CSE 100 - Homework 1

4.18

(a) Give a precise expression for the minimum number of nadas AVL tree of heighta.
(b) What is the minimum number of nodes in an AVL tree of heijif?

Solution:
(a) LetS(h) be the minimum number of nodes in an AVL tr€eof heighth. The subtrees of an AVL tree with
mimimum number of nodes must also have minimum number of f108is0, at least one of the left and right
subtrees of" is an AVL tree of heighty — 1. Since the height of left and right subtrees can differ by asi,
the other subtree must have height 2. Then, we have the following recurrence relation:

S(h)=S(h—1)+S(h—2)+1. 1)

We also know the base caseg0) = 1 andS(1) = 2.

One method to solve a recurrence relation is to guess thé@oland prove it by induction. Observe that the
recurrence relation ifl) is very similar to the recurrence relation of Fibonacci nensb When we look at the
first a few numbers of the sequengéh), it is not difficult to guessS(h) = F(h + 3) — 1. Now, let’s prove that
S(h) = F(h + 3) — 1 by induction.

Base cases:

S(0) =1, F(3) =2. S0,5(0) = F(3) — 1.
S(1)=2,F(4)=3.S0,5(1)=F(4) —1.

Induction hyprothesis:

Assume that the hypothes#§h) = F(h+3) — listrueforh =1,--- | k.
Inductive step:

Prove that it is also true for = k + 1.
Sk+1)=Sk) +Sk-1)+1
=F(k+3)-1+F(k+2)—1+1
= F(k+4) - 1.

We replaceS(k) and S(k — 1) with their equivalence according to the hypothesis. Then, get
S(k+1) = F(k +4) — 1. Hypothesis is also true fdr = k + 1. Thus, it is true for alk.

(b) S(15) = F(18) — 1.

4.19
Show the result of inserting, 1,4, 5,9, 3,6, 7.

Solution:
See Figurd.

4.20 The keysl, 2, - -- ,2¥ — 1 are inserted in order into an initially empty AVL tree. Prdabat the resulting tree is
perfectly balanced.

Solution:
We will prove the following more general statement by indutbnk: The result of inserting any increasing sequence
of 2 — 1 numbers into an initially empty AVL tree results in a perfgdialanced tree of height — 1.

Base case:
k = 1. Tree has only one node. This is clearly perfectly balanced.

Induction hypothesis: Assume hypothesis is true fér= 1,2, ..., h.
Inductive step: Prove that it is true fok = h + 1, i.e. for the sequencg 2, - - - , 2"+ — 1.

After the first2" — 1 insertions, by the induction hypothesis, the tree is pésfémlanced, with height — 1.
2h—1is at the root; the left subtree is a perfectly balanced tféeighth — 2, and the right subtree is a perfectly
balanced tree containing the numbefs® + 1 through2” — 1, also of height, — 2. Each of the nex2"~!
insertions 2" through2” 4 2"=1 — 1) are inserted into the right subtree, and the entire sequeitumbers in
the right subtree (now”—! + 1 through2” + 2"~! — 1) were inserted in order and are a sequencg’of 1
nodes. By the induction hypothesis, they form a perfectlgteed tree of heightt — 1. See Figure.

The next insertion, of the numbgt + 2"~1, imbalances the tree at the root. The subsequent RR rofatiors

a tree with rooR” at the root, and a perfectly balanced left subtree of heightl. The right subtree consists
of a perfectly balanced tree (of height- 2), with the new node (containir@* + 2"~ as the right child of its
biggest element. Thus, the right subtree is as if the nunifers 1, - - - 2" + 2"~! had been inserted in order.
By the induction hypothesis, subsequently inserting thalvers2” + 2"~! 4- 1 through2"*! — 1 nodes form a
perfectly balanced subtree of height 1. Since the left and right subtrees are perfectly balanceig/iiv, — 1),
the whole tree is perfectly balanced.

4.36 Write a method to generate a perfectly balanced binary seagetof heighth with keys1 through2"+! — 1.
What is the running time of your method?

Solution:
One way to implement is the following:

public BSTNode genPerfectTree (int h)

{

return genPefectTree (1, Math.pow(2, h + 1) - 1);
}
private BSTNode genPerfectTree (int low, int high)
{

if (low==high)

return new BSTNode(low, null, null);
int root = (low + high) / 2;
BSTNode left = genPerfectTree (low, root - 1);
BSTNode right = genPerfectTree (root + 1, high);
return new BSTNode(root, left, right);

}

The running time of this i€)(2") = O(n), wheren is the number of nodes in the generated tree. Every node is
visited just one time when it is generated.

447
Teo treedl’; andT; are isomorphic iff; can be transformed inth, by swapping left and right children of (some of)
nodes in’}.

(a) Give a polynomial time algorithm to decide if two treee somorphic.

(b) What is the running time of your program?

