus to memory. Thus, both ar-
chitectures provide the isolation and omnipotence required of
a reference or execution monitor.

Since amodulemay be sending sensitive data over the bus,
it is necessary to prevent other modules from accessing the
bus at the same time. We address this problem by placing
an arbiter between each module and the bus. In a system
with two modules, for example, the arbiters could allow one
module to access the bus on even clock cycles and the other
module to access the bus on odd clock cycles. We discuss
a secure communication architecture for FPGAs as well as

a method of ensuring the isolation of the reference monitor
at the gate level in Ref. (Huffmire et al., 2007).

5.2. Evaluation

Of the different policies we discussed in Section 4, we focus
primarily on characterizing the isolation policy in order to
separate the effect of range detection on system efficiency.
Rather than tying our results to the particular reconfigurable
system prototype we are developing, we quantify the results
of our design flow on a randomly generated set of ranges
over which we enforce isolation. The range matching consti-
tutes the majority of the hardware complexity (assuming

there are a large number of ranges), and there has already
been a great deal of work in the CAD community on efficient
state machine synthesis (De Micheli, 1994).

To obtain data detailing the timing and resource usage of
our range matching state machines, we ran the memory
access policy description through our front-end and synthe-
sized6 the results with Quartus II 4.2 (Inc and QuartusManual,
2004). Compilations are optimized for the target FPGA device
(Altera Stratix EPS1S10F484C5), which has 10,570 available logic
cells, and Quartuswill utilize asmany of these cells as possible.

5.3. Synthesis results

In general, a DFA for an isolation policy always has exactly one

state, and there is one transition for each {ModuleID,op,Ran-
geID} tuple. We have determined that for our isolation policy,
there is a linear relationship between the number of transi-
tions and the number of ranges. Fig. 10 shows that the area
of the resulting circuit scales nearly linearly with the number
of ranges for the compartmentalization policy. The slope is
approximately four logic cells for every range.

Fig. 11 shows the cycle time (Tclock) for machines of various
sizes. Tclock is primarily the time for one DFA transition, and it

is very close to the maximum frequency of this particular
Altera Stratix device. Fig. 12 shows the setup time (Tsu), which
is primarily the time to determine the range to which the in-
put address belongs. Although Tclock remains nearly constant
with the number of ranges, Tsu increases nearly linearly above
170 ranges. Fortunately, Tsu can be reduced by pipelining the
circuitry that determines what range contains the input
address.

Fig. 13 shows the area of the circuits resulting from the ex-
ample policies presented in this paper. These circuits are
much smaller in area than the series of isolation circuits

above because the example policies have very few ranges,
states, and transitions. The complexity of the circuit is a com-
bination of the number of ranges and the number of DFA
states and transitions. In our dynamic policy, Policy1 is our iso-
lation policy, Policy2 is our Biba policy, and Policy3 is our con-
trolled sharing policy. Returning to an earlier policy is not
allowed since Policy3 is stateful. As expected, the circuit for
the dynamic policy has the greatest area because it consists

0

500

1000

1500

2000

2500

3000

0 200 400 600 800
Number of Ranges

N
u
m
b
e
r
 o
f
 L
o
g
ic
 C
e
ll
s

Fig. 10 – Circuit area versus number of ranges. There is
a nearly linear relationship between the circuit area and
the number of ranges.

0

1

2

3

4

5

6

7

8

0 200 400 600 800
Number of Ranges

C
y
c
le
 T
im

e
 (
n
s
)

Fig. 11 – Cycle time versus number of ranges. There is
a nearly constant relationship between the cycle time and
the number of ranges.

6 The back-end handles netlist creation, placement, routing,
and optimization for both timing and area.

c om p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 1 9 7 – 2 1 5208

of three policies. The next biggest circuit belongs to Chinese
wall, followed by redaction, high water mark, low water

mark, and controlled sharing. Fig. 14 shows that the cycle
time is greatest for redaction, followed by high water mark,
low water mark, B&L, and isolation. Fig. 15 shows that the
setup time is greatest for Biba, followed by B&L, dynamic, re-
daction, and high water mark.

5.4. Impact of the reference monitor on system
performance

Since FPGAs do not operate at high frequency, they achieve
their performance from computational parallelism. Many
FPGA applications such as DSPs, signal processing, and intru-
sion detection systems are throughput-driven, but do not
have rigid latency requirements. Therefore are latency-insen-
sitive. For these applications, we argue that our technique
does not impact performance significantly. For example, since

an FPGA operating at 200 MHz will have a cycle time of 5ns,
our reference monitor only adds at most a two cycle delay in

this case.

6. Covert storage channels

In a covert channel, internal state of the enforcement mecha-
nism is used to transmit information in a manner that is con-
trary to the security policy. Some stateful policies define (and
require) internal state changes that, if unchecked, can form
the basis of a covert channel. In this section, we describe
a method of analyzing stateful policies to detect these ‘‘inher-

ent’’ covert channels. We describe a method for measuring
the potential bandwidth of the covert channel at runtime so
that corrective action can be taken if the bandwidth exceeds
a predetermined threshold value.

