
Sequential Cost-Sensitive
Decision-Making with
Reinforcement Learning

Edwin Pednault
Naoki Abe
Bianca Zadrozny
(also Haixun Wang, Wei Fan and Chid Apte)
IBM T.J. Watson Research Center

Introduction

Cost-sensitive learning methods learn
policies that attempt to minimize the
cost of a single decision.
However, in many applications,
sequences of decisions must be made
over time.
In this case, the optimal policy must
consider the interactions between
decisions.

“Why do I receive so
much junk mail?”

Current approaches to targeted
marketing attempt to maximize
expected profit considering each
campaign in isolation.
This is a greedy approach which
often results in over-mailing.
A better approach is to maximize
profit over a series of campaigns.

Priming and Saturation
Priming: choosing an
action that is not profitable
immediately but that
increases the probability
of response in the future.
Saturation: after a certain
number of mailings, the
probability of response
per mailing decreases as
more mail is sent.

Budgetary limits
Annoyance factor

0
0.02
0.04
0.06
0.08

0.1
0.12

1 2 3 4 5 6 7 8 9 10
Number of mailings

Pr
ob

ab
ilit

y o
f r

es
po

ns
e

Reinforcement learning

In state st, the agent chooses action at according to a policy
, and the environment transitions probabilistically.

By the Markov assumption, the next state st+1 and the reward
rt+1 depend only on st and at ,
RL methods specify how to change the policy as a result
of experiments to maximize the cumulative reward:

Agent

Environment

action
atrt+1

st+1

state
st

reward
rt

∑
∞

=

−=
1

1

t
t

t rR γ

)(sπ

)(sπ

Reinforcement learning for
targeted marketing

States: contain customer’s demographic and
behavioral features, and possibly environment features
such as seasonal information and inventory data.
Actions

mail
do not mail

(possible have different types of mailings)
Rewards

Positive: revenue received from customer
Negative: cost of mailing

Value function
A value function gives the expected return for taking
action a in state s and following a policy thereafter:

The optimal policy has a value function Q*(s,a)
such that for all s and a.
If the expected reward and the transition probabilities
are known for every state and action, we can compute
the optimal value function Q*(s,a) .
Using Q*(s,a) we can compute the optimal policy:

π

 === ∑

∞

=

aassrEasQ
t

t
t

00
1

,),(γπ
π

),(*maxarg)(* asQs a=π

*π
),(),(* asQasQ π≥

Q-learning
In learning situations where the environment
parameters, the learner needs to infer a good policy
through observation.
Q-learning starts with an initial guess of Q(s,a) and
then updates it at each time step according to

which can be rewritten as

Convergence to the optimal policy is guaranteed if
every action is repeatedly tried in every reachable
state and α decreases with time (use ε-greedy policy).

))',(max(),()1(),(1'1 asQrasQasQ tattttt ++ ++−← γαα

)),()',(max(),(),(1'1 tttattttt asQasQrasQasQ −++← ++ γα

Sarsa
Instead of maximizing over possible actions, we can
choose the next action based on the current policy:

The name “sarsa” comes from the quintuple
used in the update rule.
Sarsa also converges to the optimal policy given the
same conditions as needed for Q-learning
convergence.
However, the policies generated during the learning
process tend to be more conservative.

)),((),()1(),(111 +++ ++−← ttttttt asQrasQasQ γαα

),,,,(11 ++ ttttt asras

Function Approximation

Standard RL methods assume that the
number of states is finite.
But in targeted marketing each state
consists of a large number of categorical
and real-valued features representing a
customer, resulting in a large state space.
A regression method is used to approximate
the value function, generalizing it to states
that have never been seen.

Batch Reinforcement Learning

Standard RL methods assume that on-line
interaction with the environment is possible.
In targeted marketing and other applications, it is
not possible to directly interact with the
environment.
But a large amount of data describing past
transactions is available.
Batch RL uses static training data consisting of
episodes, which are sequences of state-action-
reward triples:

where l is the length of an episode.
),,(,),,,(),,,(111000 lll rasrasras

Batch-RL (sarsa)

1. Let be an episode.
2. For j=1 to l – 1

3.

We repeat this procedure for each episode ei, and
obtain .
We then learn a new Q-function using D.
This process is repeated for a number of iterations.

