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ABSTRACT
Simultaneous Broadcast protocols allow different parties to
broadcast values in parallel while guaranteeing mutual in-
dependence of the broadcast values. In this work, we study
various definitions of independence proposed in the liter-
ature by Chor, Goldwasser, Micali and Awerbuch (FOCS
1985), Chor and Rabin (PODC 1987) and Gennaro (IEEE
Trans. on Parallel and Distributed Systems, 2000), and prove
implications and separations among them.

In summary, we show that each definition (generalized
to allow arbitrary input distributions) is characterized by a
class of “achievable” input distributions such that there is a
single protocol that simultaneously meets the definition for
all distributions in the class, while for any distribution out-
side the class no protocol can possibly achieve the definition.
When comparing sets of achievable distributions, the defini-
tion of Gennaro is the most stringent (followed by the Chor
and Rabin one, and Chor, Goldwasser, Micali and Awerbuch
as the most relaxed) in the sense that it is achievable for the
smallest class of distributions. This demonstrates that the
definitions of Gennaro, and Chor and Rabin are of limited
applicability.

Then, we compare the definitions when restricted to achiev-
able distributions. This time the results of our comparison
rank the definitions in the opposite order, with the definition
of Chor, Goldwasser, Micali and Awerbuch as the strongest
one (followed by Chor and Rabin, and then Gennaro) in the
sense that security according to the stronger definitions im-
plies security according to the weaker ones. We also give
examples showing that the implications are strict, i.e., there
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are input distributions such that a protocol can meet the
weaker definition, but fail to satisfy the stronger. The sepa-
ration between the definitions of Gennaro and Chor and Ra-
bin is particularly strong, as we show that there is a single
protocol that is simultaneously secure according to Gennaro
under any achievable input distribution, but does not satisfy
the definition of Chor and Rabin for any non-trivial distri-
bution. In particular, the separation holds for the special
case of the uniform input distribution originally considered
by the authors in their papers.

Categories and Subject Descriptors: F.0 [Theory of
Computation]: General

General Terms: Security Reliability

Keywords: Independence, Parallel Broadcast, Secure Func-
tion Evaluation.

1. INTRODUCTION
Broadcast channels allow one or more senders to efficiently

transmit messages to be received by all parties connected to
a (physical or virtual) communication network. Broadcast
is a fundamental communication primitive, both in the de-
sign of network communication protocols, and in the area
of secure multiparty computation. The main security prop-
erty characterizing broadcast communication is consistency:
the messages received by all players as a result of a broad-
cast transmission operation are guaranteed to be the same.
The problem of achieving consistency when implementing
broadcast on top of a point to point network (commonly
known as the Byzantine agreement problem) is central not
only in cryptography, but also to the area of fault-tolerant
distributed computation, and it has received enormous at-
tention (e.g., [16, 18, 10, 5, 3]).

In secure multiparty computation, it is often desirable
that the broadcast channel satisfies some additional prop-
erties, besides consistency. In applications where multiple
senders can broadcast messages at the same time (e.g., when
running in parallel many copies of a broadcast protocol with
different senders), it is often important to enforce the simul-

taneous transmission of the messages, so that no sender can
decide its broadcast message based on the values broadcast
by the other players. This independence property plays a
fundamental role in the secure multiparty computation pro-
tocol of [7] as well as many important applications (like con-
tract bidding, coin flipping, and electronic voting schemes,
as exemplified in [8, 9, 12]) where broadcast is used in a
more or less direct way.

The concept of simultaneous broadcast (also called inde-
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pendent broadcast) was first put forward in [7] which pro-
posed a simulation-based definition, and presented protocols
that securely implement simultaneous broadcast on top of a
network which allows regular broadcast transmission oper-
ations, not necessarily satisfying the simultaneity property.
The protocols in [7] require (for each simultaneous broad-
cast operation) a number of rounds that is linear in the
number of parties. Given the importance of the simulta-
neous broadcast primitive, subsequent research efforts [8,
12] focused on reducing the round complexity, obtaining si-
multaneous broadcast protocols that run in logarithmically
many [8] or even constant [12] number of rounds (the lat-
ter result achieved in the common random string model.)
Unfortunately, a close inspection of [7, 8, 12] reveals that
the definitions of simultaneous broadcast used in the three
papers are quite different. Although, at first sight, all three
definitions may appear appealing and intuitive, the techni-
cal differences among them bring up the following questions:
what is the relation between the different definitions? Are
they equivalent? Are they increasingly stronger or weaker?
Or are they perhaps incomparable, in the sense that no one
implies the other?

Motivated by the efficiency improvement achieved by [8,
12] over the original linear round protocol of [7], we investi-
gate and compare the definitions proposed in these three pa-
pers. (More precisely, we compare their straightforward gen-
eralizations to arbitrary input distributions1.) Informally,
our findings rank the original definition [7] as the strongest,
and the most recent definition [12] as the weakest. Tech-
nically, we prove implications and separations showing that
the original definition [7] is strictly stronger (in a precise
sense to be defined) than the definition of [8], which, in turn,
is strictly stronger than the latest definition of [12]. The
comparison is not so straightforward because not all defini-
tions are achievable for any input distribution, and for any
pair of definitions (say, definition A and B) it may be pos-
sible to find a protocol Π and a distribution D such that Π
is satisfies definition A but not definition B on input drawn
according to D. So, it may seem that the definitions are
incomparable. In order to properly rank the definitions, we
first characterize the class of achievable input distributions
for each definition. Our characterization is tight: for each
definition A, we give a class of distributions D(A) such that

• definition A can be achieved in a strong sense: there
exists a single protocol Π that satisfies A for any dis-
tribution in D(A)

• the class D(A) cannot be extended even in a weak
sense: for any distribution outside D(A), no protocol
can possibly satisfy definition A.

It turns out that the class of distributions associated to the
three definitions form a monotonically decreasing sequence.
Let Sb, CR and G stand for the definitions given in [7], [8]
and [12] respectively, and let D(Sb), D(CR) and D(G) be the
corresponding classes of input distributions. We show that

D(Sb) ⊃ D(CR) ⊃ D(G).

Armed with this characterization of the input distributions

1 At the time the definitions were suggested, a prime appli-
cation of simultaneous broadcast was distributed coin flip-
ping. Apparently influenced by that, the definitions of [8,
12] were implicitly understood to be used with uniform in-
put distributions even though no such restriction was stated
on the original papers.

Sb

D(CR)
=⇒

Singleton

6⇐=

CR

D(G)
=⇒

D(G)

6⇐=

G

[7] [8] [12]

Figure 1: Our results. An arrow
∆

=⇒ from definition

A to B means that any protocol that achieves definition

A under all distributions in ∆ also achieves definition B

under the same distributions. A broken arrow 6
∆

=⇒ from

A to B indicates that the implication A
∆

=⇒ B is false.

associated to each definition, we prove implications and sep-
arations between the three definitions as follows.