A reference monitor makes a binary decision to either
grant or deny a particular access based on a policy. As a result,

0

1

2

3

4

5

6

7

0 200 400 600 800
Number of Ranges

S
e
t
u
p
 T
im

e
 (
C
y
c
le
s
)

Fig. 12 – Setup time versus number of ranges. Above 170
ranges, there is a nearly linear relationship between the
setup time and the number of ranges. This time can be
reduced with pipelining.

0

10

20

30

40

50

60

Dyn Chi HiRed Low CS B&L Biba ACL Isol
Policy

N
u
m
b
e
r
 o
f
 L
o
g
ic
 C
e
ll
s

Fig. 13 – Circuit area versus access policy. The area is
related to the number of states, transitions, and ranges.
The circuit area is greatest for the dynamic policy.

5.8

6

6.2

6.4

6.6

6.8

7

7.2

Dyn Chi HiRed Low CS B&L Biba ACL Isol
Policy

C
y
c
le
 T
im

e
 (
n
s
)

Fig. 14 – Cycle time for each access policy. Cycle time is
greatest for redaction, followed by high water mark and
low water mark.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Dyn Chi HiRed Low CS B&L Biba ACL Isol
Policy

S
e
t
u
p
 T
im

e
 (
C
y
c
le
s
)

Fig. 15 – Setup time for each access policy. Setup time is
greatest for Biba, followed by B&L and dynamic.

c om p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 1 9 7 – 2 1 5 209

with certain stateful policies, subjects may be able to observe

the internal state of the policy by observing the reference
monitor’s decisions. Subjects can change the state of the pol-
icy enforcement mechanism by making access requests that
affect subsequent requests. The state of the policy is in effect
a shared resource. This ability to obsere andmodify the policy
itself makes it possible for two subjects to illegally
communicate.

Some stateful policies only allow a few bits to be leaked,
while others allow a high bandwidth of data to be leaked. A
stateful policy expressed in a regular language is equivalent
to a directed graph, which contains cycles that allow the pol-

icy to alternate between two or more states continuously. If
certain properties aremet, then the cycle represents a possible
covert channel. If it is not feasible to revise the policy to elim-
inate the cycle, we propose a technique for coping with such
a storage channel by counting the number of times that a cycle
goes around at runtime. If the counter exceeds a threshold,
the system can take corrective action. One option for correc-
tive action is to change to a policy without the covert channel.
This limits the amount of data that can be leaked to a specific
value.

6.1. Storage channels in stateful policy enforcement
systems

In both covert storage and timing channels, the sender has
a higher security label than the receiver and interferes with
the receiver’s access to a shared system resource (e.g., the pro-
cessor or disk) to signal the receiver. In a timing channel, the

interference changes the time needed for the receiver to per-
form a task, and the receiver interprets the delay or lack of
delay. On the other hand, in a storage channel, the interfer-
ence changes the receiver’s ability to access the resource.
This section will focus on storage channels rather than timing
channels. We close timing channels with respect to access
decisions but assume that data access times, for example,
are not otherwise modified by the actions of subjects. We
leave to future work the application of our methods to timing
channels. In this section, we will show how our reference
monitor can be used as a storage channel if the policy has

certain properties.
Kemmerer (1983, 2002) has devised a shared resource

matrix method of identifying storage and timing channels in
computer systems. Kemmerer identifies four criteria for
storage channels: the sender and receiver must have access
to the same shared resource attribute, the sender must be
able to change the shared attribute, the receiver must be
able to detect the change, and the sender and receiver must
be able to initiate communication and sequence events
(Kemmerer, 1983, 2002). In the case of our embedded system,
the sender and the receiver are cores, and the shared resource
is the state of the policy.

Since a policy is enforced by a DFA, we can think of policies
as directed graphs. Each node of the graph is a state of the
policy, and each edge is a transition of the policy. In order
for a policy to have a storage channel, there must be a non-
trivial cycle in the graph. Of course, stateless policies do not
have non-trivial cycles.

The presence of a cycle in the graph allows the internal

state of the reference monitor to alternate between two or
more states. This property allows a stream of information to
be leaked if the sender can cause a DFA transition and the
two have different accessmatriceswith respect to the receiver
such that the receiver can sense the policy change.

For covert channel analysis, we assume themost conserva-
tive assignment of security labels to principals that results in
the largest information flow. For example, if a possible covert
channel fromModule1 toModule2 is identified, in the absence of
any evidence to the contrary, we assume that Module1 has
a higher security label than Module2.

Fig. 16 shows a DFA that enforces a memory access policy.
Each node in the graph is a state in the policy, and we show
the access matrix at each node. The columns of the access
matrix are the principals (modules), and the rows are the
objects (ranges). This DFA contains a non-trivial cycle that
satisfies our criteria for a covert channel: (1) Module1 has
a higher security label than Module2, (2) Module1 controls at
least one of the transitions within the cycle, and (3) at least
two nodes within the cycle have access matrices that differ
with respect to Module2.

