
CSE 100 - Homework 1

4.18

(a) Give a precise expression for the minimum number of nodesin an AVL tree of heighth.

(b) What is the minimum number of nodes in an AVL tree of height15?

Solution:
(a) LetS(h) be the minimum number of nodes in an AVL treeT of heighth. The subtrees of an AVL tree with
mimimum number of nodes must also have minimum number of nodes. Also, at least one of the left and right
subtrees ofT is an AVL tree of heighth − 1. Since the height of left and right subtrees can differ by at most1,
the other subtree must have heighth − 2. Then, we have the following recurrence relation:

S(h) = S(h − 1) + S(h − 2) + 1. (1)

We also know the base cases:S(0) = 1 andS(1) = 2.
One method to solve a recurrence relation is to guess the solution and prove it by induction. Observe that the
recurrence relation in(1) is very similar to the recurrence relation of Fibonacci numbers. When we look at the
first a few numbers of the sequenceS(h), it is not difficult to guessS(h) = F (h + 3)− 1. Now, let’s prove that
S(h) = F (h + 3) − 1 by induction.

Base cases:
S(0) = 1, F (3) = 2. So,S(0) = F (3) − 1.
S(1) = 2, F (4) = 3. So,S(1) = F (4) − 1.

Induction hyprothesis:
Assume that the hypothesisS(h) = F (h + 3) − 1 is true forh = 1, · · · , k.
Inductive step:
Prove that it is also true forh = k + 1.

S(k + 1) = S(k) + S(k − 1) + 1

= F (k + 3) − 1 + F (k + 2) − 1 + 1

= F (k + 4) − 1.

We replaceS(k) and S(k − 1) with their equivalence according to the hypothesis. Then, we get
S(k + 1) = F (k + 4) − 1. Hypothesis is also true forh = k + 1. Thus, it is true for allh.

(b) S(15) = F (18) − 1.

4.19
Show the result of inserting2, 1, 4, 5, 9, 3, 6, 7.

Solution:
See Figure1.

4.20 The keys1, 2, · · · , 2k − 1 are inserted in order into an initially empty AVL tree. Provethat the resulting tree is
perfectly balanced.

Solution:
We will prove the following more general statement by induction onk: The result of inserting any increasing sequence
of 2k − 1 numbers into an initially empty AVL tree results in a perfectly balanced tree of heightk − 1.

1

Base case:
k = 1. Tree has only one node. This is clearly perfectly balanced.

Induction hypothesis: Assume hypothesis is true fork = 1, 2, ..., h.

Inductive step: Prove that it is true fork = h + 1, i.e. for the sequence1, 2, · · · , 2h+1 − 1.

After the first2h − 1 insertions, by the induction hypothesis, the tree is perfectly balanced, with heighth − 1.
2h−1 is at the root; the left subtree is a perfectly balanced tree of heighth−2, and the right subtree is a perfectly
balanced tree containing the numbers2h−1 + 1 through2h − 1, also of heighth − 2. Each of the next2h−1

insertions (2h through2h + 2h−1 − 1) are inserted into the right subtree, and the entire sequence of numbers in
the right subtree (now2h−1 + 1 through2h + 2h−1 − 1) were inserted in order and are a sequence of2h − 1
nodes. By the induction hypothesis, they form a perfectly balanced tree of heighth − 1. See Figure2.

The next insertion, of the number2h + 2h−1, imbalances the tree at the root. The subsequent RR rotationforms
a tree with root2h at the root, and a perfectly balanced left subtree of heighth − 1. The right subtree consists
of a perfectly balanced tree (of heighth − 2), with the new node (containing2h + 2h−1 as the right child of its
biggest element. Thus, the right subtree is as if the numbers2h + 1, · · · 2h + 2h−1 had been inserted in order.
By the induction hypothesis, subsequently inserting the numbers2h + 2h−1 + 1 through2h+1 − 1 nodes form a
perfectly balanced subtree of heighth−1. Since the left and right subtrees are perfectly balanced (heighth−1),
the whole tree is perfectly balanced.

4.36 Write a method to generate a perfectly balanced binary searchtree of heighth with keys1 through2h+1 − 1.
What is the running time of your method?

Solution:
One way to implement is the following:

public BSTNode genPerfectTree (int h)

{

return genPefectTree (1, Math.pow(2, h + 1) - 1);

}

private BSTNode genPerfectTree (int low, int high)

{

if (low==high)

return new BSTNode(low, null, null);

int root = (low + high) / 2;

BSTNode left = genPerfectTree (low, root - 1);

BSTNode right = genPerfectTree (root + 1, high);

return new BSTNode(root, left, right);

}

The running time of this isO(2h) = O(n), wheren is the number of nodes in the generated tree. Every node is
visited just one time when it is generated.

4.47
Teo treesT1 andT2 are isomorphic ifT1 can be transformed intoT2 by swapping left and right children of (some of)
nodes inT1.

(a) Give a polynomial time algorithm to decide if two trees are isomorphic.

(b) What is the running time of your program?