We prove that definition Sb implies definition CR in the
sense that for any protocol Π, if Π is Sb-Independent for
every distribution D ∈ D(CR) (i.e., for any distribution for
which definition CR is achievable at all), then Π is also CR-
Independent for every such distribution. Moreover, we give
a simple example showing the reverse implication does not
hold true, i.e., there exists a class of input distributions
(such that Sb-Independence is achievable) and a protocol
Π such that Π is CR-Independent but not Sb-Independent
for every distribution in that class. We conclude that CR-
independence is strictly weaker than Sb-Independence.

Next we prove that definition CR implies definition G in
the sense that for any protocol Π, if Π is CR-Independent for
any distribution D ∈ D(G), then Π is also G independent
for any such input distribution. Moreover, we prove that
the reverse implication is not true, i.e., there is a protocol Π
that satisfies G-Independence for any distribution in D(G),
but it does not satisfy CR-Independence for any nontrivial
distribution (including the uniform). We conclude that G-
independence is strictly weaker than CR-Independence.

We remark that while the relation between Sb-Indepen-
dence and CR-Independence was to be expected because
Sb resorts to a general secure multiparty computation def-
initional framework, the relation between CR-Independence
and G-Independence was not as clear. In particular, [12]
seemed to suggest that the use of statistical notion of inde-
pendence makes definition G stronger than CR, which uses
a computational notion of closeness between distributions.
Our results show that when restricted to an appropriate
class of distributions, the relation between the two defini-
tions is opposite to the one suggested in [12].

We also remark that while simulation-based definitions
are usually stronger than other definitions, and in many
other cases in cryptography definitions have been made
stronger and stronger over time, to culminate with a def-
inition based on the simulation paradigm, the simultaneous
broadcast problem studied in this paper represents an in-
teresting case in which the reverse process has occurred:
the original and strong simulation-based definition has been
made weaker and weaker over time in order to achieve greater
efficiency. We leave it as an open problem to find a constant-
round protocol (i.e., as efficient as the one of [12]) that
achieves the stronger notion of CR-Independence [8] or even
(and preferably) Sb-Independence [7].

Using Arbitrary Input Distributions: The question of
whether security can be achieved under input distributions
other than the uniform is not only of theoretical interest
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(comparing definitions) but of very practical relevance. In
many applications (like electronic voting or contract bid-
ding), the parties’ input are not necessarily uniform or in-
dependent from each other – some partial knowledge of the
inputs may have leaked. More general input distributions
allow us to capture these cases. As a consequence, whether
or not a definition of security can be achieved under more
general input distributions can determine whether or not
a given solution suffices for a particular application (e.g.
whether the protocols suggested in [8, 12] guarantee secu-
rity in scenarios with partial knowledge of the inputs, like
voting). Given that the original definitions in [8, 12] did not
explicitly excluded non-uniform input distributions, we see
this contribution as useful in practice. Our characterization
of the distributions associated to the definitions of [8] and
[12] show that those definitions are of limited applicability,
as they can be achieved only for a restricted class of input
distributions.

1.1 Related Work
In [9], Dolev et al. introduce the notion of malleability of

protocols, and present definitions for non-malleable message
encryption, string commitment and zero-knowledge proofs.
Loosely speaking, a protocol run by honest party P on pri-
vate input x is non-malleable if no corrupted player P ′ can
use (transform) the execution of the protocol to generate a
valid execution of the same protocol under some input x′ re-
lated to x. Therefore, non-malleability does guarantee some
form of independence of the private values used in differ-
ent protocols. The results of [9], however, focus mostly on
two-party protocols so their definitions do not capture the
subtleties underlying the definition of independence of par-
allel broadcast protocols with more than two players. Along
the same line, also in the two party setting, Liskov et al. [17]
study mutually independent commitments whose goal is to
ensure the “independence” of the committed values. They
give definitions which seem to capture – in a strong sense
– this property. Their definitions, however, do not immedi-
ately extend to the multiparty case.

Organization: The paper is organized as follows. Section 2
presents some notation and terminology, and Section 3 de-
scribes the system model, including the definition of par-
allel broadcast. In Section 4, we present the definitions of
independence existing in the literature, and in Section 5, a
characterization of the sensible input distributions that can
be associated to the definitions is made. Then, Section 6
presents implications and separations between the notions,
and Section 7 concludes with some open problems.

2. PRELIMINARIES
Notation: Let n be a positive integer, and [n] denote the
set {1, . . . , n}. For any set S ⊂ [n] and any vector x =
(x1, . . . , xn), we denote by xS the |S|-dimensional vector
formed by the elements of x whose index are in S, that is,
xS = (xi)i∈S. Also, let G and B two disjoint sets such that
G ∪ B = [n] and w, z two n-dimensional vectors. Then,
we let wG t zB denote the n-dimensional vector formed by
combining the elements of w with indexes in G with the
elements of z with indexes in B. When clear from context,
we may drop the subindex G or B, as in wG t z. In such
case, by convention, we assume the coordinates for z are in
the set G = [n] \ G.

Probability Distributions, Ensembles and Classes of

Distributions: For any distribution D over {0, 1}n we

write d
R

← D to denote the process of selecting an n-di-
mensional vector d from {0, 1}n according to distribution
D. We also denote by DB , for any B ⊂ [n], the distribution
induced by selecting a vector in D and taking only the coor-
dinates in set B. For simplicity, we write Di instead of D{i}.
We also extend the t notation to distributions. Given two
distributions D andR over n-bit strings, for any set B ⊂ [n],
we say an n-bit vector x is drawn from distribution DBtRB

if x is formed by first drawing xB from DB and then draw-
ing xB from RB . Notice that for any distribution D and set

B, X
def
= DB t DB is not necessarily equal to D since XB is

independent from XB while DB and DB may be dependent.
A probability ensemble indexed by N is a sequence ∆ =
{D(k)}k∈N of probability distributions. For each value of

the security parameter k, probability distribution D(k) as-
signs positive probability only to n-bit strings. We some-
times abuse notation by using D(k) to refer to the random

variable that ranges over {0, 1}n and that follows the cor-

responding distribution D(k). As with distributions, given
a probability ensemble D = {D(k)} and a set B ⊂ [n], we

let DB = {D
(k)
B }k∈N denote the ensemble consisting of the

induced distributions D
(k)
B . A class of probability ensembles

(or simply, class of distributions) Φ = {∆〈`〉}`∈D is a collec-

tion of probability ensembles ∆〈`〉 indexed by some (possibly
uncountable) set D.

Algorithms and their probabilities: For any (proba-
bilistic) algorithm A, A(x) denotes the probability distribu-
tion of all possible outputs of running algorithm A on input
x. If P is a predicate, A, B are (probabilistic) algorithms,
and x, y are values, then Pr [ a← A(x), b← B(y), . . . :
P (a, b, . . .) ] denotes the probability that predicate P on in-
put a, b, . . . is true given that a, b, . . ., are the output of the
ordered execution of algorithm A on input x, B on input
y, and so on. A function µ(k) is negligible in the security
parameter k if there exists a constant c > 0 and infinitely
many positive values of k such that µ(k) < k−c. A probabil-
ity is overwhelming if it is larger than 1 − µ(k) where µ(k)
is a negligible function.