),,(,),,,(000 llli rasrase =

)),((),()1(11 ++++−= jjjjjj asQrasQv γαα

{ }1,,1|,, −== ijjji ljvasD

Ni iDD
,,1=

=

Using regression, we learn an initial Q-function
mapping states and actions to immediate rewards.

Regression Method: ProbE

The IBM ProbE learning method
produces decision trees with
multivariate linear regression models
at the leaves.
Feature selection and pruning are
performed both at the tree level and at
the node level.

Evaluation by Simulation (1)
Because we cannot directly interact with the
environment, it is not straightforward to
evaluate a learned policy.
We construct a model of the environment by
estimating the following functions:

P(s,a): the probability of response as a function
of the state and action.
A(s,a): the amount of donation given that there
is a response, as a function of the state and
action.

Evaluation by Simulation (2)
The immediate reward r(s,a) can be determined by
flipping a coin with bias P(s,a) to determine if there is a
response:

If there is no response r(s,a)=0
If there is a response r(s,a)=A(s,a) – c, where c is the
cost of mailing.

The next state can be found by updating each state
variable.

For example, ngiftall is incremented by one if there was a
response.

We select a number of individuals and start the
simulation by setting their initial states to be their actual
states prior to a certain campaign.
From then we use the policy to select actions and the
model to calculate the rewards and next state for each
individual, repeating this for the sequence of campaigns.

Experimental Setup
We use the donation dataset from the KDD-98
competition.
It contains demographic data for about 100K individuals
(training set), along with the promotion history of 22
campaigns:

whether the individual was mailed or not
whether the individual responded or not
if the individual was mailed: date of mailing
if the individual responded: date of response

Based on the campaign information in the data, we
compute a number of temporal features that capture the
state of the individual at the time of each campaign.

State representation

promrecency/timelagpromrecratio

recency/timelagrecencyratio

recent amount per gift (last 6 months)recamntpergift

number of months between first promotion and gifttimelag

number of months since last promotionpromrecency

recent amount per promotion (last 6 months)recamptperprom

total amount of recent gifts (last 6 months)totrecamnt

number of recent gifts (last 6 months)nrecgifts

number or recent promotions (last 6 months)nrecproms

total amount of gifts to dateramntall

amount of dollars of last giftlastgift

number of promotions since last giftrecency

ngiftall/numpromfrequency

number of promotions to datenumprom

number of gifts to datengiftall

income bracketincome

individual’s ageage

DescriptionVariable

Experimental Results

We compare the policies learned by Q-
learning and sarsa to the single-event
targeting method.
As the single-event method we use ProbE
to predict immediate rewards (profits) as a
function of state and action.
We mail an individual if the expected reward
for mailing exceeds that for not mailing.

Life Time Profits
Iteration number 0
corresponds to the single-
event method.
The plots were obtained by
averaging over 5 runs, using
10,000 individuals and 16
campaigns for training.
Both Q-learning and sarsa are
significantly better than the
single-event method.
Q-learning is slightly better
than sarsa, which is not
surprising given that sarsa
performs a local improvement
based on the current policy.

T
ho
us
an
ds

Rule behavior:
Number of Mailings

The policy obtained
by sarsa is
significantly more
cost-containment than
the single-event one.
Q-learning creates a
policy that mails to
almost all individuals.

Rule Behavior:
Profits per Campaign

The policy produced by sarsa generates less profits in the
beginning and more profits in the end, as expected for RL
methods.

Sampling for Enhanced
Scalability
We can make our methods scale to a huge
number of records by using random sampling.
We can also simulate on-line reinforcement
learning with a particular policy by using just
the data that conform to the policy.

Q-sampling: use only states for which the
action taken in the next state is optimal
according to the current estimate of the Q-
value function.
TD(λ)-sampling: look ahead an arbitrary
number of states and select only those states
in which optimal actions are taken in all
subsequent states.

Comparison of
Sampling Methods

By using Q-sampling and
TD-sampling, we can
substantially reduce the
data set size, without
compromising
performance.
As the look-ahead size
increases by 1, the
sampling size is roughly
cut in half (because there
are two possible actions).

Conclusions
We presented a novel approach to sequential
cost-sensitive decision-making, based on the
reinforcement learning framework.
The simple model used for evaluation may not
be capturing the behavior of customers, so
experimentation in the real-world is needed.
Another possibility is to use the simulation
model to learn a policy and compare it to the
policies learned by the batch methods.