Solution:
One way to implement is the following:

public boolean arelsomorphic (BinaryTreeNode rootl, BifieeeNode root2)

{

/* If both are null trees, they are isomorphic. */
if (rootl == null && root2 == null)
return true;

/* If one is null and the other not, they are not isomorphic. */
if (rootl == null || root2 == null)
return false;

/* If the elements at the roots are not the same, they are
not isomorphic. */
if (rootl.element.compareTo(root2.element) != 0)

return false;

/* Now, to be isomorphic,

rootl.left must be isomorphic to root2.left AND
root1.right must be iosmorphic to root2.right,
OR

root1.right must be isomorphic to root2.left AND
rootl.left must be iosmorphic to root2.right. */

return (arelsomorphic(rootl.left, root2.left) &&
arelsomorphic(rootl.right, root2.right))
|| (arelsomorphic(rootl.right, root2.left) &&
arelsomorphic(rootl.left, root2.right));

}

Worst case time complexity, as a function of the height ofstimaller of the two trees, can be written by the following
recurrence relation.

T(—1) = ¢l // height of -1 means an empty tree.
T(h) =4-T(h — 1)+ c2// up to four recursive calls for trees smaller in height by 1.

We can solve this recurrence relation by back substitution.

T(h)=4-T(h—1)+c2
=4-4-Th—2)+c2)+c2
=4-4-4-T(h—3)+c2)+c2)+c2
=43 T(h—3)+c2-(1+4+4?)

i—1
=4 T(h—i)+c2) 4
k=0

=4"T(h—i)+c2- (4 —-1)/(4-1)
=4"-T(h—i)+ (c2/3)- (4" = 1)

Stop whem, — i = —1 (the base case), i.é=h + 1.

T(h) = 4" T(=1) + (¢2/3) - (4" — 1)
=cl - 4" 4 (e2/3) - (4" — 1)
= (el 4 ¢2/3) - 22(hFD) _ (¢2/3)

Thus, the running tim@ (k) is exponential in h, i.eO(2"). However, ifh = O(logn), then itisO(n?).

Extra Problem
Prove that insertion into a binary search tree that is corapldile maintaining completeness can not be done in
O(logn) time.

Solution:

We will show that for any tree height, we can create a pesfdmilanced binary search tree that can not be inserted
into in O(logn) time, while leaving the tree perfectly balanced. For thisiyem, our perfectly balanced binary tree
is a tree completely filled in, except possibly for the botterrel, which is filled from left to right.

First, we show that if a sequence of consecutive integemngith2® — 1 starting atz is in a perfectly balanced tree,
then the leaves of the tree are numbered + 2,z + 4, --- ,z + 2¢ — 2. So, for example, it = 3, andz = 1, the
leaves are numberdd3, 5, and7. See figure 3.

We will prove this by induction ort.

Basecase: k£ =1
Since there is just one integelin the sequence, it must be a leaf.

Induction hypothesis:
Assume itistrue fok =1,--- ,h.

Induction step:

Prove that it is true fokkc = h + 1. The numbers stored in the tree arer + 1,--- ,z + 2" — 2. The
root stores the integef(z + 2(h 4+ 1) — 2) 4+ 2)/2 = 2 + 2" — 1. The left subtree stores the numbers
z,x+1,-- 2+ 2" — 2. This tree hagz + 2" — 2) — 2z + 1 = 2" — 1 nodes, so the induction hypothesis
applies, and the leaves of this tree are + 2, --- , 2 + 2" — 2.

The right subtree stores the numbers+ 2" 2 4+ 2" + 2,... & + 2(h + 1) — 2. This tree has
(x 4+ 2 +1) —2) — (z +2") +1 = 2" — 1 nodes, so the induction hypothesis applies, and the
leaves of this tree ate + 2", 2 + 2" +2,--- ,z +2(h + 1) — 2.

Thus, the sequence of the leaves in the entire tregiis-2, - - - , 2 +2"—2, 2+ 2" z+2" 42, ... 24212
and we have proven the statementfoe h + 1.

Now consider the perfectly balanced tree containing thebersil, 2, ...,2" — 1. Its leaves will be numbered

1,3,5,---,2" — 1. Now remove the bottom right node from this tree (the one remath2” — 1), and insert into
the tree the numbeY. The numbers stored will b& 1,2, - - - , 2" — 2. Since there are stifl” — 1 nodes, the above
proof applies, and the leaf nodes will be numbede2i 4, - - - , 2" — 2. Since the leaf nodes are the only ones that have

null pointers in a perfectly balanced tree, and since alhefleaf nodes are changing during the process of inserting
0, whatever algorithm does the insertion will have to visitadithe leaf nodes. Since there apgn) leaf nodes, the
algorithm must have worst caggn) time complexity.

Insert 2 Insert 1 Insert 4 Insert 5

’ f«f\

Insert 9
ﬂ —— rotate —9»
Insert 3
—— rotate — > —— rotate — 9> ° e
o e ORNOI
Insert 6
° e — rotate —#> ° e — rotate —#>
Insert 7

Figure 1: Problem 4.19

afterinserting 1, 2, ..., "1 h-2 h-2

afterinserting 1, 2, ..., "21,.., 2+2"L1.

h-2 h-2 h-1

afterinserting 1,2, ..., ™1,.., 2+2L afterinserting 1,2, ..., "1,.. 22t . 2l

Figure 2: Problem 4.20