3. PARALLEL BROADCAST
In this section, we describe some of the basic elements

used in this work. We first describe the network model and
then we formalize the concept of parallel broadcast.

3.1 The Model
We consider a network of n probabilistic, polynomial-time

(PPT) parties (also called players) P1, P2, . . . , Pn, where n ∈
N is some fixed constant. Each pair of players is connected
by a point-to-point communication channel. We assume
there is a probabilistic, polynomial-time adversary A that
statically corrupts some fixed fraction of the players (say, up
to t of them) and is able to read all communication chan-
nels. The network is partially synchronous, which means
parties have perfectly synchronized clocks which “tick” at
discrete instants. The time interval between the i-th tick
and the (i + 1)-th tick is called the i-th round. Messages
sent in one round are guaranteed to be delivered in the next
round. The adversary is allowed rushing, which means that
the network delivers the messages addressed to corrupted
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players instantly, so the adversary obtains those messages
before deciding and sending out the messages of corrupted
players for the same round. A protocol in this network is
the collection of programs executed by these players.

We remark that our choice of network and adversary model
is made mostly to fix ideas, since the model is rather or-
thogonal to the main focus of the paper, the definition of
independence. Towards this end, we formalize the notion of
parallel broadcast in the next section.

3.2 Parallel Broadcast
Intuitively, a parallel broadcast protocol is a broadcast

protocol that allows all parties to broadcast values at the
same time. Notice that, here, the term “parallel” refers to
the property that multiple broadcast senders are allowed in
the same protocol execution. The simplest instantiation of
a parallel broadcast protocol is the protocol that performs n
sequential executions of a standard (single-sender) broadcast
protocol, where in the i-th execution party Pi acts as the
sender.

Formally, assume each player Pi has an input bit xi, and
a security parameter k. (Henceforth, for simplicity, we con-
sider the broadcast messages as bits). Consider a protocol Π
run by the parties, at the end of which each honest party Pi

outputs an n-dimensional vector Bi = (Bi,1, Bi,2, . . . , Bi,n) ∈
{0, 1}n. Protocol Π is said to implement parallel broadcast

if it satisfies the following two properties:

(1) Consistency: For any adversary A, every honest par-
ties Pi and Pj , Bi = Bj with overwhelming probabil-
ity.

(2) Correctness: For any adversary A, every honest par-
ties Pi and Pj , Bi,j = xj with overwhelming proba-
bility.

The notion of parallel broadcast was introduced by Pease
et al. in [18] where it was called interactive consistency.

For every protocol that implements parallel broadcast it
is possible to associate a single value to each party as the
value announced by the party.

Definition 3.1. Assume parties P1, . . . , Pn run some par-
allel broadcast protocol Π on input vector x under some
polynomial-time adversary A. Then, for each i ∈ {1, . . . , n},
we define the value “announced” by party Pi as the i-th bit

output by any honest party Pk, namely Wi
def
= Bk,i.

2 By
the consistency property, the n-dimensional vector W =
(W1, . . . , Wn) is well-defined with overwhelming probabil-
ity. For notational convenience, we let AnnouncedΠ

A(x)
denote vector W “announced” by the parties after running
protocol Π under adversary A on input x ∈ {0, 1}n. Simi-
larly, AnnouncedΠ

A(X ) denotes the induced distribution on
AnnouncedΠ

A(x) when x is chosen according to some dis-
tribution X .

We remark that a parallel broadcast protocol does not neces-
sarily guarantees independence of any sort – the announced
values can be correlated even if the inputs are not. For ex-
ample, the simplest instantiation described before (where n
single-sender broadcasts are executed sequentially) satisfies
both consistency and correctness but breaks independence:
a dishonest last sender Pn could discard its own input and

2By convention, if a corrupted party P contributes with an
invalid input or no input at all, honest parties assign the
default value 0 as the bit “announced” by P .

broadcast one of the values previously heard (say, the one
broadcast by party Pi). In this case, the i-th and n-th entry
in the vector of announced values will always be the equal,
no matter the inputs. More sophisticated parallel proto-
cols like the expected constant-round interactive consistency
protocol of Ben-Or and El-Yaniv [1] do not guarantee inde-
pendence either.

4. SIMULTANEOUS BROADCAST:
NOTIONS OF INDEPENDENCE

Informally, a protocol Π is said to implement simultane-

ous broadcast (SB) if Π implements parallel broadcast where
the values announced are “independent” of each other. In-
tuitively, the independence property sought must guaran-
tee that no group of corrupted parties may announce values
which may somehow depend on the values announced by any
subset of the uncorrupted parties. In this section, we review
some of the notions of independence previously proposed in
the literature.

4.1 Chor, Goldwasser, Micali and Awerbuch’s
definition

In their seminal paper [7], Chor et al. define simultane-
ous broadcast as a network property that can be emulated

starting from a network which provides a broadcast channel.
Loosely speaking, Chor et al. show how to build a “com-
piler” that transforms protocols in a simultaneous broad-
cast network into protocols in a regular (non-simultaneous)
broadcast network such that whatever an adversary can do
in the latter network, there exists some adversary that can
do the same in the former network.

Extracting a Simulation-based definition: We adapt
the definition of [7] to the framework of secure function eval-
uation of [4] as follows. The case in which the parties have
access to a simultaneous broadcast network is cast as the
“ideal” process of Canetti’s framework [4]. There, all par-
ties have access to a trusted third party which computes
the function fSB(x) = (x, . . . , x). In the notation of [4],
we call this protocol Ideal(fSB). On the other hand, to cap-
ture a regular (non-broadcast) network, we consider a “real”
process in which a protocol Π is executed in a partially syn-
chronous network under adversary A. Here, ExecΠ

A(k, z,x)
denotes the (n + 1)-dimensional vector formed by the out-
put of adversary A and the parties after executing protocol
Π in the real process with inputs z and x respectively, and

Exec
Ideal(fSB)
S (k, z,x) denotes the corresponding vector of

outputs after Ideal(fSB) is executed with ideal adversary S
in the ideal process. Independence is then captured by re-
quiring that Π securely implements fSB in the sense of [4].
Thus, we obtain the following definition

Definition 4.1. [Sb-Independence] Protocol Π achieves
Sb-independence if for any PPT adversary A corrupting up
to t < n parties, there exists a PPT simulator S such that,
the ensembles (indexed by k ∈ N, x ∈ {0, 1}n, and z ∈
{0, 1}∗),

Exec
Π
A

def
=

n

Exec
Π
A(k, z,x)

o

Exec
Ideal(fSB)
S

def
=

n

Exec
Ideal(fSB)
S (k, z,x)

o

are computationally indistinguishable.
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Using input distributions: We also consider an alter-
native simulation-based definition which explicitly involves
input distributions. This new (but equivalent) definition,
described next, is called (All, Sb)-Independence.