We now describe how this cycle is used to establish an ille-

gal information flow from Module1 to Module2. Module2 contin-
ually tries to read Range1. If access is granted, Module2 knows
that the current state is the first state, but if access is denied,
Module2 knows that the current state is the second state.
Module1 alternates between the two states by reading Range1.
Module2 receives a bit of information when the current state
remains stable for a fixed number of cycles T. Another way
of transmitting a bit is to treat one complete cycle as a bit, sim-
ilar to aMorse code pulse. There aremanyways for the sender
to encode the data to be leaked. The bandwidth of the infor-
mation flow can be calculated in terms on the number of

M1 M2
R1: r

w
r

R2:

M1 M2
R1: r
R2: r

{M1,r,R1} {M1,r,R1}

init

Fig. 16 – A non-trivial cycle. This figure shows the DFA that
enforces a security policy. Each node of the graph is a state
in the policy, and we show the access matrix at each node.
Module1 has a higher security label than Module2. Initially,
Module2 can read Range1.Module1 can then change the state
by reading Range1. Now,Module2 can no longer read Range1.
Module1 can then change the state again by reading Range1.
According to our criteria, there is a possible storage
channel from Module1 to Module2.

c om p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 1 9 7 – 2 1 5210

possible encodings of the data and the probability of each

symbol (Millen, 1987, 1989), over time.
As mentioned above, one of the criteria for a covert chan-

nel is that the sender must be able to change the shared attri-
bute. The sender does not have to be able to cause every DFA
transition within the cycle. One is sufficient because the
remaining transitions can be caused by the receiver. If neither
the sender nor the receiver is able to cause a particular transi-
tion within the cycle, the sender can wait a large number of
cycles so that such a transition is very likely to occur. This
allows the cycle to come around again, but the sender and
receiver would need to be able to sync their activities, e.g.,

by polling the state of the policy. This case is shown in
Fig. 17. Module1 would like to send some data to Module2, but
Module3 controls one of the transitions. Module1 simply waits
a sufficient length of time during which Module3’s transition
is likely to occur. In this case, bandwidth would depend on
the estimated rate of Module1’s activity.

Since we are using a static technique to detect possible
covert channels, not all possible channels identified can be
exploited at runtime. Furthermore, analysis of the design
may be required to estimate false positives. Another criterion
for a storage channel mentioned above is that the receiver

must be able to detect the change. Not every node in the cycle
must differ with respect to the receiver. In fact, the access
matrices of just two states within the cycle must differ with
respect to the receiver. Suppose we have a large cycle with
many nodes, most of which have access matrices that are
identical with respect to the receiver. If just two of themdiffer,
the receiver will be able to detect that the cycle has repeated.
Fig. 18 shows this case. In this cycle that contains three nodes,
only one of the nodes differs from the other two nodeswith re-
spect to Module2. Still, Module2, is able to detect the change,
allowing data to leak from Module1, which controls all of the

transitions within the cycle, to Module2.

6.2. Automatically detecting policy-based covert storage
channels

To automatically detect a possible covert channel in a policy,
we first determine if its DFA has any cycles. Topological sort is
a well-known algorithm for detecting cycles in a directed
graph (Cormen et al., 1990). The first step is to select a vertex
in the graph with no incoming edges and remove it, repeating
this process until there are no more vertices left. If this pro-
cess does not finish in an amount of time proportional to
the size of the graph, then the graph contains a cycle. Identi-
fying the set(s) of vertices that make up the cycle(s) involves
tracing the graph recursively. As shown:

Procedure Detect Channels (Graph G)
{

Array of Lists Senders
Array of Lists Receivers
If (Topological_Sort(G)¼¼ False)
Output ‘‘Graph G Contains No Cycles.’’
Return

C¼ Recursively_Trace_Graph_to_Find_Cycles (G)
For (All Cycles C)
For (All Edges E in C)

M¼Module that causes transition E
Add M to Senders[C]

For (All Vertices V in C)
For (All Vertices V0 in C) if V0 !¼V then
For (All Rows row)
For (All Columns col)

init

M1 M2 M3
R1: r_ r_ r_
R2: __ _w __

M1 M2 M3
R1: r_ __ r_
R2: __ r_ __

{M1,r,R1} {M3,r,R1}

Fig. 17 – Suppose thatModule1 would like to leak some data
to Module2. In this example, Module1 causes one of the
transitions, and Module3 causes the other transition. The
two access matrices differ with respect to Module2. Since
Module3 is not a party in the exchange, Module1 must wait
a sufficient length of time for Module3’s transition to occur,
allowing the cycle to come around again.

