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Abstract

We give various deterministic polynomial time reductions among approximation problems
on point lattices. Our reductions are both efficient and robust, in the sense that they preserve
the rank of the lattice and approximation factor achieved. Our main result shows that for any
γ ≥ 1, approximating all the successive minima of a lattice (and, in particular, approximately
solving the Shortest Independent Vectors Problem, SIVPγ) within a factor γ reduces under
deterministic polynomial time rank-preserving reductions to approximating the Closest Vector
Problem (CVP) within the same factor γ. This solves an open problem posed by Blömer in
(ICALP 2000). As an application, we obtain faster algorithms for the exact solution of SIVP

that run in time n! · sO(1) (where n is the rank of the lattice, and s the size of the input,)
improving on the best previously known solution of Blömer (ICALP 2000) by a factor 3n. We
also show that SIVP, CVP and many other lattice problems are equivalent in their exact version
under deterministic polynomial time rank-preserving reductions.

1 Introduction

A lattice L is the set of intersection points of an infinite n-dimensional grid. The successive minima
λi(L) (for i = 1, . . . , n) are among the most fundamental parameters associated to a lattice, and
are defined as the smallest values λi(L) such that the sphere of radius λi(L) centered around the
origin contains at least i linearly independent lattice vectors. Lattice approximation problems
have been widely investigated since the discovery of the basis reduction algorithm of Lenstra,
Lenstra and Lovasz [LLL82], initially for their applications in cryptanalysis and combinatorial
optimization [BO91, JS98, NS01] and more recently as a potential basis for cryptographic function
design [Ajt04, GGH97, AD97, Cai03, Mic04, Reg04, MR07, Mic07]. The most important and widely
studied lattice approximation problems (for approximation factor γ ≥ 1) are:

• the Shortest Vector Problem (SVP): given a lattice, find an approximately shortest nonzero
lattice vector, i.e., a vector of length at most γ · λ1,

• the Closest Vector Problem (CVP): given a lattice and a target point, find a lattice point
approximately closest to the target, i.e., a lattice point at a distance from the target that is
at most γ times the distance of the closest lattice point, and
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• the Shortest Independent Vectors Problem (SIVP): given a lattice, find a maximal set of ap-
proximately shortest linearly independent lattice vectors, i.e., n linearly independent vectors
(where n is the rank of the lattice) of length at most γλn.

There is a wide gap between the small (constant or sub-polynomial in the lattice rank) approxi-
mation factors for which these problems are known to be intractable [Ajt98, Mic01, Kho05, BS99,
DKRS03], and the the large (exponential) factors for which the problems are known to be solvable
in polynomial time [LLL82, Bab86, Sch87, AKS01]. Given our limited understanding of the com-
plexity of lattice approximation problems, it is natural to ask how these problems relate to each
other for arbitrary approximation factors. Are these problems computationally equivalent? Are
some harder than others? More specifically, we ask if there are polynomial time reductions among
these problems that work for any approximation factor, and preserve both the rank of the lattice
and the quality of approximation. The importance of preserving the rank of the lattice in reductions
among lattice problems cannot be overemphasized. For example, since the best currently known
solution to most lattice problems runs in time exponential in the rank, even doubling the rank
would result in an exponential slow down in any algorithmic application of the reduction. To date,
the only known polynomial time reduction that preserves both the rank and approximation is the
one from SVP to CVP given by Goldreich, Micciancio, Safra and Seifert in [GMSS99]. The only
other similar result we are aware of is a non-deterministic polynomial time reduction from SIVPγ

to CVPγ given by Guruswami, Micciancio and Regev [GMR05] for the purpose of showing that
SIVPγ is not NP-hard, under standard complexity assumptions.

In this paper we give various dimension preserving deterministic polynomial time reductions
between lattice approximation problems. The main result is a reduction from SIVP to CVP that
preserves both the approximation factor and rank of the lattice. In fact, we prove something
stronger: we give a reduction from the problem of finding linearly independent lattice vectors
achieving all successive minima of the lattice to solving CVP. Specifically, we consider the following
problem:

• the successive minima problem (SMP): given a lattice, find linearly independent vectors
v1, . . . ,vn (where n is the rank of the lattice) of length at most ‖vi‖ ≤ γλi for all i = 1, . . . , n.

This is a classic problem in the mathematical study of lattices that subsumes both SVP and SIVP

as special cases. (Any solution to SMPγ is also a solution to SIVPγ , and the first vector in it is
a solution to SVPγ .) So, our result subsumes the reduction from SVPγ to CVPγ of [GMSS99]
as a special case, and improves on the non-deterministic polynomial time reduction from SIVP to
CVP of [GMR05].