Definition 4.2. [(∆, Sb)-Independence] Let ∆ be a class
of input distribution ensembles over n-bit strings. Protocol
Π achieves (∆, Sb)-independence if for any PPT adversary A
corrupting up to t < n parties, there exists a PPT simulator
S such that for every distribution ensemble D ∈ ∆, the
ensembles (indexed by k ∈ N, and z ∈ {0, 1}∗)

XExec
Π
A

def
=

n

Exec
Π
A(k, z,x)

o

(1)

XExec
Ideal(fSB)
S

def
=

n

Exec
Ideal(fSB)
S (k, z,x)

o

(2)

are computationally indistinguishable when x
R

← D(k). In
this case, we say Π is Sb-Independent under class ∆. If
∆ = All, the class of all input distributions over n-bit strings,
then we say Π achieves (All, Sb)-Independence.

4.2 Chor and Rabin’s definition
Chor and Rabin [8] proposed another definition of inde-

pendence. Intuitively, their definition seems to come from
the following idea. Let A be an adversary not corrupting
party Pi. Any computable information on the n − 1 bits
announced by any party other than Pi can be cast as a
(polynomial-time) predicate R on those bits. After fixing
the adversary, whether or not this predicate is true defines
an event. Then, if the bit output by Pi is probabilistically
independent of any such event, then the output of Pi is ef-
fectively oblivious (unaffected) by the actions of adversary,
thus guaranteeing some independence. A formal definition
follows, slightly generalized to consider input distributions.
The definition of [8], which was presented in a different but
equivalent formulation is obtained as a special case when
the input distribution is uniform.

Definition 4.3. (CR-Independence) Let D be an input
distribution over {0, 1}n. A protocol Π achieves CR-inde-
pendence under input distribution D if, for any adversary
A, all honest party Pi, all polynomial-time predicate R, the
quantity
˛

˛

˛
Pr [Wi = 0 ] · Pr

h

R(W{i})
i

− Pr
h

Wi = 0 ∧ R(W{i})
i
˛

˛

˛

is negligible (in k) when W← AnnouncedΠ
A(D(k)).

4.3 Gennaro’s definition
The third definition of independence considered here was

presented by Gennaro in [12].3 Loosely speaking, a pro-
tocol achieves independence under this definition if the bit
announced by each corrupted party is not correlated with
the bits announced by all the honest parties. In [12], it
is (implicitly) assumed the inputs to the parties follow the
uniform distribution. Below, we slightly generalize the defi-
nition of [12] to consider arbitrary input distributions.

Definition 4.4. (G-Independence) LetD be an input dis-
tribution over {0, 1}n. A protocol Π achieves G-indepen-
dence under input distribution D if, for all adversaries A

3 A different definition was originally described in a prelim-
inary version [11]. Since such definition evolved into the one
of [12], we do not considered it in this work.

corrupting a subset B of parties (where |B| = t < n), for
each corrupted party Pi, for all bit bi ∈ {0, 1}, and for all
vectors r, s ∈ {0, 1}n−t that occur with non-zero probability
as DB , the quantity

|Pr [Wi = bi | WB = r ] − Pr [ Wi = bi | WB = s ]|

is negligible (in k) when W← AnnouncedΠ
A(D(k)).

A related, simpler definition: The idea behind the def-
inition of [12] is that, the probability that a corrupted party
Pi outputs a bit bi in the probability space where honest
parties end up outputting a vector r must be about the
same for any vector r. This approach may lead to tech-
nical difficulties when proving properties of the definition
over arbitrary distributions, since the definition may involve
conditioning over possibly negligible events. To overcome
this problem, we define a related (and possibly stronger)
definition which implies Definition 4.4. The new definition,
called G∗∗-Independence, is presented and shown to imply
G-Independence in Appendix B. The fact that this new def-
inition implies G-Independence will suffice to show impli-
cations and separations with respect to the other notions
considered in this work.

5. THE ROLE OF THE INPUT
DISTRIBUTIONS

The original definition of [7], although informal, is based
on a general simulation paradigm and is arguably the strong-
est: a simultaneous broadcast protocol is a protocol that
securely computes a function f(x1, . . . , xn) that on input n
values x1,. . . , xn (provided by the n protocol participants)
returns to each player the vector x = (x1, . . . , xn) contain-
ing all the input values. Part of the power of this definition
comes from the fact that security is required for any fixed
input (x1, . . . , xn). This allows to model arbitrary input
probability distributions, partial information about the in-
puts, etc.

In contrast, the definitions proposed in [8, 12] consider a
specific input distribution and are statistical in nature: mo-
tivated by coin flipping applications, the definitions of [8,
12] consider the execution of the protocol when the input
values x1, . . . , xn are chosen independently and uniformly
at random, and propose a formalization of the intuitive re-
quirement that

• the value broadcast by any honest party is indepen-
dent from all other broadcast values [8], or

• the value broadcast by any corrupted party is inde-
pendent from the values broadcast by all honest par-
ties [12].

Moreover, the notion of independence used in [8] is com-
putational (i.e., it is only required that no polynomial time
observer can detect dependencies), while the notion consid-
ered in [12] is information theoretic. Both definitions can be
generalized to arbitrary input distributions, but the gener-
alization immediately highlights the limitations of the defi-
nitions in [8, 12]: if the input values x1, . . . , xn are strongly
correlated, then the desired (correct) output also need to
be correlated, and no protocol can possibly achieve the def-
inition. In other words, there are probability distributions
for which no protocol can possibly achieve the definitions
in [8, 12]. At the same time, there are trivial distributions
(e.g., any singleton distribution that concentrates all proba-
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bility on a single input vector) for which any protocol vacu-
ously satisfies the definition of [8, 12]. In other words, there
are distributions for which the definitions of [8, 12] are not
meaningful.

In this section, we formalize this intuition and for each def-
inition of independence, we identify the largest class of dis-
tributions under which the definition is “achievable”. More
precisely, for each notion of independence, we prove there
is a class of distributions under which the definition of in-
dependence can be realized – there exist a protocol that
achieves the notion under such a class – but whose com-
plement is not achievable in a strong sense: no protocol
achieves the notion even for a single distribution outside the
class. For any definition N ∈ {CR, G}, we say a protocol Π
achieves (∆, N)-independence if Π achieves N-independence
under every distribution in class ∆. We start by describing
the input distributions for CR-Independence in next section.

5.1 Distributions for CR-Independence
Computationally independent distributions: Let X =
{X (k)}k∈N be a distribution ensemble such that every dis-

tribution X (k) is the product of n arbitrary but indepen-
dent distributions X1, . . . , Xn over {0, 1}, that is, X (k) =
X1 × X2 × · · · × Xn. Ensembles with distributions of this
form are called independent. Let Φn = {X 〈`〉}`∈D be the
class of all independent n-dimensional ensembles, indexed
by some (possibly uncountable) set D. Let ΨC,n be the
class that contains all distributions ensembles computation-
ally close to some distribution ensemble in Φn, that is, for
each D ∈ ΨC,n there exist a distribution ensemble X in Φn

such that D is computationally close to X . If D ∈ ΨC,n

we say D is a computationally independent distribution en-
semble. Note that the ensembles for the uniform and all
singleton distributions are indeed independent.