init

M1 M2
R1: r_ __
R2: __ r_

M1 M2
R1: r_ __
R2: __ r_

{M1,r,R1}

M1 M2
R1: r_ __
R2: __ _w

{M1,r,R1}

{M1,r,R1}

Fig. 18 – A cycle consisting of three nodes. Two of the
nodes are identical with respect to Module2, but one is
different from the other two. Since at least one node
differs, Module2 can detect the change, allowing data to
leak from Module1 to Module2.

c om p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 1 9 7 – 2 1 5 211

If (Matrix(V)[row][col] !¼Matrix(V0)[row][col])

Add col to Receivers[C]

Output ‘‘Possible Covert Channels:’’
For (All Cycles C Found)
Output Cross_Product(Senders[C], Receivers[C])

Return
}

We applied our covert channel detector to several example
policies. Fig. 19 shows the redaction policy described in Sec-
tion 4.4, which alternates between a more restrictive and

less restrictive access matrix. Our detector correctly identified
four possible covert channels: from Module1 to Module2, from
Module1 to Module3, from Module3 to Module1, and from Module3
to Module2.

Dynamic policies that switch back and forth between two
or more policies may have covert channels (Woodward,
1987; Zheng and Myers, 2004). One way of dealing with the
problem of covert channels in dynamic policies is to have
a module with a low security label perform the policy transi-
tions. If this is not possible and a module with a higher secu-
rity label must be used to perform the policy transitions, then

it is essential that thismodule be ‘‘trusted’’ to not drive the co-
vert channel in violation of the policy. Even if a covert channel
exists, if policy switching is infrequent, the bandwidth is low,
and the channel might be acceptable.

In Section 4.3, we described a Chinese wall policy shown in
Fig. 8 with two conflict-of-interest classes: {Range1,Range2} and
{Range3,Range4}. Although it does not have any cycles, this pol-
icy is not completely free of covert channels. Module1 could
leak one bit of information to Module2 and one bit to Module3,
orModule1 could leak one bit toModule2 andModule4, orModule1
could leak one bit to Module3 and Module4. While two bits does

not seem like a lot of information, there may be highly sensi-
tive applications for which even leaking two bits is unaccept-
able. In a graph that does not have any cycles, the maximum

amount of information that can be leaked is bounded by the

longest path length from the initial state to any final state.

6.3. Approaches to covert channel management

Once a possible covert channel has been identified, the system
designer, working with the enterprise security manager, can
modify the policy in order to eliminate the problematic cycle.
If this is not an option, we can close the covert channel or

confine the bandwidth within certain limits, restricting the
behavior of the system. This approach requires a method of
tracking current bandwidth. One way of measuring the usage
bandwidth of the covert channels is with counters. A counter
keeps track of the number of times the cycle occurs within
a sliding window of time relative to the current time, and
the system ensures that the covert channel bandwidth stays
below a threshold value.

6.3.1. Approaches for measuring covert channels
A cycle can be expressed as a regular expression, and a piece

of hardware to recognize this expression can be easily built.
For example, a cycle from State1 to State2 to State3 and back
to State1 can be expressed as S1(S2S3S1)þ. Regular expressions
can even identify large cycles that contain smaller cycles
within. This ‘‘monitor monitor’’ can be incorporated into the
reference monitor. The price of this measurement mecha-
nism should be balanced against the cost of ensuring that
themodulewith a high security label will not leak secret infor-
mation. Typically, the cost of suchmechanisms ismuch lower
than the price of ensuring that a module is trusted.

6.3.2. Options for closing and throttling covert channels
As we explained in Section 6.1, terminating a core is highly
problematical because critical services may be disabled.
Rather than terminating the receiver, we propose changing
the policy in response to a counter exceeding its threshold.
Fig. 20 shows an example of this concept. A stateful policy
with two states has a cycle resulting in a possible covert chan-
nel fromModule1 toModule2. A countermonitors the number of
times the cycle completes. If the counter exceeds a threshold
value, during the measurement window, the policy changes
so that the nodes in the cycle are identical with respect to

Module2, thus closing the covert channel. This is accomplished
in the example by revoking Module2’s privilege to write to
Range1 in the second state of the stateful policy. After a period
of time, the policy can revert, if desired. This will be highly
desirable in practice. Alternatively, we can add delays to
transition between states to throttle the channel within
acceptable limits.

Modification to the policy as above adds to the amount of
logic that must reside on the FPGA. In a stateful policy with
M modules that are receivers in a possible covert channel
and S states, the total number of states in this combined
policy will be O(S(2M)). If the stateful policy has T transitions,

the total number of transitions in the combined policy will
be O(T(M!Mþ 2M)). The cost of this privilege revocation mech-
anism should be balanced against the cost of ensuring that
a module with a high security label is trusted. The cost of en-
suring that a module is trusted is usually much higher than
the price of building a mechanism. To ensure the greatest

init

M1 M2 M3
R1: rw __ __
R2: __ rw __
R3: r_ r_ rw
R4: _w _w __

M1 M2 M3
R1: rw __ __
R2: __ rw __
R3: r_ __ rwz
R4: __ _w __

{M1,w,R4}
(Trigger)

{M3,z,R3}
(Clear)

Liberal

Restrictive

Fig. 19 – This redaction policy has four possible covert
channels: from Module1 to Module2, from Module1 to
Module3, from Module3 to Module1, and from Module3 to
Module2.

c om p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 1 9 7 – 2 1 5212

likelihood that critical services will be maintained, only those
privileges that pertain to the covert channel should be revoked

when a core causes a counter to exceed its threshold. In other
words, the revocation would be performed on a per-channel
basis. To ensure that the combined policy does not introduce
any new covert channels, the combined graph should be run
through the detector, although the combined policy should
not introduce any new covert channels if done correctly.

