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Abstract— Shepard et al. made empirical and theoretical inves-
tigation of the difficulties of different kinds of classifications using
both learning and memory tasks [Shepard et al., 1961]. As the
difficulty rank mirrors the number of feature dimensions relevant
to the category, later researchers took it as evidence that category
learning includes learning how toselectively attend to only useful
features, i.e. learning to optimally allocate the attention to those
dimensions relative to the category [Rosch and Mervis, 1975].
We built a recurrent neural network model that sequentially
attended to individual features. Only one feature is explicitly
available at one time (as in Rehder and Hoffman’s eye tracking
settings[Rehder and Hoffman, 2003]) and previous information
is represented implicitly in the network. The probabilities of eye
movement from one feature to the next is kept as a fixation
transition table. The fixations started randomly without much
bias on any particular feature or any movement. The network
learned the relevant feature(s) and did the classification by
sequentially attending to these features. The rank of the learning
time qualitatively matched the difficulty of the categories.

Index Terms— category learning, selective attention, sequential
processing, recurrent network, fixation transition table

I. I NTRODUCTION

Shepard et al. (1961) examined how people learn simple
concepts. The concept was a classification task. The stimuli
were 8 objects which differed in 3 binary features (Figure 1).
4 of the 8 stimuli are assigned to class one and the remaining
4 are assigned to class two. There are 70 possible ways to
assign the classes (combinations of four out of eight). The 70
possible categories belong to 6 basic types (Figure 2):

• Category type I: categories in which the classification is
based on the value of only one feature (the example in
Figure 2 is based on color: black ones are in class 1 and
white ones are in class 2.)

• Category type II: categories in which the classification
is based on the values of two features (the example in
Figure 2 is based on color and shape: black triangles and
white squares are in class 1 while white triangles and
black squares are in class 2)

• Category type III, IV and V: categories in which classi-
fication is based on all three features, but some of the
individual feature or feature pairs give information about
the classification (this will be further discussed when
examining the mutual information between the features
and categories)

– Type III: only two features are needed per instance
(it can be solved by a height 2 decision tree).

– Type IV: each feature is useful alone (classification
based on any single feature can achieve 75% accu-
racy.)

– Type V: only one feature is useful by itself.
• Category type VI: categories in which classification is

based on all three features and no individual features or
feature pairs give any information about the classification.
This category type includes only the two possible 3d
XOR classifications.

Fig. 1. 8 stimuli differed in 3 binary features: shape (circle or
triangle), size (big or small) and color (black or white) (adapted from
[Shepard et al., 1961])

Fig. 2. 6 basic categories (adapted from [Shepard et al., 1961])

Shepard et al. found that the difficulty ordering among these
basic category types is type I<II<(III, IV, V) <VI. When the
features are separated in space, the difficulties increase but the
ranking remains the same. Since the ordering suggests that
the difficulty goes up with the number of feature dimensions



that the category type based on, it was taken as evidence
that category learning includes learning how to selectively
attend to only the feature dimensions useful for classification
[Rosch and Mervis, 1975].

Recent work by Rehder and Hoffman(2003) further investi-
gated selective attention in category learning by separating the
feature dimensions in space and looking at the eye movement
data by eye tracking. This is theoretically interesting because
by using eye tracking, what feature dimensions have been
actually attended to and when people attend to them can
be explicitly measured. This tells us more than just learning
speed. The 3 binary feature dimensions were realized by 3
paris of text symbols ($ or̄c, ? or ! and + or -). An example
of the stimuli is shown in Figure 3. They had experiments
on category type I, II, IV and VI, given type III, IV and
V have similar difficulties. The subjects were instructed to
guess the class of a presented stimulus by pressing one of two
buttons and they got feedback immediately after the guess.
The 8 different stimuli were presented randomly in blocks
of 8. The learning continued for 28 blocks or ended early if
the subject guessed correctly for 4 blocks in a row. The eye
tracker was set up to record subjects’ eye movement during
the learning. They replicated the category difficulty ordering:
one < two < four < six. Figure 4 shows the average
number of features fixated for learners in each category type
in each block. For subjects who ended early in learning,
the data for the last block was used for remaining blocks.
It shows that toward the end of the learning, the category
one group only examined about 1 feature, the category two
group only examined about 2 features and the category four
and six groups usually examined all 3 features. The authors
suggested that this confirmed that subjects allocated their at-
tention (as measured by eye movements) to only those features
needed to solve the classification problem. They discussed
two categorization theories based on computational models:
a connectionist model, ALCOVE [Kruschke, 1992], which
predicts that attention weights gradually shift toward better
performance as learning experiences accumulate, and a rule
based model RULEX [Nosofsky et al., 1994], which predicts
that learners will start from only one single feature. ALCOVE
explains the human data better given that the subjects mostly
start by attending to all three features, then stop attending to
the unrelated ones. However, ALCOVE does not predict the
sudden shift to one feature in type I which is followed by error
free performance. Also, ALCOVE processed all the features in
parallel. In Rehder and Hoffman’s experiments, subjects can
only attend to features sequentially because no two features
can be foveated at same time. Note that this is only true for
the stimuli whose features are separated in space (Figure 3)
but not for the stimuli whose features are not (Figure 1.) The
constraint that subjects can only sequentially attend to each
feature could be the reason that category learning is harder
when the features are spatially separated, though the difficulty
rank does not change. In this paper, we built a recurrent
network which attended to features sequentially. It learned
the relevant features while learning the category. Section