Technically, we reduce SIVP to CVP by introducing a simple generalization of SVP that bears
strong similarities with both SVP and CVP. In the shortest vector problem, given a lattice basis
B, we want to minimize the length ‖Bx‖ (where x is an integer vector) subject to the constraint
that xi 6= 0 for some i. We consider a variant SVP

′ of the shortest vector problem where the index
i is also given as part of the input, and the goal is to minimize ‖Bx‖ subject to the constraint that
xi 6= 0 for the given index i. The shortest vector in a lattice B can be easily found by solving all
SVP

′ instances (B, i) for i = 1, . . . , n. One can also think of SVP
′ as a variant of CVP, where the

target vector (bi) can be used multiple times: given a lattice [b1, . . . ,bi−1,bi+1, . . . ,bn] and target
t = bi, find the lattice point closest to a nonzero multiple of the target.

We give simple deterministic polynomial time reductions from SMPγ to SVP
′
γ and from SVP

′
γ

to CVPγ . Our reductions preserve both the approximation factor and lattice rank. Moreover, the
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reductions work for any approximation factor γ and norm. As a result we get the claimed reduction
from SIVPγ to CVPγ . An immediate application of our reduction is an algorithm to solve SIVP

exactly in time n!sO(1) (where n is the rank of the lattice and s is the size of the input) by reducing
it to CVP and then using the CVP algorithm of Blömer [Blö00]. The best previously known
algorithm for the exact solution of SIVP (also given in [Blö00]) had running time 3n · n! · sO(1).

Next, we consider two other lattice problems recently introduced by Blömer and Naewe to
design algorithms for the deterministic (resp. randomized) exact (resp. approximate) solution of
SIVP. Specifically, we consider

• the Generalized Closest Vector Problem (GCVP), introduced by Blömer in [Blö00] for the
design of deterministic algorithms that solve SIVP exactly, and

• the Subspace Avoiding Problem (SAP), a special case of GCVP recently introduced by Blömer
and Naewe [BN07] to design and analyze randomized lattice approximation algorithms for
SIVP and CVP.

Using the same simple techniques from our main reduction, we are able to show that GCVPγ

and SAPγ are equivalent to CVPγ and SVP
′
γ respectively, under polynomial time reductions that

preserve both the approximation factor and rank of the lattice. Our equivalence results hold for
any norm and approximation factor, and answer in the affirmative the open questions (posed by
Blömer in [Blö00]) about the polynomial time reducibility of SIVP and GCVP to CVP.

Our results have interesting implications about the exact solvability of lattice problems (in the
Euclidean norm) under randomized reductions. The fastest known deterministic algorithms for the
solution of all lattice problems considered in this paper have running time nO(n). However, using
randomization, Ajtai, Kumar and Sivakumar [AKS01] were able to improve the running time for
the exact solution of SVP to a simple exponential function 2O(n). Following [AKS01], there have
been various attempts to generalize the randomized techniques of [AKS01] to the solution of other
lattice problems, most notably CVP (as done in [AKS02]) and SIVP (as done in [BN07]). Albeit
reducing the running time to 2O(n), none of these attempts have led so far to an algorithm that
solves CVP or SIVP (or any other lattice problems) exactly: [AKS02, BN07] only give 2O(n)-time
randomized algorithms to solve CVPγ and SIVPγ within a constant factor γ = 1+ ǫ, for arbitrary
small ǫ > 0. Our results imply that, in their exact versions (and at least in the Euclidean norm,)
all lattice problems considered in this paper SIVP,SMP,CVP,SVP

′,SAP,GCVP (with the only
exception of SVP) are equivalent under deterministic polynomial-time rank-preserving reductions.
So, exact solutions can be found in exponential time 2O(n) either for all or for none of them. The
shortest vector problem SVP reduces to any of them, but no reduction is known in the opposite
direction. So, this perhaps explains why generalizing the randomized algorithm of [AKS01] to other
lattice problems has, so far, led only to approximation algorithms.

The equivalence of lattice problems in the exact version is obtained by completing the sequence
of approximation preserving reductions SIVPγ ≤ SMPγ ≤ SVP

′
γ ≤ SAPγ ≤ GCVPγ ≤ CVPγ ,

with a new reduction from CVP to SIVP for the exact version of those problems. For simplicity,
the last reduction is presented only for the Euclidean norm, though, with some care, the result can
be generalized to many other norms. A polynomial time reduction from exact CVP to exact SIVP

(in the Euclidean norm) had been previously given by Blömer and Seifert [BS99]. However, their
reduction increases the rank of the lattice by 1. This has only a minor impact on the complexity of
the problems, so for all practical purposes, the reduction of [BS99] can already be taken as a proof
that exact CVP is not harder than exact SIVP. Still, the question remains if in order to reduce
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CVP to SIVP, it is necessary to increase the lattice rank. Here we show that this is not the case,
and that the reduction of [BS99] can be modified to make it rank preserving.