Achieving CR-Independence: It is possible to show that,
if the input distributions are computationally independent
then CR-independence can be achieved. The proof of this
result is postponed until Section 6.1.

Claim 5.1. Under the assumption that enhanced trapdoor

permutations exist (cf. [13, Sec. C.1]), there exists a protocol
that achieves (ΨC,n, CR)-independence.

Conversely, unless the input distribution D is computation-
ally independent, no protocol can achieve independence ac-
cording to Definition 4.3. See [15] for the proof.

Lemma 5.2. Let Π be any parallel broadcast protocol and
let D 6∈ ΨC,n be an input distribution ensemble. Then, Π
does not achieve CR-independence under input distribution
D.

5.2 Distributions for G-Independence
Locally Independent distributions: We say distribu-
tion ensemble D is locally independent if for all subset B ⊂
[n], all string u ∈ {0, 1}|B|, and all string w ∈ {0, 1}n−|B|

that occurs with non-zero probability as DB , the quantity
˛

˛

˛
Pr

h

D
(k)
B = u | D

(k)

B
= w

i

− Pr
h

D
(k)
B = u

i
˛

˛

˛
is negligible in

the security parameter k. We denote by ΨL,n the class of
all locally independent distribution ensembles.

Achieving G-Independence: It is possible to show that
G-independence can be achieved under locally independent

inputs. Again, the proof of this result is postponed un-
til Section 6.1.

Claim 5.3. Under the assumption that enhanced trapdoor

permutations exist (cf. [13, Sec. C.1]), there exists a protocol
that achieves (ΨL,n, G)-independence.

On the other hand, the following result shows that no pro-
tocol is G-independent under input distributions which are
not locally independent. The proof appears in [15].

Lemma 5.4. Let Π be any parallel broadcast protocol
and D 6∈ ΨL,n be an input distribution. Then, Π does not
achieve G-independence under input distribution D.

5.3 Distributions for Sb-Independence
In this section, we show that Sb-Independence can be

achieved under any input distribution. We first notice that
Sb-Independence under class Singleton and (All, Sb)-Inde-
pendence are equivalent. Then, we recall the results by
Yao and (independently) by Goldreich et al. [19, 14] which
present protocols that securely implement any function. In
particular, these protocols securely implement fSB . By ob-
serving that such protocols work for any fixed input, we then
have

Corollary 5.5. [19, 14] Under the assumption that en-

hanced trapdoor permutations exist (cf. [13, Sec. C.1]), there
exists a protocol that achieves Sb-independence for any in-
put distribution.

5.4 Relations between Distributions
We introduce some notation first. Let Singleton be the

class of all singleton input distribution ensembles. That is,

for each string α ∈ {0, 1}n, the distribution Dα = {D
(k)
α }k∈N

is in Singleton if for every k, D
(k)
α assigns probability one to

the string α. Let Uniform be the class whose only element is
the uniform distribution ensemble, and let All be the class
of all input distribution ensembles over n-bit strings. For
notational convenience, in the rest of the paper, we denote
by D(N) the class of distributions associated to definition N,

that is, D(CR)
def
= ΦC,n, D(G)

def
= ΦL,n, and D(Sb)

def
= All.

The following claim shows that the input distributions
under which G, CR, and Sb are achievable are strictly con-
tained in the same order. All classes also contain the class
of all singleton distributions and the class of the uniform
distribution. The proofs are easy and therefore omitted.

Claim 5.6. Singleton, Uniform ( D(G) ( D(CR) ( D(Sb).

6. IMPLICATIONS AND SEPARATIONS
In this section, we compare the definitions of indepen-

dence of [8, 12] with the simulation-based definition. We
say a distribution is trivial for notion N if every proto-
col achieves N-independence under that input distribution.
Also, a class is trivial for notion N if every protocol achieves
N-Independence under all distributions in the class. Our
first implication shows that any protocol that achieves Sb-
Independence must achieve CR-Independence for all achiev-
able distributions. The proof is in Appendix A.1.

Lemma 6.1. For every protocol Π, if Π achieves (D(CR),
Sb)-Independence then Π also achieves (D(CR), CR)-Inde-
pendence.
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Similarly, all protocols that achieve CR-Independence un-
der all distributions for which G-Independence is achievable
must indeed achieve G-Independence under the same class.
See Appendix A.2 for the proof.

Lemma 6.2. For every protocol Π, if Π achieves (D(G),
CR)-Independence then Π also achieves (D(G), G)-
Independence.

Separations: At this point, we look into whether the def-
initions are equivalent when restricted to achievable input
distributions. Proposition 6.3 shows this is not the case.
There are distributions for which the definition of [8] always
holds no matter the protocol, but that this cannot happen
with Sb-Independence.

Proposition 6.3. The class Singleton is trivial for CR

independence but not trivial for Sb independence.

It is also possible to show that the definitions of [8] and
[12] are not equivalent, but instead that G-independence is
strictly weaker than CR-independence.

Lemma 6.4. There exists a protocol ΠG which achieves
(D(G), G)-independence but does not achieve CR-indepen-
dence for any input distribution in D(G). In particular, ΠG

is G-Independent for the uniform distribution, but not CR-
Independent for the uniform distribution.

Proof. We show a protocol implementing parallel broad-
cast that, even though it satisfies Definition 4.4 (i.e., the no-
tion of simultaneous broadcast of [12]), it violates Definition
4.3 (i.e., the definition of independence of [8]). The “flawed”
protocol ΠG uses a subprotocol Θ which essentially performs
a simultaneous broadcast unless two corrupted parties mis-
behave in a very controlled manner – by setting some auxil-
iary input bit to 1. In such case, protocol Θ reveals some in-
formation about the honest parties’ inputs to two corrupted
parties. The leakage of information is done in such a way
that the output of each single corrupted party is not cor-
related to the outputs of honest parties, but the combined

outputs are.
We describe protocol Θ first. Protocol Θ is a n-party

protocol that securely implements function g(v) on input
v = (v1, . . . , vn) defined as

g(v)
def
=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

First, parse each vi as (xi, bi)

Pick r
R

← {0, 1} and set L ← { i : bi = 1 }
If |L| = 2 then set `1, `2 ∈ L, `1 < `2,
Otherwise set `1, `2 ← 0

Compute y
R

←
L

i6∈{`1,`2}
xi

Set wi ←

8

<

:

r if |L| = 2 and i = `1

r ⊕ y if |L| = 2 and i = `2

xi if i 6= `1, `2
Set w← (w1, . . . , wn) and output
the n-dimensional vector(w,w, . . . ,w)

For simplicity, we write the input vector v as v = (x,b),
where x,b ∈ {0, 1}n. We first notice that a protocol that
securely implements function g can be built using known
techniques (cf. [2, 14, 6]) as long as t < dn/2e.