two explains our model; section three reports the simulation
results; section four examines the mutual information between
feature(s) and the category; section five concludes with some
discussion.

Fig. 3. The stimuli used by Rehder and Hoffman. Note that the
features are spatially separated. (from [Rehder and Hoffman, 2003])

Fig. 4. The number of features fixated for each category learning.
This is an average. A single subject shows a sudden change for type
I. (from [Rehder and Hoffman, 2003])

II. RECURRENTMODEL WHICH LEARNS THERELEVANT

FEATURES AND THECATEGORY

In this section, we will describe our model which simulates
the concept learning process. The model is inspired by Rogers
and Casteren’s recurrent network model of active vision for
object recognition which could classify simple patterns in a
positional invariant way and combine spatial features with
dynamic fixations [Rogers and Casteren, 2003].

Our model consists of a classifier of a recurrent two layer
back propagation neural network and a fixation transition
table (FTT) whose entries are the probabilities of the next
fixation given the current fixation (Figure 5). The classifier is
a combination of both Elman’s network and Jordan’s network
in the sense that both the output and the hidden layer are
forwarded to the next step as input. Each binary feature is
presented as a binary variable taking a value of 0 or 1 (i.e.
?=0, !=1) and so is the class label. The output consists of two
units, which stand for the two categories. The input includes
the current fixation, the feature at this fixation, and the output
and hidden layer activations from last step.

The FTT contains the conditional probabilities of fixation
transitions, which are updated according to the performance
of the classifier. It probabilistically decides the next fixation
upon the current one. Thus the eye movement decision making
in the model is a Markov decision process with a table look



up stochastic policy. The policy is learned in a matter similar
to temporal difference learning.

When the next fixation is decided, both the new fixation
and the feature at this fixation are provided to the classifier’s
input. The output would then give a category confidence. The
confidence could be low because of a lack of information (i.e.
not every relevant feature has been examined yet). The output
layer activation and hidden layer activation are copied to the
input of the next step (the initialization of these at the first step
is discussed later in this section.) Note that at every step, only
the feature that is currently fixated is explicitly present in the
input, which simulates the fact that subjects can attend to only
one feature at a time since the features are separated in space.
Information from earlier steps is only implicitly contained in
the hidden layer, which can be taken as a dynamic working
memory.

Fig. 5. Framework of our model.

The activation function of the hidden layer is a scaled tanh
function [LeCun et al., 1998]:

f(x) = 1.7159 tanh(
2
3
x) (1)

30 hidden units are used in the results reported in the paper.
The activation function of the output is softmax:

yi = eai/
∑

k

eak (2)

Cross-entropy is used as the error function for categorization.
Each entry in the FTT is the conditional probability of

the next fixation given the current fixation. Each column
corresponds to a current fixation. Fixation0 denotes the
beginning of a trial (no current fixation yet). The first fixation
is probabilistically decided by its transition probability to each
feature. Fixations1 to 3 denote the current fixation of features
1 to 3 respectively. Each row corresponds to a feature as
the next fixation. The FTT is initialized before the learning
process. Each entry is independently drawn from the uniform
distribution in the range[3, 4]. Each column is then normalized
to sum to 1. We initialize the FTT this way because we assume

that there is no strong bias toward any particular feature at
the very beginning, yet differences exist among individuals.
Table I shows an example of an initialized FTT.