On the technical side, our modification of the reduction of [BS99] involves a new primal/dual
dimension reduction method that might be of independent interest. Giving an approximation
preserving reduction from CVPγ to SIVPγ would show that all lattice problems (except SVP) are
equivalent not only in their exact version, but also in their approximate version, and it is left as
an open problem. Known relations among lattice problems, prior to this paper, and including the
new reductions, are summarized in Figure 1.
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(a) Previously known relations.
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(b) Relations among lattice approxi-
mation problems.
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SIVP1 SMP1
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′
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(c) Relations among exact
lattice problems in ℓ2.

Figure 1: Previously known relations among lattice problems, and relations including the results
in this paper. Dotted arrows are trivial relations, where one problem is a special case of the other.
Arrows indicate polynomial time reductions that preserve the lattice rank and approximation factor,
and boxes enclose classes of equivalent problems under the same kind of reductions.

Outline In Section 2 we give some background about lattices. The main results of this paper
are presented in Section 3 where we reduce SIVP and SMP to CVP. In Section 4 we present
additional results establishing the computational equivalence of various lattice problems. Section 5
concludes with a discussion of the problems left open in this paper.

2 Preliminaries

In this section we give some general background about lattices, and formally define all lattice
problems studied in this paper. A norm is a function x 7→ ‖x‖ ∈ R+ such that ‖x‖ ≥ 0 with
equality if and only if x = 0, ‖a · x‖ = |a| · ‖x‖, and ‖x + y‖ ≤ ‖x‖ + ‖y‖. Any norm induces a
corresponding distance function dist(x,y) = ‖x − y‖. Lattice problems are typically formulated
and studied in the Euclidean norm ‖x‖ =

√
∑

i x
2, but all definitions and most results in this paper

hold for any norm, subject to some basic computability requirements. Specifically, we assume that
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• given two vectors x and y, one can efficiently determine if ‖x‖ ≤ ‖y‖

• given a vector x and a linear subspace S, one can efficiently determine (a lower bound to)
the distance between x and S.

Throughout the paper, we refer to norms satisfying these two conditions as efficiently computable.
The distance function is extended to sets in the customary way: dist(x, S) = miny∈S dist(x,y). The
linear space spanned by a set of n vectors S is denoted span(S) = {

∑

i xisi : xi ∈ R for 1 ≤ i ≤ n}.
We now describe some basic definitions related to lattices. For a more in-depth discussion, see

[MG02]. A lattice is the set of all integer combinations

{

n
∑

i=1

xibi:xi ∈ Z for 1 ≤ i ≤ n
}

of n linearly independent vectors b1, . . . ,bn in Rm. The number n is called the rank of the
lattice, and the set of vectors b1, . . . ,bn is called a basis. A basis can be represented by the
matrix B = [b1, . . . ,bn] ∈ Rm×n having the basis vectors as columns. The lattice generated by
B is denoted L(B). Notice that L(B) = {Bx:x ∈ Zn}, where Bx is the usual matrix-vector
multiplication. Two bases B, B̃ generate the same lattice L(B) = L(B̃) if and only if B = B̃U
for some unimodular matrix U. (A unimodular matrix is a square matrix with integer entries and
determinant ±1.) For computational purposes, it is usually assumed that all lattice vectors have
integers (or more generally rational) entries, so that the lattice can be represented by an integer
(resp. rational) matrix B ∈ Zm×n.

The dual of a lattice Λ is the set

Λ∗ = {x ∈ span(Λ):∀y ∈ Λ.〈x,y〉 ∈ Z}

of all vectors that have integer scalar product (〈x,y〉 =
∑

i xiyi) with all lattice vectors. The dual
of a lattice is a lattice, and if Λ = L(B) is the lattice generated by basis B, then B∗ = B(BT B)−1

is a basis for the dual lattice, where BT is the transpose of B. A sub-lattice of L(B) is a lattice
L(S) such that L(S) ⊆ L(B).

The minimum distance of a lattice Λ, denoted λ1(Λ), is the minimum distance between any two
distinct lattice points, and equals the length of the shortest nonzero lattice vector:

λ1(Λ) = min{dist(x,y) : x 6= y ∈ Λ}

= min{‖x‖ : x ∈ Λ \ {0}} .

This definition can be generalized to define the ith successive minimum as the smallest λi such that
λiB = {x: ‖x‖ ≤ λi} contains i linearly independent lattice points:

λi(Λ) = min{r: dim(span(Λ ∩ rB)) ≥ i}.

Another important constant associated to a lattice is the covering radius ν(Λ), defined as

ν(Λ) = max
x∈span(Λ)

{dist(x,Λ)}.

We often abuse notation and write λ1(B) instead of λ1(L(B)) and similarly for other lattice pa-
rameters.

The following are among the most important and widely studied computational problems on
point lattices.
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Definition 1 (Shortest Vector Problem (SVP)) Given a lattice B ∈ Zm×n, find a nonzero
lattice vector v ∈ L(B) \ {0} such that ‖v‖ ≤ γλ1(B).