Claim 6.5. There exist a protocol Θ that securely imple-
ments g (in the sense of [4]).

We now describe protocol ΠG. On private input xi ∈ {0, 1},
each party Pi sets up an auxiliary bit bi ← 0. Then, all

parties call subprotocol Θ on input ((x1, b1), (x2, b2), . . . ,
(xn, bn)). Let Wi be the vector obtained as the output of
protocol Θ by party Pi. Each party Pi outputs Wi as the
final protocol result.

We show that protocol ΠG is not CR-Independent under
any non-trivial input distribution. Indeed, there exists an
adversary A∗ such that, when protocol ΠG is executed on
any input x under adversary A∗, the sum (mod 2) of the
announced bits is always zero. Adversary A∗ corrupts only
two parties and instructs them to set their auxiliary bits to
1. The next claim follows directly from the definition of g.

Claim 6.6. Assume parties have inputs chosen according
to some arbitrary distribution D ∈ D(G). There exists an
adversary A∗ such that the execution of protocol ΠG on in-
put x ∈ D under adversary A∗ defines a vector of announced
bits W satisfying

L

i
Wi = 0.

The attack works for any non-trivial distribution, i.e., any
distribution that is not statistically close to a singleton.
For any such distribution, there must exists and index i
such that 1/poly < Pr [Wi = 0 ] < 1 − 1/poly. The above
claim gives an adversary and a polynomial-time predicate
we can use to correlate the output of the corrupted parties

with the output of an honest party Pi, namely R(Z{i})
def
=

(⊕j 6=iZj = 0). Notice that the predicate holds if and only
if Pi announces 0.

We now show that protocol ΠG achieves G-Independence
for any non-trivial, locally independent input distribution
D. Indeed, for any adversary A that succeeds on attacking
the G-Independence of ΠG under D, we exhibit a distin-
guisher Q that contradicts the security of Θ (Claim 6.5).
We proceed as follows. Assume ΠG is not G-Independent.
By Proposition B.4, ΠG is not G∗∗-Independent. Then there
is an adversary A which corrupts parties in B, an auxiliary
input τ , and a corrupted party Pi, for which there are vec-

tors w ∈ {0, 1}B , r, s ∈ {0, 1}B , such that
˛

˛

˛
Pr

h

W← Announced
ΠG

A(k,τ)(w t r) : Wi = 1
i

− Pr
h

W← Announced
ΠG

A(k,τ)
(w t s) : Wi = 1

i
˛

˛

˛

is not negligible. By a hybrid argument, we can assume r

and s differ in a single bit, the `-bit, so r` 6= s`, and w.l.o.g,
r` = 0 and s` = 1. The above adversary gives us a procedure
to guess the input bit used by honest party P` in protocol
Θ as long as the inputs vector for the remaining parties is
equal to wtrB\{`}. Indeed, starting from A we show how to

build an adversary A′ for Θ, such that for any ideal-process
adversary S for Ideal(g), there exist a distinguisher Q, an
auxiliary input z′, an input vector v′ = (x′,b′), such that
the quantity

˛

˛

˛
Pr

h

Q(1k, z′,v′,Exec
Θ
A′(k, z′,v′)) = 1

i

− Pr
h

Q(1k, z′,v′,Exec
Ideal(g)
S (k, z′,v′)) = 1

i˛

˛

˛

is not negligible. Adversary A′ is simple. It corrupts the
same parties as B, and works as follows. On input (xB, bB),
A′ simply discards bB and then simulates A. We now set
b′ = 0 and z′ = τ . For simplicity, for any vector x ∈ {0, 1}n,
let qreal,x and qideal,x denote the quantities

Pr
h

Q(1k, z′, (x,b′),Exec
Θ
A′(k, z′, (x,b′))) = 1

i

and

Pr
h

Q(1k, z′, (x,b′),Exec
Ideal(g)
S (k, z′, (x,b′))) = 1

i
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respectively. It remains to show a distinguisher algorithm
Q that works with good probability. Our algorithm Q takes
as input a security parameter k ∈ N, an auxiliary string z ∈
{0, 1}∗, a vector v = (x,b) ∈ {0, 1}n ×{0, 1}n, and a string
Z drawn either from distribution ExecΘ

A′ (k, z,v) or distri-

bution Exec
Ideal(g)
S (k, z,v). Thus, on input (1k, z, (x,b), Z),

algorithm Q first extract the corrupted set B and the unique
vector W = (W1, . . . , Wn) of announced values from tran-
script Z. Then, it simply outputs 1 if (Wi = W`), and 0
otherwise. Let xr = w t r and xs = w t s. By definition of
distinguisher Q and adversary A′, in the real model we have
that

qreal,xs = Pr
h

W← Announced
ΠG

A(k,τ)(x
s) : Wi = 1

i

qreal,xr = Pr
h

W← Announced
ΠG

A(k,τ)
(xr) : Wi = 0

i

In the ideal model, on the other hand, the adversary S
has access only to xB = w, and therefore qideal,xr = 1 −
Pr [ S(w; τ )i = 1 ] and qideal,xs = Pr [ S(w; τ )i = 1 ]. Com-
bining the above equations, we obtain

|qreal,xs − qideal,xs | + |qreal,xr − qideal,xr |

≥ |qreal,xs − qreal,xr − (qideal,xr + qideal,xs )|

=
˛

˛

˛Pr
h

W←Announced
ΠG

A(k,τ)(x
s) : Wi = 1

i

− Pr
h

W←Announced
ΠG

A(k,τ)(x
r) : Wi = 1

i˛

˛

˛

which is not negligible by the G∗∗-Independence. Therefore,
for either input x′ = xs or input x′ = xr, the quantity
|qreal,x′−qideal,x′ | is not negligible. This concludes the proof
of the lemma.

We remark that the previous lemma indicates that G-In-
dependence is not only weaker than the other definitions,
but also rather unsatisfactory. Indeed, by following G-Inde-
pendence, we may deem protocols like ΠG “secure”, when
in reality they fail to provide even a very intuitive notion of
independence – namely the one that requires the announced
bits do not always sum 0. We stress the above result holds
even for the uniform distribution.

6.1 Feasibility of CR and G independence
At this point, we have all the tools needed to prove the

feasibility results for CR and G-Independence, namely that
there exist protocols that achieve (D(CR), CR)-Independence
as well as (D(G), G)-Independence. Indeed, Corollary 5.5 to-
gether with Claim 5.6 and the results of this section provide
concise proofs for Claim 5.1 and Claim 5.3. Claim 5.1 fol-
lows from the existence of a protocol achieving (D(Sb), Sb)-
independence (by Corollary 5.5), and that (D(CR), Sb)-In-
dependence implies (D(CR), CR)-Independence. Claim 5.3
is proved analogously.