TABLE I

THE FIXATION TRANSIT TABLE , AN EXAMPLE OF INITIALIZATION

Current Fixation
Next Fixation fix 0 fix 1 fix 2 fix 3

fix 1 0.3662 0.3129 0.3357 0.3174
fix 2 0.2995 0.3493 0.2932 0.3332
fix 3 0.3343 0.3377 0.3711 0.3494

The 8 patterns (000-111) were presented in random or-
der within each block of 8, as in Rehder and Hoffman’s
experiments. For each pattern, the first fixation is generated
by the first column of the FTT (conditional probability at
the beginning of guessing a new pattern). The feature is set
accordingly at the input. The category is set to [0.5 0.5] at the
input as the prior of the two categories (this information is
presented to subjects in Rehder and Hoffman’s experiments).
The hidden layer copy part of the input is set to zeros,
simulating the fact that no information has been collected
about the pattern at the very beginning. The information is then
fed forward to the output layer. The next fixation is generated
based on the current fixation and the corresponding column of
the FTT. Then the corresponding feature is presented. The next
step is carried on by feeding forward the new fixation, feature,
last hidden layer activation and the category estimation at the
output layer.

For each pattern, the network makes at most 3 fixations
before making the final guess of the class according to the
category output activation. The category with larger activation
at the output layer after the last fixation is assigned to the
pattern. If the confidence of a category is over90% (the
activation > 0.9), then the classifier stops early here and
assigns the category to the pattern. After the guess, the
correct answer is presented and the network knows whether it
made a correct guess. This is similar Rehder and Hoffman’s
experiments, in which the human subjects would not have the
feedback until they make the guess. The error is then back
propagated to the classifier with standard back propagation
for each step. The learning rate isα and there is a degrading
ratio of θ each step which simulates the degrading of memory
over time. Here we have an implicit assumption that fixations
closer to the decision are remembered better, and so implicitly
affect future decisions more. The degradation is inspired by the
temporal difference learning of TD-Gammon (Gerald Tesauro
1995) which learns how to play the game of Backgammon.

In the process of making guess for each pattern, a fixation
updating table (FUT), which has similar entries to the FTT,
is initialized to have zero entries and accumulate during the
fixations. At each new fixation, the FUT is degraded by a
factor of λ and the corresponding entry of the eye movement
in the updating table is incremented byγ.

FUT (t) = λ ∗ FUT (t− 1) (3)



FUT (t)fix(t−1),fix(t) = FUT (t)fix(t−1),fix(t) + γ (4)

At the end of each pattern guess, if the guess is correct,
we take the sequence of movement as a good one. The FUT
is then weighted by the confidence and added to the FTT to
reinforce these movements by increasing the probabilities of
the corresponding entries . The weighted FUT is subtracted
from the FTT if otherwise.

FTT =
{

FTT + (yi − 0.5) ∗ FUT, correct
FTT − (yi − 0.5) ∗ FUT, wrong

(5)

yi is the activation of the winner at the output layer.
Negative entries in FTT are set to0 and those larger than1

are set to1. Then the FTT is normalized so that every column
sums to1. The network keeps learning through trials of blocks
until it correctly classifies all the patterns for 50 blocks in a
row or arrives an upper limit of blocks.

III. R ESULTS

We trained the network on basic category types I, II,
IV and VI. The parameters used for the results reported
here are showed in Table II. These parameters were decided
empirically.

TABLE II

THE PARAMETERS FOR LEARNING THE CATEGORIES

α θ λ γ
0.01 0.3 0.8 0.05

In Rehder and Hoffman’s experiments the learning stops
after 28 blocks (in each block the 8 patterns were shown once
each in a random order) if not stopped earlier by making a
correct guess for 4 blocks in a row. We set a maximum block
number of2, 000. The learning stops here, unless it ends earlier
by classifying correctly 50 blocks in a row. Note that there is
extremely low probability of classifying everything correctly
for 50 blocks in a row (which contain 400 patterns) within
2, 000 blocks when the network only learns 7 out of 8 patterns.
Thus when there are 50 blocks in a row correctly classified,
we are confident that the network has learned the category of
all the patterns.

Table III shows the results of learning and Table IV shows
the human data from Rehder’s experiments for comparison.
One hundred networks were trained for each category. The
portion learned is how many out of a hundred stopped early
before reaching the maximum trial number. “Average blocks”
is the average number of blocks being considered by those
that stopped early (or those that learned before the maximum
trial). The order of the learning time is qualitatively consistent
with the difficulty of the categories.