Definition 2 (Shortest Independent Vectors Problem (SIVP)) Given a lattice B ∈ Zm×n,
find n linearly independent lattice vectors v1, . . . ,vn ∈ L(B) such that ‖vi‖ ≤ γλn(B) for all
i = 1, . . . , n.

Definition 3 (Closest Vector Problem (CVP)) Given a lattice B ∈ Zm×n and a target vector
t ∈ Rm, find a lattice vector v ∈ L(B) such that dist(v, t) ≤ γ dist(t,L(B)).

SVP and SIVP are both special cases of the following classical mathematical problem.

Definition 4 (Successive Minima Problem (SMP)) Given a lattice B ∈ Zm×n, find n lin-
early independent lattice vectors v1, . . . ,vn ∈ L(B) such that ‖vi‖ ≤ γλi(B) for all i = 1, . . . , n.

Clearly, SVPγ and SIVPγ reduce to SMPγ . We now define three non-standard problems on
lattices that will be used in this paper. The first is a simple variant of SVP. In the standard
version of SVP, one is asked to minimize the norm ‖Bx‖ subject to the condition that xi 6= 0 for
some i. We consider a variant where the index i is given as part of the input.

Definition 5 (SVP
′) Given a lattice B ∈ Zm×n and an index i ∈ {1, . . . , n}, find a lattice vector

Bx with xi 6= 0 such that ‖Bx‖ ≤ γ min{‖Bx‖:xi 6= 0}.

Clearly, SVP reduces to SVP
′ in polynomial time: on input a lattice B, one can solve all SVP

′

instances (B, i) for i = 1, . . . , n, and select the best answer. This problem will be instrumental in
reducing SIVP and SMP to CVP.

The next problem was recently introduced in [BN07] to design randomized sampling algorithms
for the approximate solution of SIVP and other lattice problems.

Definition 6 (Subspace Avoiding Problem (SAP)) Given a lattice B ∈ Zm×n and a linear
subspace S, find a lattice vector v ∈ L(B) \ S such that ‖v‖ ≤ γ dist(0,L(B) \ S).

Clearly, SVP is a special case of SAP, where S = {0}. Also SVP
′ is a special case of SAP,

where S = {x:xi = 0} for some i. In turns, SAP is a special case of the following problem from
[Blö00].

Definition 7 (Generalized Closest Vector Problem (GCVP)) Given a lattice B ∈ Zm×n,
a target vector t ∈ Rn and an affine subspace S, find a lattice vector v ∈ L(B) \ S such that
dist(v, t) ≤ γ dist(t,L(B) \ S).

It is easy to see that both CVP and SAP are special cases of GCVP, where S = ∅ and t = 0
respectively. There are also distance estimation versions of these problems, where, for example,
instead of finding a short nonzero vector in a lattice, it is enough to produce the approximate value
of λ1. These problems are usually formulated as decision (or promise) problems. For example,
GapSVPγ is the problem of distinguishing pairs (B, d) where λ1(B) ≤ d from pairs where λ1(B) >
γd. It is easy to see that this promise problem is equivalent to computing an approximation
λ̃1 ∈ [λ1, γλ1] of the length of the shortest lattice vector. Similarly, GapSIVPγ and GapCVPγ
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are the promise problems associated to the task of estimating λn(B) and dist(t,L(B)) within a
factor γ. In the exact case (i.e., when γ = 1) and at least in the Euclidean norm, the distance
estimation problems GapSVP1 and GapCVP1 are equivalent (under polynomial time reductions)
to their corresponding search problems SVP1 and CVP1. (See [Kan87] and [MG02, Chapter 3].)
It follows from the results in this paper that the same is true for GapSIVP1 and SIVP1. However,
in the approximate case γ > 1, no such reduction is known.

3 Reducing SIVP and SMP to CVP

We show that the problem SVP
′
γ is at least as hard as SIVPγ (or, even SMPγ), and no harder than

CVPγ . We point out that the main results presented in this section can also be obtained combining
the reductions in Section 4 with trivial reductions and previously known results. We present the
reductions in this section first in order to give a somehow simpler and more direct reduction from
SMP to CVP. The reader not interested in the complexity of less standard problems (e.g., SAP,
SVP

′ and GCVP) can read this section and then skip most of Section 4.
The reduction from SMPγ to SVP

′
γ is based on the following simple lemma, which will be

useful also later in the paper.

Lemma 1 There is a polynomial time algorithm that on input a lattice basis B ∈ Qm×n and a
linear subspace S, outputs a new basis B̃ for L(B) such that L(b̃1, . . . , b̃d) = S ∩L(B), where d is
the dimension of S ∩ span(B).