6.4. Related work

Policy engineering is an extremely important problem be-
cause an enforcement mechanism is only as good as the
policy it enforces. Correctly designing a system that relies
on a set of complex security policies calls for a new set of
techniques to make it tractable for a human to correctly
formulate policy specifications. Fong has developed a new ap-
proach to policy design by constraining the reference monitor
to only track a ‘‘shallow execution history’’ of permitted re-

source access events (Fong, 2004). Although this restriction
limits the number of enforceable policies, many classic
security policies can still be enforced. Breaking down the class
of policies that can be enforced by an execution monitor into
subclasses makes the problem of policy designmore tractable
because specialized policy languages and verification tech-
niques can be tailored to these classes, and they are more
easily decomposed into reusable components.

Since Lampson first introduced the concept of covert
channels (Lampson, 1973), several techniques for detecting
covert channels in policy specifications have been proposed,
including shared resource matrix methodology (Kemmerer,

1983), information flow (Millen, 1976), and noninterference
(Haigh et al., 1987; Goguen and Meseguer, 1982), although
this section focuses on the shared resource matrix method.
Tsai et al. developed a static method of identification of covert
storage channels in source code by using information flow
analysis to identify kernel variables that are visible or can be

altered (Tsai et al., 1990). They observe that not all potential
covert channels can be exploited because the conditions

that make the channel possible may not exist at runtime.
They distinguish between potential covert channels and real
covert channels.

There is much prior work in estimating the bandwidth of
covert channels.Millenapplied information theory tocalculate
the bandwidth of a covert channel based on the number of
possible encodings of the data and the probability of each sym-
bol (Millen, 1987, 1989). Shieh proposes amethod ofmeasuring
the bandwidth of covert channels in multilevel operating
systems (Shieh, 1999). He observes that resource-exhaustion
channels can be modeled as finite-state graphs, but event-

count channels cannot. Tsai and Gligor developed a Markov
model to compute themaximumbandwidthof a covert storage
channel under different system loads (Tsai and Gligor, 1988).

7. Conclusions

Reconfigurable systemsareblurring the linebetweenhardware
and software, and they represent a large and growing market.
Due to the increased use of reconfigurable logic in mission-
critical applications, a new set of security primitives is needed
to prevent improper memory sharing and to contain memory
bugs in these physically addressed embedded systems. We
have demonstrated a method and language for specifying
access policies that can be used as both a description of legal
access patterns and as an input specification for direct synthe-
sis to a reconfigurable logic module. Our architecture ensures
that the policy module is invoked for every memory access.

Our formal access policy language provides a convenient
and precise way to describe coarse or fine-grained computer
security policies for modules on an FPGA. We have used our
policy compiler to translate a variety of security policies to
hardware enforcement modules, and we have analyzed the
area requirements and performance of these circuits. Our

M1 M2
R1: r _ __
R2: _w r_

R2: __ r_

M1 M2
R1: r _ _w

{M1,r,R1} {M1,r,R1}

init

 M 1 M2
R1: r _ __
R2: _w r_

R2: __ r_

 M 1 M2
R1: r _ __

{M1,r,R1} {M1,r,R1}

count > thres

count > thres

counter

Fig. 20 – Coping with a covert channel in a stateful policy with two states. A counter measures the bandwidth of a covert
channel from Module1 to Module2 by counting the number of times that a cycle occurs in the original policy on the left. If this
counter exceeds a predetermined threshold, it is necessary to switch to the policy on the right, in which the covert channel
has been eliminated by making the access matrices in both nodes of this policy identical with respect to Module2.

c om p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 1 9 7 – 2 1 5 213

synthesis data show that our methods are both efficient and

scalable in the number of ranges that must be recognized. In
addition to the reconfigurable domain, ourmethods can be ap-
plied to systems-on-a-chip as part of a more general scheme.

We have also developed an automatic method of identify-
ing security policies with inherent covert channels. We have
identified a range of corrective actions that can be considered
once a possible covert channel is detected. The ideal alterna-
tive is to eliminate the covert channel by changing the policy,
but in case this option is not available, we have presented
a method of coping with the covert channel by closing it
when it reaches a designated threshold, as determined by

a hardware counter that measures the real-time bandwidth
of potential covert channel exploitation.