Figure 6 shows the portion of each feature being fixated
in the process of training. As in Rehder and Hoffman’s
experiments (Figure 4), the last block’s data is used for blocks
afterwards. Consistent with human data, during the learning
of category one, the one feature that is relevant gets more

and more fixations until the category is learned. Similarly, in
the learning of category two, the two relevant features get
more and more fixations. In the learning of categories four and
six, the three features get about the same portion of fixations
throughout the learning.

TABLE III

LEARNING FOR CATEGORY TYPEI, II, IV AND VI

Category 1 2 4 6
Networks learned 100 100 96 91

out of 100 100% 100% 96% 91%
Average blocks 126 246 446 1108

(Std) (32) (59) (194) (382)

TABLE IV

THE HUMAN DATA FROM REHDER’ S EXPERIMENTS

[REHDER AND HOFFMAN, 2003]

Category 1 2 4 6
Individuals learned 18 18 15 10

out of 18 100% 100% 83% 56%
Average blocks 7.11 14.11 18.11 22.94

Fig. 6. The portion of each feature being fixated in category learning.

Table V shows some FTT exemplars of each category after
learning. We observed some characteristics of the learned FTT
and corresponding model behavior for each category:
• For category1, a high value is always assigned to entry

(1,0) after learning which means the network almost
always starts from feature one, which is the only feature
relevant to the category. The confidence of classification
usually arrives 90% at the first step and the categorization
ends here. So in most trials, the network ends up with
only one fixation at feature one.

• For category2, a high value is always assigned to either
entry (1,0) or entry (2,0) which means a given network



almost always starts from either feature one or feature
two which are the only features relevant to the category.
If entry (1,0) is big, entry (2,1) is always big while entry
(1,1) and entry (3,1) is always small. This makes sure
that if the network starts from feature one, then the next
feature being attended is feature two. Similarly, if entry
(2,0) is big, entry (1,2) is always big while entry entry
(2,2) and entry (3,2) are always small. In both cases,
the FTTs make sure that features one and two will be
attended in a certain sequence in the first two fixations.
That is, for all input patterns, the converged sequence is
either1 → 2 →? or 2 → 1 →?.

• For categories4 and 6, similar to category2, the FTT
always converges to a certain fixation pattern, while the
pattern is always a sequence of all three features being
fixated. For examples shown in Table V, a pattern of
3 → 2 → 1 for category 4 and a pattern of1 → 3 → 2
for category 6.

TABLE V

EXAMPLES OF FTT AFTER CATEGORY LEARNING

Category 1
0 1 2 3

1 0.9956 0.4899 0.4164 0.3285
2 0.0042 0.1607 0.3750 0.3990
3 0.0002 0.3494 0.2087 0.2725

Category 2
0 1 2 3

1 0.0011 0.0005 0.9991 0.2989
2 0.9987 0.7318 0.0005 0.3012
3 0.0002 0.2678 0.0004 0.3999

Category 4
0 1 2 3

1 0.0009 0.6781 0.9999 0.0010
2 0.0000 0.3142 0.0000 0.9990
3 0.9991 0.0077 0.0001 0.0000

Category 6
0 1 2 3

1 0.9988 0.0001 0.4282 0.0000
2 0.0006 0.0014 0.0000 1.0000
3 0.0006 0.9985 0.5718 0.0000

IV. M UTUAL INFORMATION BETWEEN FEATURES AND

CATEGORIES

To further investigate how much information each feature
conveys about a category quantitatively, we compute the
mutual information between features and categories.

I(F ;C) = H(C)−H(C|F ) (6)

In the equation, I denotes mutual information, C denotes
category, F denotes feature and H denotes entropy. Entropy
measures the uncertainty. Mutual information I(F;C) thus
measures how much the uncertainty about the category is
reduced by knowing the feature.

Table VI shows an example of each basic category type. The
first column shows all the possible patterns (corresponding to
the 8 stimuli) where x,y and z are the three features that each
can be 0 or 1. Columns 2-7 are examples of a basic category

type I-VI respectively. Patterns with labels 0 belongs to one
class and those with 1 belongs to the other.