Proof. Assume S is represented by a system of linear equations, i.e., S = {x:Hx = 0} for some
given matrix H ∈ Qh×m. (If S = span(G) is given as a generating matrix G, then H can be
efficiently computed using linear algebra as the orthogonal complement of G.) Consider the h × n
matrix HB, and extend it to a square n × n matrix

C =

[

HB
O

]

by adding n− h identically zero rows. Any square integer matrix C can be put into Smith Normal
Form S = VCU, where

• S is a diagonal matrix, with non-negative diagonal entries such that si+1,i+1 divides si,i for
i = 1, . . . , n − 1. In particular, there is a d such that the first d diagonal elements of S are
zero, and the remaining n − d diagonal elements are nonzero.

• U and V are unimodular matrices.

(See [Coh93] for more information on the Smith Normal Form, as well as algorithms to compute
the matrices U,V and S in polynomial time.)

The output of the algorithm is B̃ = BU. Clearly, B̃ is a basis for L(B) because matrix U is
unimodular. Now, consider the intersection

S ∩ L(B) = S ∩ L(B̃) = {B̃x:x ∈ Zn,HB̃x = 0},

and let Q the n × h matrix consisting of the first h columns of V.
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Since the columns of Q are linearly independent, the condition HB̃x = 0 is equivalent to
QHB̃x = 0. But QHB̃ = QHBU = VCU = S. So, QHB̃x = Sx = 0 if and only if xi = 0 for all
i > d, and the set S ∩L(B) equals L(b̃1, . . . , b̃d). Finally, since B̃ is a basis, the vectors b̃1, . . . , b̃d

are linearly independent, and the dimension of S ∩ L(B) is d. 2

We can now give the first interesting reduction.

Theorem 2 For any approximation factor γ, there is a polynomial time reduction from SMPγ to
SVP

′
γ. The reduction preserves both the rank and dimension of the input lattice, and works for any

efficiently computable norm. Moreover, on input a basis B, the reduction makes only oracle calls
of type SVP

′
γ(B̃, i) where L(B̃) = L(B).

Proof. Let B be the input lattice. The reduction computes linearly independent lattice vectors
si ∈ L(B) of length at most ‖si‖ ≤ γλi(B) iteratively, one at a time. Assume we have found
linearly independent lattice vectors s1, . . . , sk such that ‖si‖ ≤ γλi for i = 1, . . . , k, and let S =
span(s1, . . . , sk). We want to find one more lattice vector sk+1 /∈ S such that ‖sk+1‖ ≤ γλk+1.

Using Lemma 1 we can find a lattice basis B̃ such that L(b̃1, . . . , b̃d) = S ∩L(B). Notice that,
since s1, . . . , sk ∈ L(B) are linearly independent, dim(L(B) ∩ S) = dim(S) = k. So, it must be
d = k, and L(b̃1, . . . , b̃k) = S ∩ L(B). Make n − k calls to SVP

′(B̃, i) for i = k + 1, . . . , n, and let
sk+1 = SVP

′(B̃, i) be the shortest vector returned by the oracle. Certainly, sk+1 /∈ S because it
uses b̃i a nonzero number of times. We want to prove that ‖sk+1‖ ≤ γλk+1.

By definition of λk+1, there exist k+1 linearly independent vectors v1, . . . ,vk+1 ∈ L(B) = L(B̃)
such that ‖vi‖ ≤ λk+1. Since they are linearly independent, they cannot all belong to S. Let
vj = B̃x /∈ S. It must be xi 6= 0 for some i > k, for otherwise we would have B̃x ∈ S. Consider
the oracle call SVP

′(B̃, i) where i is an index such that xi 6= 0. Clearly, the optimal solution
to the SVP

′ instance (B̃, i) has length at most ‖B̃x‖ ≤ λk+1. So, the oracle returns a vector
sk+1 = SVP

′(B̃, i) of length at most ‖sk+1‖ ≤ γ‖B̃x‖ ≤ γλk+1. 2

Next, we reduce SVP
′ to CVP. The idea underlying the reduction is that SVP

′ can be regarded
as a variant of CVP where the target vector can be used multiple times.

Theorem 3 For any approximation factor γ, there is a polynomial time reduction from SVP
′
γ to

CVPγ. The reduction preserves both the rank and dimension of the input lattice, and works for
any efficiently computable norm. Moreover, on input (B, i), all oracle calls made by the reduction
are of type (B̃, t) where L(B̃) ⊂ L(B) and t ∈ L(B).