Since expressing some policies in our language requires
complex expressions, we do not expect the typical engineer
to work in our language. Because usability is fundamental to
system security (Cynthia Irvine et al., 2002; Gutmann and
Grigg, 2005), we plan to develop a higher-level language along
with a set of tools to assist the engineer in constructing
mathematically precise policies. This will build on the policy
engineering work of Fong et al. (Fong, 2004). A higher-level
language will allow the engineer to express policies in terms

of security concepts (e.g., isolation, controlled sharing, etc.)
rather than in terms of modules and ranges.

r e f e r e n c e s

Aho A, Sethi R, Ullman J. Compilers: principles, techniques, and
tools. Reading, MA: Addison Wesley; 1988.

Altera Inc. Quartus II manual; 2004.
Anderson JP. Computer security technology planning study.

Technical Report ESD-TR-73-51, ESD/AFSC, Hanscorn AFB,
Bedford, MA; 1972.

Bell DE, LaPadula LJ. Secure computer systems: mathematical
foundations and model. Bedford, MA, USA: The MITRE
Corporation; May 1973.

Betz Vaughn, Scott Rose Jonathan, Marqardt Alexander.
Architecture and CAD for deep-submicron FPGAs. Boston, MA:
Kluwer Academic; 1999.

Biba KJ. Integrity considerations for secure computer systems.
Technical Report ESD-TR-76-372, USAF Electronic Systems
Division, Bedford, MA; 1977.

Bondalapati K, Prasanna VK. Reconfigurable computing systems.
Proceedings of the IEEE 2002;90(7):1201–17.

Bossuet L, Gogniat G, Burleson W. Dynamically configurable
security for SRAM FPGA bitstreams. In: Proceedings of the
eighteenth international parallel and distributed processing
symposium (IPDPS ’04); April 2004. Santa Fe, NM.

Brewer DFC, Nash MJ. The Chinese wall security policy. In:
Proceedings of the 1989 IEEE symposium on security and
privacy; 1989.

Buell DA, Pocek KL. Custom computing machines: an
introduction. Journal of Supercomputing 1995;9(3):219–29.

Compton K, Hauck S. Reconfigurable computing: a survey of
systems and software. In: ACM Computing Surveys, vol. 34 (2).
USA: ACM; 2002. p. 171–210.

Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to
algorithms. MIT Press and McGraw-Hill; 1990.

DeHon A. Comparing computing machines. In: SPIE – int. soc. opt.
eng. Proceedings of SPIE – the international society for optical
engineering, vol. 3526; 1998. p. 124–33.

DeHon A, Wawrzynek J. Reconfigurable computing: what, why,
and implications for design automation. In: Proceedings of the
design automation conference; 1999. p. 610–5. West Point, NY.

Denning DE. A lattice model of secure information flow.
Communications of the ACM May 1976;19(5).

Erlingsson Ulfar, Schneider Fred B. Sasi enforcement of security
policies: a retrospective. In: Proceedings of the 1999 workshop
on new security paradigms; 1999.

Fong Philip WL. Access control by tracking shallow execution
history. In: Proceedings of the 2004 IEEE symposium on
security and privacy; 2004.

Fraser T, Badger L. Ensuring continuity during dynamic security
policy reconfiguration in dte. In: Proceedings of the 1998 IEEE
symposium on security and privacy; 1998. p. 15–26.

Gerzic Amer. Codeguru: write your own regular expression
parser; November 2003.

Goguen JA, Meseguer J. Security policy and security models. In:
Proceedings of the 1982 IEEE symposium on security and
privacy; 1982. p. 11–20.

Gutmann Peter, Grigg Ian. Security usability. IEEE Security and
Privacy Magazine July/August 2005.

Hadzic I, Udani S, Smith J. FPGA viruses. In: Proceedings of the
ninth international workshop on field-programmable logic
and applications (FPL ’99); August 1999. Glasgow, UK.

Haigh JT, Kemmerer RA, McHugh J, Young WD. An experience
using two convert channel analysis techniques on a real
system design. IEEE Transactions on Software Engineering
February 1987;13(2):157–68.

Harper Scott, Athanas Peter. A security policy based upon
hardware encryption. In: Proceedings of the thirty-seventh
Hawaii international conference on system sciences; 2004.

Harper Scott, Fong Ryan, Athanas Peter. A versatile framework
for fpga field updates: an application of partial self-
reconfiguration. In: Proceedings of the fourteenth IEEE
international workshop on rapid system prototyping; June 2003.

Huffmire T, Brotherton B, Wang G, Sherwood T, Kastner R. Moats
and drawbridges: an isolation primitive for reconfigurable
hardware based systems. In: Proceedings of the 2007 IEEE
symposiumonsecurityandprivacy;May2007.Oakland,CA,USA.

Huffmire Ted, Prasad Shreyas, Sherwood Tim, Kastner Ryan. Policy-
drivenmemory protection for reconfigurable systems. In:
Proceedingsof theEuropeansymposiumonresearch incomputer
security (ESORICS); September 2006. Hamburg, Germany.