7. OTHER ISSUES
Efficient Sb-Independent protocols: An interesting
open problem is to find a constant round protocol (i.e., as
efficient as the one of [12]) for simultaneous broadcast that
achieves the stronger notion of CR-Independence [8] or even
(and preferably) Sb-Independence [7].
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APPENDIX

A. PROOFS

A.1 Proof of Lemma 6.1

Proof Lemma 6.1. Assume parallel broadcast protocol
Π is not CR-independent for some input distribution D ∈
D(CR). Then, there exists an adversary A, honest party P`,
and a polynomial-time predicate R such that the quantity
defined in Definition 4.3 is not negligible under input dis-
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tribution D. We show how to transform A, R and D, into
an adversary A′, and an algorithm T such that Π is not
(D(CR), Sb)-independent. Details follow.

First, since Π is not CR-independent under input distri-
bution D ∈ D(CR), there must exist an adversary A (cor-
rupting players in B ⊂ [n]), an honest party Pi, and a
polynomial-time computable predicate R such that there ex-
ists constant c > 0 and infinitely many values of k for which
(w.l.o.g.)

Pr
h

W` = 1 ∧ R(W{`})
i

− Pr [ W` = 1 ] · Pr
h

R(W{`})
i

≥ k−c (3)

Now, let adversary A′ be identical to A. We build distin-
guisher T from predicate R as follows: On input (1k, z,x, τ )
distinguisher T extracts a unique W from transcript τ . Then,

T outputs 1 if
“

W` = 1 and R(W{`}) = 1
”

and 0 otherwise.

Algorithm T is polynomial-time since R is so. It re-
mains to prove that T successfully distinguishes ensembles

XExecΠ
A′ and XExec

Ideal(fSB)
S (as defined in equations (1)

and (2)) when the input distribution is D.
Let S be an ideal process adversary (simulator). We de-

note by S(xB ; z) the |B|-dimensional vector given by sim-
ulator S to function fSB (in the ideal world) as the input
corresponding to corrupted parties. String z is the auxiliary
input of S. Let Pr1 [ E ] be the probability of event E under

the case x
R

← D(k) and W← AnnouncedΠ
A(x), and Pr0 [ E ]

be the probability of event E under the choice x
R

← D(k) and
W← xB t S(xB). Let p1 and p0 denote the quantities

Pr
h

x
R

← D(k) : T (1k, z,x,Exec
Π
A′ (k, z,x)) = 1

i

and

Pr
h

x
R

← D(k) : T (1k, z,x,Exec
Ideal(fSB)
S (k, z,x)) = 1

i

respectively. Then,4

p1 = Pr1
h

W` = 1 ∧ R(W{`}) = 1
i

p0 = Pr0
h

x` = 1 ∧ R(xB\{`} t S(xB; z)) = 1
i

At this point, we use that D is computationally indepen-

dent. Let X
def
= D{`}tD`. By a hybrid argument, we assume

X ∈ Φn. Then, there exists a negligible function ε(k) such

that |Pr
h

F (D(k)) = 1
i

−Pr
h

F (X (k)) = 1
i

| < ε(k) for any

probabilistic polynomial-time distinguisher F , in particular

F (Z)
def
= (Z` = 1 ∧ R(ZB\{`} t S(ZB ; z)) = 1). Therefore,

the quantity p0 − ε(k) is upper bounded by

Pr
h

u
R

← X (k) : u` = 1 ∧ R(uB\{`} t S(uB ; z)) = 1
i

= Pr
h

u{`}

R

← D
(k)
B : R(uB\{`} t S(uB ; z)) = 1 | u` = 1

i

· Pr
h

u`
R

← D
(k)
` : u` = 1

i

= Pr0
h

R(xB\{`} t S(xB; z)) = 1
i

· Pr0 [W` = 1 ]

< Pr1
h

R(W{`})
i

· Pr0 [W` = 1 ]

We justify last inequality as follows: (a) if Pr1
h

R(W{`})
i

<

4In the rest of the proofs in this paper, for simplicity, we as-
sume that W` = x` with probability one for all uncorrupted
P`. The cases when the equality holds with overwhelming
probability are analogous, although slightly more involved.

Pr0
h

R(W{`})
i

then it suffices to consider the negated pred-

icate R instead of R, and (b) any adversary A cannot use
the simulator S’s strategy otherwise A would contradict (3)
since D ∈ D(CR). Also, by the correctness of Π, Wi = xi

for all honest i ∈ B. Combining the above equations with

(3), we obtain p1 − p0 > Pr1
h

W` = 1 ∧ R(W{`}) = 1
i

−

Pr1
h

R(W{`})
i

· Pr1 [W` = 1 ]− ε(k) > k−c′ for some con-

stant c′ > 0 and infinitely many values of k.

A.2 Proof of Lemma 6.2

Proof Lemma 6.2. Let Π be a parallel broadcast pro-
tocol. Assume Π is not G-Independent under some dis-
tribution D in D(G). We want to prove that there ex-
ist a distribution D′ in D(G) under which Π is not CR-
Independent. By Proposition B.4, if Π does not achieve
G-Independence under distribution D, then Π is not G∗∗-
Independent. Therefore, there exists an polynomial-time
adversary A corrupting set B ⊂ [n], a string z ∈ {0, 1}∗,

i ∈ B, and vectors w ∈ {0, 1}B , r, s ∈ {0, 1}B such that the
quantity

˛

˛

˛
Pr

h

W←Announced
Π
A(k,z)(w t r) : Wi = 1

i

− Pr
h

W←Announced
Π
A(k,z)(w t s) : Wi = 1

i˛

˛

˛

is not negligible. By a hybrid argument, we can assume r

and s differ on a single bit, the `-th one, so rB\{`} = sB\{`}.
W.l.o.g. r` = 0 and s` = 1.

We build a new adversary A′ identical to A and fix the

honest player P`. We also define the predicate R(Z`)
def
=

(Zi
?
= 1). Now, consider the distribution D′ that assigns

some non-negligible probability p` to the event D
′(k)
` = 1,

and probability one to D
′(k)

{`}
= (w t rB\{`}). Notice that

D′(k) is in D(G) but it is not trivial. Let PrD′ [ E ] the prob-

ability of event E when W ← AnnouncedΠ
A(k,z)(D

′(k)).

Since P` is honest PrD′ [W` = 1 ] = Pr
h

D
′(k)
` = 1

i

= p`.

Then, PrD′

h

R(W{`}) = 1
i

equals to

(1− p`) · Pr
h

W← Announced
Π
A(k,z)(w t r) : Wi = 1

i

+ p` · Pr
h

W← Announced
Π
A(k,z)(w t s) : Wi = 1

i

On the other hand, PrD′

h

W` = 1 ∧ R(W{`}) = 1
i

equals

PrD′ [ W` = 1 ∧ Wi = 1 ]

= p` · Pr
h

W← Announced
Π
A(k,z)(w t s) : Wi = 1

i

Putting it all together,

˛

˛

˛
PrD′ [W` = 1 ] · PrD′

h

R(W{`}) = 1
i

− PrD′

h

W` = 1 ∧ R(W{`}) = 1
i˛

˛

˛
= p` · (1− p`) ·

˛

˛

˛Pr
h

W← Announced
Π
A(k,z)(w t r) : Wi = 1

i

− Pr
h

W← Announced
Π
A(k,z)(w t s) : Wi = 1

i˛

˛

˛

which is not negligible.
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B. ALTERNATIVE CHARACTERIZATION
OF G-INDEPENDENCE

In this section, we present two equivalent notions of inde-
pendence, and then show they imply G-Independence. Our
first definition is expressed in terms of distributions ensem-
bles.