Proof. Let (B, i) be an SVP
′ input instance, and assume without loss of generality that i = n

equals the rank of B = [b1, . . . ,bn]. Let Ba be an optimal solution to the input problem, i.e., a
lattice vector Ba with an 6= 0 such that ‖Ba‖ is minimized. For j = 0, . . . , ⌊log2 A⌋ (where A is a
sufficiently large bound to be determined) call the CVPγ oracle on input (B(j), t(j)) where

• B(j) = [b1, . . . ,bn−1, 2
j+1bn] is the matrix obtained multiplying the nth column of B by

2j+1, and

• t(j) = 2jbn.
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Let B(j)x(j) be the solution returned by the CVP oracle on input (B(j), t(j)). The output of the
reduction is the shortest among all vectors B(j)x(j) − t(j). Notice that any such vector uses bn a
nonzero

2j+1x(j)
n − 2j = 2j · (2x(j)

n − 1) 6= 0

number of times. So, the output is a feasible solution to SVP
′ instance (B, n). We need to prove

that the output solution is within a factor γ from the shortest, i.e., ‖B(j)x(j) − t(j)‖ ≤ γ‖Ba‖ for
some j.

Let j be the highest power of 2 such that 2j divides an. Since an is nonzero, j is well defined
and an = 2j · (2a − 1) for some integer a. Consider the CVP instance (B(j), t(j)). The lattice
L(B(j)) contains a vector B(j)a′ (where a′ is obtained from a replacing the nth entry an with a) at
distance ‖Ba‖ from t(j). So, the CVP oracle must find a lattice vector such that ‖B(j)x(j) − t(j)‖
is at most γ‖Ba‖ as desired.

It remains to determine a suitable bound A. Since |an| = 2j · |2a − 1| ≥ 2j , it is enough to
set A to any number at least as big as |an|. Let α be (a lower bound to) the distance between
vector bn and the linear subspace S spanned by b1, . . . ,bn−1. (For the Euclidean norm, this is the
length of the orthogonalized vector b∗

n, i.e., the component of bn orthogonal to b1, . . . ,bn−1.) Since
(for any a) the vector Ba has norm at least α · |an|, and ‖Ba‖ ≤ ‖bn‖ by the optimality of a, it
must be |an| ≤ ‖bn‖/α and we can set A = ‖bn‖/α. Since A can be computed in polynomial time,
log2 A is bounded by a polynomial in the input length, and the reduction runs in polynomial time. 2

Combining the two theorems we get the following corollary.

Corollary 4 There is a dimension, rank and approximation preserving reduction from SMPγ (and
therefore SIVPγ) to CVPγ. The reduction works for any computable norm and approximation
factor, and it has the additional property that on input a lattice B, it makes only oracle calls of
type (B̃, t) where L(B̃) ⊂ L(B) and t ∈ L(B).

4 Equivalence results

Now we turn to the proof that several problems on lattices are equivalent from a computational
point of view under polynomial time rank-preserving reductions. We start by considering the
subspace avoiding problem SAP of [BN07], where, on input a lattice B and linear subspace S, the
goal is to find the shortest lattice vector outside S. Notice that our simple variant SVP

′ of the
shortest vector problem is a special case of SAP, where the subspace to avoid is S = {x:xi = 0}.
So, there is a trivial reduction from SVP

′
γ to SAPγ . The following corollary is an immediate

application of Lemma 1, and shows that general SAPγ instances are not harder than SVP
′.

Corollary 5 For any efficiently computable norm and approximation factor γ, the problems SAPγ

and SVP
′
γ are equivalent under deterministic polynomial time rank-preserving reductions.

Proof. We already observed that SVP
′ is a special case of SAP, so there is a trivial reduction

from SVP
′
γ to SAPγ . We reduce SAPγ to SVP

′
γ . Let (B, S) be an instance of SAPγ . We invoke

Lemma 1 on input (B, S) to get an equivalent SAPγ instance (B̃, S) where L(B̃) = L(B) and
S = span(b̃1, . . . , b̃d). Next, we call the SVP

′
γ oracle on input (B̃, i) for i = d + 1, . . . , n, and

select the shortest of the vectors returned by the oracle calls. Clearly, all oracle answers belong

9



to L(B) \ S because they use some b̃i /∈ S (for i > d) a nonzero number of times. Moreover, the
optimal solution to the SAPγ input instance must use one of the vectors b̃i (for i > d) a nonzero
number of times, so the corresponding call SVP

′
γ(B̃, i) returns a vector of length at most γ times

longer than this optimal solution. 2

The equivalence between CVPγ and its generalization GCVPγ introduced by [Blö00] is less
trivial, but it can still be easily proved by adapting our reduction from SVP

′
γ to CVPγ .

Theorem 6 For any efficiently computable norm and approximation factor γ, the problems CVPγ

and GCVPγ are equivalent under deterministic polynomial time rank-preserving reductions.

Proof. Clearly, CVPγ is a special case of GCVPγ (with S = ∅), so there is a trivial reduction
from CVPγ to GCVPγ . We give a reduction in the opposite direction. Let (B, t, S) be a GCVPγ

instance, where B ∈ Zm×n is an m-dimensional lattice, S ⊂ Rm is an affine subspace, and t ∈ Qm

is a target point. First of all, we determine if S intersects the lattice L(B), and if so, we find a
lattice point in S. Both tasks can be efficiently performed using linear algebra. If S contains no
lattice point, then we can immediately map it to CVPγ instance (B, t). So, assume S contains a
lattice point v ∈ S ∩L(B). We can also assume, without loss of generality, that v is the origin, for,
otherwise, we can consider an equivalent GCVPγ instance (B, S −v, t−v), where S −v certainly
contains the origin. To sum up, so far we have reduced general GCVPγ instances to instances
where S is a linear subspace.