Irvine C, Levin T, Nguyen T, Dinolt G. The trusted computing
exemplar project. In: Proceedings of the fifth IEEE systems,
man and cybernetics information assurance workshop; June
2004. p. 109–15. West Point, NY.

Irvine Cynthia E, Levin Timothy E, Nguyen Thuy D, Shifflett David,
Khosalim Jean, Clark Paul C, et al. Overview of a high assurance
architecture for distributed multilevel security. In: Proceedings
of the 2002 IEEE workshop on information assurance and
security; June 2002. West Point, NY.

Johnson S. Yacc: yet another compiler-compiler. Technical Report
CSTR-32, Bell Laboratories, Murray Hill, NJ; 1975.

Kastner Ryan, Kaplan Adam, Sarrafzadeh Majid. Synthesis
techniques and optimizations for reconfigurable systems.
Boston, MA: Kluwer Academic; 2004.

Kean T. Secure configuration of field programmable gate arrays.
In: Proceedings of the eleventh international conference on
field programmable logic and applications (FPL ’01); August
2001. Belfast, UK.

Kean T. Cryptographic rights management of FPGA intellectual
property cores. In: Tenth ACM international symposium on
field-programmable gate arrays (FPGA ’02); February 2002.
Monterey, CA.

Kemmerer RA. Shared resource matrix methodology: an
approach to identifying storage and timing channels. In: ACM
transactions on computer systems; 1983.

c om p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 1 9 7 – 2 1 5214

Kemmerer RA. A practical approach to identifying storage and
timing channels: twenty years later. In: Proceedings of the
eighteenth annual computer security applications conference;
December 2002. Las Vegas, Nevada, USA.

Kocher P, Lee R, McGraw G, Raghunathan A, Ravi S. Security as
a new dimension in embedded system design. In: Proceedings
of the forty-first design automation conference (DAC ’04); June
2004. San Diego, CA.

Lach J, Mangione-Smith W, Potkonjak M. FPGA fingerprinting
techniques for protecting intellectual property. In:
Proceedings of the 1999 IEEE custom integrated circuits
conference; May 1999a. San Diego, CA.

Lach J, Mangione-Smith W, Potkonjak M. Robust FPGA
intellectual property protection through multiple small
watermarks. In: Proceedings of the thirty-sixth ACM/IEEE
conference on design automation (DAC ’99); June 1999b. New
Orleans, LA.

Lampson BW. A note on the confinement problem.
Communications of the ACM October 1973;16(10):842–56.

Lesk M, Schmidt E. Lex: a lexical analyzer generator. Technical
Report 39, Bell Laboratories, Murray Hill, NJ; October 1975.

Timothy E. Levin, Cynthia E. Irvine, Thuy D. Nguyen. A least
privilege model for static separation kernels. Technical Report
NPS-CS-05–003, Naval Postgraduate School; 2004.

Linz Peter. An introduction to formal languages and automata.
Sudbury, MA: Jones and Bartlett; 2001.

Mangione-Smith WH, Hutchings B, Andrews D, DeHon A,
Ebeling C, Hartenstein R, et al. Seeking solutions in configurable
computing. In: Computer, vol. 30 (12); 1997. p. 38–43.

De Micheli Giovanii. Synthesis and optimization of digital
circuits. New York: McGraw-Hill; 1994.

Millen JK. Security kernel validation in practice. Communications
of the ACM May 1976;19(5):243–50.

Millen JK. Covert channel capacity. In: Proceedings of the 1987 IEEE
symposiumonsecurityandprivacy;April1987.Oakland,CA,USA.

Millen JK. Finite-state noiseless covert channels. In: Proceedings
of the computer security foundations workshop II; June 1989.
Franconia, NH, USA.

Navarro J, Iyer S, Druschel P, Cox A. Practical, transparent
operating system support for superpages. In: Fifth symposium
on operating systems design and implementation (OSDI ’02);
December 2002. Boston, MA.

Raymond D, Wood D. Grail: A Cþþ library for automata and
expressions. Journal of Symbolic Computation 1995;11:341–50.

Rushby John. A trusted computing base for embedded systems.
In: Proceedings seventh DoD/NBS computer security
conference; September 1984. p. 294–311.

Sabelfeld Andrei, Myers Andrew C. Language-based information-
flow security. IEEE Journal on Selected Areas in
Communications January 2003;21(1).

Saltzer J. Protection and the control of information sharing in
multics. Communications of the ACM July 1974;17(7):388–402.

Sami Saydjari O. Multilevel security: reprise. IEEE security and
privacy magazine; September/October 2004.

Schaumont P, Verbauwhede I, Keutzer K, Sarrafzadeh M. A quick
safari through the reconfiguration jungle. In: Proceedings of
the design automation conference; 2001. p. 172–7.

Schneider Fred B. Enforceable security policies. ACM Transactions
on Information and System Security February 2000;3(1).