TABLE VI

BASIC CATEGORY TYPES IN BINARY

Patterns Category
xyz I II III IV V VI
000 0 1 0 1 0 1
001 0 1 0 1 0 0
010 0 0 1 0 1 0
011 0 0 1 1 1 1
100 1 0 1 0 1 0
101 1 0 0 1 0 1
110 1 1 1 0 0 1
111 1 1 0 0 1 0

Mutual information is then computed by the following
equation and the results are shown in Table VII. Similarly we
can compute the mutual information between pairs of features
and the category. The results are shown in Table VIII.

I(F ;C) =
∑

f

∑
c

p(f, c) log
p(f, c)

p(f)p(c)
(7)

TABLE VII

THE MUTUAL INFORMATION BETWEEN INDIVIDUAL FEATURES AND

CATEGORIES

I II III IV V VI
x 1 0 0 0.1887 0 0
y 0 0 0.1887 0.1887 0.1887 0
z 0 0 0.1887 0.1887 0 0

TABLE VIII

THE MUTUAL INFORMATION BETWEEN PAIRS OF FEATURES AND

CATEGORIES

I II III IV V VI
xy 1 1 0.5 0.5 0.5 0
yz 0 0 0.5 0.5 0.5 0
zx 1 0 0.5 0.5 0 0

Note that if the mutual information is 0, it means just by
this feature (or pair of features) we can do no better than
random. While if the mutual information is 1, it means by
this feature (or pair of features) we can classify perfectly. If
the mutual information is somewhere between 0 and 1, we
can do better than chance but not perfectly. Table VII shows
that by attending to only one feature, we can classify type
I perfectly, get some information about type III, IV and V,
but cannot get any information for types II or VI. Table VIII
shows that by attending to only two features, we can classify
type II perfectly, get more information for type III, IV and
V than by attending to one feature, but still cannot get any
information for type VI. This may explain why category VI is
more difficult than category III, IV and V although all of these
categories involve three features. The reason could be that



category III, IV and V can be partially classified by attending
to one or two features but category VI needs all three features
to be considered to be better than random.

V. D ISCUSSION

Our model successfully learned the selective attention in
the category learning task. It was simple and did not have an
explicit mechanism to select features. It started from attending
to all the features more or less equally, but ended up attending
to relevant features much more than others through learning.

The mutual information between features and categories
suggests that by greedily incrementing informative features
according to mutual information would fail at least for type II,
because the mutual information between individual features
and the category are all zero for type II. The eye movement
pattern of the human subjects suggests that instead of finding
informative features one after another, it is more likely
that all available information is considered at the beginning
and unrelated features are later discarded in this category
learning. This is consistent with our model and ALCOVE.
The key difference between our model and ALCOVE is that
ALCOVE is exemplar based and achieves selective attention
by decreased attention weight on irrelevant features, while
our model does so by fixating them rarely or not at all.
It has been hypothesized that exemplar based classification
processes are most likely to operate in domains involving
integral dimension as opposed to separable dimension
stimuli [Nosofsky and Palmeri, 1997]. Integral dimension
stimuli are tend to be perceived and represented as unitary
whole, while highly separable dimension stimuli may require
serial processing or limited-capacity parallel processing
[Garner, 1974], [Lockhead, 1972], [Shepard, 1964],
[Shepard and Chang, 1963], [Treisman and Gelade, 1980].
We suggest that ALCOVE accounts for the process of
selectively allocating attention in category learning when the
features are not spatially separated, while our model accounts
for the process when they have to be sequentially examined.

As discussed earlier in the result section, for categories two,
four and six, where more than one feature is relevant to the
category, our model always converges to a certain fixation
pattern. That is, for all the eight stimuli, it examines the
relevant features in the same sequence. This scan sequence
is different from trial to trial due to different initialization
of the FTT and the connecting weights of the network. Our
model predicts that people ultimately converge on a certain
fixation pattern during the process of category learning when
the features are spatially separated. The fixation sequence of
different patterns is consistent within an individual when the
category is learned, while differences across individuals are
expected.

Our model is very simplified in the sense that there are only
3 features to choose from and each feature is a binary variable.
Also, the eye movements only depend probabilistically on the
position of the last fixation but not on the feature values. We
believe that sequential processing is what ultimately goes on in
high levels of vision because of the limit of computing ability

- that is why we have saccades. The interesting questions
here are how the eye movements are directed and how the
information gained across saccades is integrated. We would
like to take this model as a preliminary work for a more
realistic eye movement model which would learn complicated
tasks such as face identification.
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