Next, we use Lemma 1 to find a basis B̃ for L(B) such that S = span([b̃1, . . . , b̃k]). Using
this basis B̃, we define a collection of CVPγ instances as follows. For any i = k + 1, . . . , n, and
j = 0 . . . , ⌊log2 A⌋ (where A is a sufficiently large bound which can be determined as in the proof
of Theorem 3), define

• B̃j
i = [b̃1, . . . , b̃i−1, 2

j+1 · b̃i, b̃i+1, . . . , b̃n], and

• tj
i = t − 2j · b̃i.

Call the CVPγ oracle on all instances (B̃j
i , t

j
i ) to get solutions zj

i ∈ L(Bj
i ). The output of the

reduction is the vector zj
i + 2j · b̃i closest to the target t. This completes the description of the

reduction from GCVP to CVP.
We need to show that the reduction is correct. Notice that the output of the reduction zj

i +2j ·b̃i

is a lattice point because zj
i ∈ L(B̃j

i ) ⊂ L(B) and b̃i ∈ L(B). Moreover, zj
i + 2j · b̃i /∈ S because

it uses the basis vector b̃i /∈ S a nonzero (in fact, in 2j(2Z + 1)) number of times. So, the output
of the reduction is a feasible solution to GCVPγ instance (B, t, S). All we need to do is to bound
the quality of the approximation achieved by the reduction, i.e., show that for some i and j, the
distance of the vector zj

i + 2j · b̃i from the target t is within a factor γ from the optimal. Let
B̃a be the optimal solution to the GCVPγ instance (B, t, S) expressed in terms of the basis B̃.
We know that [ak+1, . . . , an] is nonzero because B̃a /∈ S ⊃ L([b̃1, . . . , b̃k]). In particular, there is
an index i > k such that ai 6= 0. Let 2j be the highest power of 2 that divides ai, and consider
CVPγ instance (B̃j

i , t
j
i ). Let a′ be the vector obtained by replacing the ith coordinate of a by

a′i = ((ai/2
j) − 1)/2. The distance of tj

i from the lattice L(B̃j
i ) is at most

dist(tj
i ,L(B̃j

i )) ≤ ‖tj
i − B̃j

ia
′‖
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= ‖t − 2j · b̃i −
∑

h 6=i

b̃hah − 2j+1 · b̃ia
′
i‖

= ‖t −
∑

h

b̃hah‖ = ‖t − B̃a‖.

So, the CVPγ oracle will return a lattice vector zj
i = B̃j

ix within distance γ · ‖t − B̃a‖ from the

target tj
i , and the corresponding vector output by the reduction satisfies

‖(zj
i + 2j · b̃i) − t‖ = ‖zj

i − tj
i‖ ≤ γ‖t − B̃a‖

as required. 2

We conclude this section showing that all lattice problems considered in this paper, with the
only exception of SVP, are equivalent in their exact version under deterministic polynomial-time
rank-preserving reductions. The result builds on a simple (rank increasing) reduction from CVP

to SIVP in the Euclidean norm given in [BS99].
Our result can be generalized to other norms using the fact that the (Banach-Mazur) distance

of any n-dimensional norm from the Euclidean norm ℓ2 is bounded by a polynomial in n. The most
delicate part of the adaptation to other norms is the generalization of the reduction in [BS99] to
norms other than ℓ2. For simplicity (and in order to use the reduction from [BS99]) we present the
result only for the special case of the Euclidean norm.

Corollary 7 SIVP, SMP, SVP
′ and CVP in the Euclidean norm are equivalent in their exact

version under polynomial time rank-preserving reductions, and SVP reduces to any of them.

Proof. We have already given rank-preserving reductions SIVPγ ≤ SMPγ ≤ SVP
′
γ ≤ SAPγ ≤

GCVPγ ≤ CVPγ . In order to prove the corollary we need to give a rank-preserving reduction
from CVP to SIVP. A reduction between these two problems is given by Blömer and Seifert in
[BS99]. However, their reduction maps rank n instances of CVP to rank (n+1) instances of SIVP.
Here we use the transference theorems of Banaszczyk [Ban93] to modify their reduction into a rank
preserving one. This involves a primal/dual rank reduction method that might be of independent
interest. The idea is to use short vectors in the input lattice to find short vectors in the dual, and
then use the short dual vectors to find closest vectors in the original lattice.