Definition B.1. (G∗-Independence) Protocol Π achieves
G∗-independence if for all adversaries A corrupting parties
in B ⊂ [n] (where |B| = t < n), for each corrupted party
Pi, the ensembles (indexed by k ∈ N, x ∈ {0, 1}n, and
z ∈ {0, 1}∗) defined by

E
def
=

n

W← Announced
Π
A(k,z)(x) : Wi

o

E0
def
=

n

W← Announced
Π
A(k,z)(xB t 〈0〉B) : Wi

o

are statistically close (in the security parameter k).

Our second definition, although more technical, is use-
ful when proving implications or separations between G and
other notions.

Definition B.2. (G∗∗-Independence) Protocol Π achieves
G∗∗-independence if for all adversaries A corrupting parties
in B ⊂ [n] (where |B| = t < n), for each corrupted party Pi,

for all vectors r, s ∈ {0, 1}B , all vectors w ∈ {0, 1}B , and all
auxiliary input z ∈ {0, 1}∗, the quantity

˛

˛

˛Pr
h

W←Announced
Π
A(k,z)(w t s) : Wi = 1

i

− Pr
h

W←Announced
Π
A(k,z)(w t r) : Wi = 1

i˛

˛

˛

is negligible in the security parameter k.

The two definitions are equivalent.

Proposition B.3. Let Π be a correct parallel broadcast.
Then, Π achieves G∗∗-Independence if and only if Π achieves
G∗-Independence.

Proof. G∗∗ ⇒ G∗: Assume Π is not G∗-Independent.
We want to prove Π is not G∗∗-Independent. Indeed, if Π
is not G∗-Independent then ensembles E and E0 must not
be statistically close, and there exists x ∈ {0, 1}n, k ∈ N,
and z ∈ {0, 1}∗, for which there exists a constant c > 0 and
infinitely many k such that (w.l.o.g.) the quantity

Pr
h

W← Announced
Π
A(k,z)(xB t xB) : Wi = 1

i

− Pr
h

W← Announced
Π
A(k,z)(xB t 0B) : Wi = 1

i

is lower bounded by k−c. The result follows immediately
from taking w = xB, r = xB and s = 0B .

G∗ ⇒ G∗∗: Assume Π is not G∗∗ independent. We want
to prove Π is not G∗-Independent. Indeed, if Π is not G∗∗-
Independent then there exists a vector w ∈ {0, 1}B , distinct

vectors r, s ∈ {0, 1}B , an integer k ∈ N, and a string z ∈
{0, 1}∗, for which there exists a constant c > 0 and infinitely
many k such that (w.l.o.g.) the quantity

˛

˛

˛
Pr

h

W← Announced
Π
A(k,z)(w t s) : Wi = 1

i

− Pr
h

W← Announced
Π
A(k,z)(w t r) : Wi = 1

i˛

˛

˛

is larger than k−c. For simplicity, we define D(a)
def
=

Pr
ˆ

W← AnnouncedΠ
A(k,z)(a) : Wi = 1

˜

, for any vector

a ∈ {0, 1}n. Let x
def
= w t r and x′ def

= w t s. Then, the
relation above can be rewritten as |D(x)−D(x′)| > k−c. In
consequence, using that xB = x′

B = w we have

|D(x)−D(xB t 0B)| +
˛

˛D(x′)−D(x′
B t 0B)

˛

˛

≥
˛

˛D(x)−D(x′)
˛

˛ > k−c

which implies that either |D(x)−D(xB t 0B)| > k−c/2 or
|D(x′)−D(x′

B t 0B)| > k−c/2, and the result follows.

The following result shows that both G∗ and G∗∗-Indepen-
dence imply G-Independence for any distribution for which
G can be achieved.

Proposition B.4. , If a protocol Π achieves G∗∗-Inde-
pendence then Π achieves G-Independence for any distribu-
tion D ∈ ΨL,n.

Proof. Let D be an arbitrary distribution in ΨC,n and
r, s ∈ {0, 1}n−t two strings such that the probability DB

equals r or s is not null. Also, let A be an arbitrary poly-
nomial-time adversary that corrupt players in B (t = |B|)
and let i ∈ B. For fixed values of k ∈ N and z ∈ {0, 1}∗, we
denote by PrD,A [ E ] the probability of event E under the

choice x
R

← D(k) and W ← AnnouncedΠ
A(k,z)(x). Now, for

simplicity, we define the quantities

P (a,b)
def
= PrD,A [Wi = 1 | xB = a ∧ xB = b ]

Q(a,b)
def
= Pr

h

x
R

← D(k) : xB = w | xB = b
i

.

First, notice that WB = xB , since all uncorrupted parties
always output their inputs. Then

PrD,A [ Wi = 1 | WB = r ]− PrD,A [ Wi = 1 | WB = s ]

=
X

w∈{0,1}t

(P (w, r) ·Q(w, r)− P (w, s) ·Q(w, s)) (4)

By G∗∗-Independence, for all w′ ∈ {0, 1}t, all r′, s′ ∈
{0, 1}n−t, |P (w′, r′) − P (w′, s′)| < ε(k) where ε(k) is some

negligible function in k. Let P (w, t∗)
def
= maxt∗{P (w, t)}.

Then, by definition it follows that P (w, r) ≤ P (w∗, t) and,
by G∗∗-Independence, that P (w, s) < P (w, t∗)+ε(k). Then,
plugging these in (4) we have

X

w∈{0,1}t

(P (w, r) ·Q(w, r) − P (w, s) ·Q(w, s))

≤
X

w

(P (w, t∗) · (Q(w, r) −Q(w, r))) + ε(k) (5)

Now, define R(w, r, s)
def
= Q(w, r) −Q(w, s) and Z(w)

def
=

Pr
h

D
(k)
B = w

i

. We claim that |R(w, r, s)| is negligible in

k. Indeed, since D ∈ ΨL,n,

|R(w, r, s)| = |Q(w, r) −Q(w, s)|

≤
˛

˛

˛Pr
h

x
R

← D(k) : xB = w | xB = r
i

− Z(w)
˛

˛

˛

+
˛

˛

˛
Pr

h

x
R

← D(k) : xB = w | xB = r
i

− Z(w)
˛

˛

˛

< 2 · ε′(k) (6)

for some negligible function ε′(k). Combining Equations (4),
(5) and (6) we obtain

|Pr [Wi = 1 | WB = r ] − Pr [ Wi = 1 | WB = s ]|

< 2 · ε′(k) + ε(k) .

This proves the result.
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