Senior AW, Pankanti S, Hampapur A, Brown L, Tian Y-L, Ekin A.
Blinkering surveillance: enabling video privacy through
computer vision. Technical Report RC22886, IBM; 2003.

Shieh S. Estimating and measuring covert channel bandwidth in
multilevel secure operating systems. Journal of Information
Science and Engineering 1999;15:91–106.

Smith Richard E. Cost profile of a highly assured, secure operating
system. In: ACM transactions on information and system
security; 2001.

Standaert F, Oldenzeel L, Samyde D, Quisquater J. Power analysis
of FPGAs: how practical is the attack?. In: Field-Programmable
Logic and Applications, vol. 2778 (2003); September 2003.
p. 701–11.

Stern DF. On the buzzword ‘‘security policy’’. In: Proceedings of
the 1991 IEEE symposium on security and privacy; 1991. p.
219–30. Oakland, CA.

Tsai CR, Gligor V. A bandwidth computation model for covert
stroage channels and its applications. In: Proceedings of
the IEEE symposium on security and privacy; 1988. p. 108–21.

Tsai CR, Gligor V, Chandersekaran C. On the identification of
covert storage channels in secure systems. IEEE Transactions
on Software Engineering June 1990;16(6).

Vuillemin JE, Bertin P, Roncin D, Shand M, Touati HH, Boucard P.
Programmable active memories: reconfigurable systems come
of age. In: IEEE transactions on very large scale integration
(VLSI) systems, vol. 4 (1); 1996. p. 56–69.

Weissman Clark. MLS-PCA: a high assurance security
architecture for future avionics. In: Proceedings of the annual
computer security applications conference. Los Alamitos, CA:
IEEE Computer Society; December 2003. p. 2–12.

Cates Witchel J, Asanovic K. Mondrian memory protection. In:
Tenth international conference on architectural support for
programming languages and operating systems (ASPLOS-X);
October 2002. San Jose, CA.

Wollinger T, Guajardo J, Paar C. Security on FPGAs: state-of-the-
art implementations and attacks. ACM Transactions on
Embedded Computing Systems August 2004;3(3):534–74.

Woodward J. Exploiting the dual nature of sensitivity labels. In:
IEEE symposium on security and privacy; 1987. p. 23–30.
Oakland, CA, USA.

Zheng L, Myers A. Dynamic security labels and noninterference.
Technical Report 2004–1924, Cornell University; 2004.

Ted Huffmire is an Assistant Professor of Computer Science
at the Naval Postgraduate School. His research focus is
hardware-assisted security, especially the development of
policy-driven mechanisms for special-purpose devices and
next-generation processors. Ted has a PhD in Computer
Science from UC Santa Barbara. He is a member of the IEEE.

Timothy Sherwood is an Assistant Professor of Computer
Science at UC Santa Barbara. His research is in the area of
computer architecture, specifically in the development of
novel high throughput methods by which systems can be
constructed, monitored, and analyzed. Prior to joining UCSB
in 2003, he received his BS in Computer Science and Engineer-
ing from UC Davis, and his MS and PhD in the same from UC
San Diego. He is a member of both ACM and IEEE.

Ryan Kastner is an Associate Professor in the Department of
Computer Science and Engineering at UC San Diego. His
research interests include many aspects of embedded com-

puting systems including reconfigurable architectures, digital
signal processing, and security. Ran received his PhD in
Computer Science from UCLA.

Timothy Levin is an Associate Research Professor at the Naval
Postgraduate School. His research interests include design,
analysis, and verification of high-assurance security architec-
tures and dynamic security policies. Mr. Levin has a BS in
Computer Science from UC Santa Cruz and is a member of
both ACM and IEEE.

c om p u t e r s & s e c u r i t y 2 7 (2 0 0 8) 1 9 7 – 2 1 5 215

	Enforcing memory policy specifications in reconfigurable hardware
	Introduction
	Reconfigurable systems
	Architecture of a reconfigurable system
	Reconfigurable devices and security
	Protecting memory on an FPGA

	Video redaction: a motivating example

	Policy description and synthesis
	Memory access policy
	Hardware synthesis
	Design flow details
	Access policy
	Building and transforming a parse tree
	Building the regular expression
	Constructing the NFA
	Converting the NFA to a DFA
	Processing the ranges
	Converting the DFA to Verilog
	State machine synthesis

	Example applications
	Access control list
	Controlled sharing
	Chinese wall
	Redaction
	Bell and LaPadula confidentiality model
	High water mark
	Biba integrity model
	Dynamic policies

	Integration and evaluation
	Enforcement architecture
	Evaluation
	Synthesis results
	Impact of the reference monitor on system performance

	Covert storage channels
	Storage channels in stateful policy enforcement systems
	Automatically detecting policy-based covert storage channels
	Approaches to covert channel management
	Approaches for measuring covert channels
	Options for closing and throttling covert channels

	Related work

	Conclusions
	References