Let (B, t) be a CVP instance of rank n, and w ∈ L(B) a lattice vector closest to t. We want
to find a lattice point at distance ‖w− t‖ from t, making a polynomial number of calls to an oracle
that solves SIVP problems of rank n.

We first use the SIVP oracle to find a nonzero lattice vector of length at most ‖x‖ ≤ λn(B).
Vector x ∈ L(B) partitions the dual lattice L(B∗) =

⋃

i∈Z
Si into subsets

Si = {y ∈ L(B∗): 〈y,x〉 = i}

lying on (n − 1)-dimensional hyperplanes at distance 1/‖x‖ from each other. By the transference
theorems we know that λ1(B

∗) ≤ n/λn(B) ≤ n/‖x‖. So the shortest nonzero vector in the dual
lattice belongs to subset Si for some i ∈ {−n, . . . , n}. In fact, since any lattice is symmetric about
the origin, it is enough to consider i ∈ {0, . . . , n}. For each i in this range, we can find the shortest
nonzero vector in Si as follows:

11



• For i = 0, this is a SVP instance of rank n − 1, which can be solved by reducing it to CVP

using the rank preserving reduction of Goldreich et al. [GMSS99], and then reducing the
resulting CVP instance (which has rank n − 1) to SIVP using the reduction of [BS99].

• For i 6= 0, we first find an arbitrary lattice point v ∈ Si, and the point w in the hyperplane
Hi = {y ∈ span(B): 〈y,x〉 = i} closest to the origin. Next, we find the lattice point u ∈ S0

closest to the target w − v. This is a CVP instance of rank (n − 1) and it can be solved by
reduction to SIVP as in the i = 0 case. The point u + v belongs to Si and it is the point in
Si of smallest norm.

Let d be the smallest of all the dual vectors found for i ∈ {0, . . . , n}. Since the shortest vector in
the dual lattice belongs to one of these sets Si, we have ‖d‖ ≤ λ1(B

∗). This dual vector partitions
the original lattice L(B) =

⋃

i∈Z
Ti into subsets

Ti = {y ∈ L(B): 〈y,d〉 = i}

lying on (n − 1)-dimensional hyperplanes at distance 1/‖d‖ = 1/λ1(B
∗) from each other. We

observe that the lattice vector w closest to t must belong to Ti for an index i ∈ 〈t,d〉 ± n because

|〈d,w〉 − 〈d, t〉| = |〈d,w − t〉| ≤ ‖d‖ · ‖w − t‖ ≤ λ∗
1(B)ν(B)

which, by the transference theorem, is at most n. For each i, we can find the lattice vector in Ti

closest to the target by solving a CVP problem of rank n − 1. Each of these lower dimensional
instances can be reduced to SIVP (of rank n) using the reduction from [BS99]. 2

5 Open Problems

As Figure 1(b) shows, we have now a fairly good picture of the relations among the various lattice
problems studied in this paper. The first question left open in this paper is to determine the relation
between SVPγ and SIVPγ .

Open Problem 1 Are there deterministic polynomial time reductions between SVPγ and SIVPγ

that preserve both the rank of the lattice and quality of approximation? Are the two problems
equivalent? Incomparable? Or one strictly harder than the other?

We remark that for the exact (γ = 1) version of the problems in the Euclidean norm, there
is a reduction from SVP to SIVP. (See Figure 1(c).) Also, the transference theorems of [Ban93]
immediately give a polynomial time deterministic rank-preserving reduction from GapSVPγn to
GapSIVPγ for any factor γ. This supports the conjecture that SVPγ is not harder than SIVPγ .
Proving a reduction in the opposite direction (from SIVP to SVP) appears harder (even just for
the exact version of the problems) as it would imply the NP-hardness of SVP under deterministic
polynomial time reductions. To date, all known NP-hardness proofs for SVP [Ajt98, Mic01, Kho05,
HR07] (with the only exception of a deterministic reduction of [Mic01] based on a plausible, but
unproven, number theoretic conjecture) are randomized. Moreover, they produce SVP instances
with much higher rank than the size of the original problem. So, even finding a randomized rank-
preserving reduction from SIVP to SVP would be an interesting result.
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The other main open question is whether the hierarchy of problems shown in Figure 1(b) is
strict, or some of the problems can be proved equivalent. In the case of the exact version in the
Euclidean norm, Figure 1(c) shows that all problems, with the exception of SVP, collapse to the
same class. This was proved giving a rank-preserving reduction from CVP to SIVP. Can the same
be done for approximate versions of the problems?

Open Problem 2 Is there a deterministic polynomial time reduction from CVPγ to SIVPγ that
preserves the rank of the lattice and approximation factor?

Answering the above question would show that all problems except SVPγ are equivalent, and
SVPγ is not harder than any of them. Even reducing one of the easier problems (SMPγ or SAPγ)
to SIVPγ would be an interesting result, as it would collapse all the intermediate problems together,
as well as establish a relation between SVPγ and SIVPγ .
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