Solution:
One way to implement is the following:

2

public boolean areIsomorphic (BinaryTreeNode root1, BinaryTreeNode root2)

{

/* If both are null trees, they are isomorphic. */

if (root1 == null && root2 == null)

return true;

/* If one is null and the other not, they are not isomorphic. */

if (root1 == null || root2 == null)

return false;

/* If the elements at the roots are not the same, they are

not isomorphic. */

if (root1.element.compareTo(root2.element) != 0)

return false;

/* Now, to be isomorphic,

root1.left must be isomorphic to root2.left AND

root1.right must be iosmorphic to root2.right,

OR

root1.right must be isomorphic to root2.left AND

root1.left must be iosmorphic to root2.right. */

return (areIsomorphic(root1.left, root2.left) &&

areIsomorphic(root1.right, root2.right))

|| (areIsomorphic(root1.right, root2.left) &&

areIsomorphic(root1.left, root2.right));

}

Worst case time complexity, as a function of the height of thesmaller of the two trees, can be written by the following
recurrence relation.

T (−1) = c1 // height of -1 means an empty tree.

T (h) = 4 · T (h − 1) + c2// up to four recursive calls for trees smaller in height by 1.

We can solve this recurrence relation by back substitution.

T (h) = 4 · T (h − 1) + c2

= 4 · (4 · T (h − 2) + c2) + c2

= 4 · (4 · (4 · T (h − 3) + c2) + c2) + c2

= 43 · T (h − 3) + c2 · (1 + 4 + 42)

= 4i · T (h − i) + c2
i−1∑

k=0

4k

= 4i · T (h − i) + c2 · (4i − 1)/(4 − 1)

= 4i · T (h − i) + (c2/3) · (4i − 1)

3

Stop whenh − i = −1 (the base case), i.e.i = h + 1.

T (h) = 4h+1 · T (−1) + (c2/3) · (4h+1 − 1)

= c1 · 4h+1 + (c2/3) · (4h+1 − 1)

= (c1 + c2/3) · 22(h+1) − (c2/3)

Thus, the running timeT (h) is exponential in h, i.e.O(2h). However, ifh = O(logn), then it isO(n2).

Extra Problem
Prove that insertion into a binary search tree that is complete while maintaining completeness can not be done in
O(logn) time.

Solution:
We will show that for any tree height, we can create a perfectly balanced binary search tree that can not be inserted
into in O(logn) time, while leaving the tree perfectly balanced. For this problem, our perfectly balanced binary tree
is a tree completely filled in, except possibly for the bottomlevel, which is filled from left to right.

First, we show that if a sequence of consecutive integers of length2k − 1 starting atx is in a perfectly balanced tree,
then the leaves of the tree are numberedx, x + 2, x + 4, · · · , x + 2k − 2. So, for example, ifk = 3, andx = 1, the
leaves are numbered1, 3, 5, and7. See figure 3.

We will prove this by induction onk.

Base case: k = 1
Since there is just one integerx in the sequence, it must be a leaf.

Induction hypothesis:
Assume it is true fork = 1, · · · , h.

Induction step:
Prove that it is true fork = h + 1. The numbers stored in the tree arex, x + 1, · · · , x + 2h+1 − 2. The
root stores the integer((x + 2(h + 1) − 2) + x)/2 = x + 2h − 1. The left subtree stores the numbers
x, x + 1, · · · , x + 2h − 2. This tree has(x + 2h − 2) − x + 1 = 2h − 1 nodes, so the induction hypothesis
applies, and the leaves of this tree arex, x + 2, · · · , x + 2h − 2.

The right subtree stores the numbersx + 2h, x + 2h + 2, · · · , x + 2(h + 1) − 2. This tree has
(x + 2(h + 1) − 2) − (x + 2h) + 1 = 2h − 1 nodes, so the induction hypothesis applies, and the
leaves of this tree arex + 2h, x + 2h + 2, · · · , x + 2(h + 1) − 2.

Thus, the sequence of the leaves in the entire tree isx, x+2, · · · , x+2h−2, x+2h, x+2h+2, · · · , x+2h+1−2
and we have proven the statement fork = h + 1.

Now consider the perfectly balanced tree containing the numbers1, 2, ..., 2h − 1. Its leaves will be numbered
1, 3, 5, · · · , 2h − 1. Now remove the bottom right node from this tree (the one numbered2h − 1), and insert into
the tree the number0. The numbers stored will be0, 1, 2, · · · , 2h − 2. Since there are still2h − 1 nodes, the above
proof applies, and the leaf nodes will be numbered0, 2, 4, · · · , 2h−2. Since the leaf nodes are the only ones that have
null pointers in a perfectly balanced tree, and since all of the leaf nodes are changing during the process of inserting
0, whatever algorithm does the insertion will have to visit all of the leaf nodes. Since there areO(n) leaf nodes, the
algorithm must have worst caseO(n) time complexity.

4

Insert 2

2

Insert 1

2

1

Insert 4

2

1 4

Insert 5

2

1 4

5
Insert 9

2

1 4

5

9

rotate

2

1 5

94

Insert 3

2

1 5

94

3

rotate

2

1 4

53

9

rotate

4

2 5

931

Insert 6

4

2 5

93

6

rotate

1

4

2 5

63

9

1

rotate

4

2 6

93 51

Insert 7

4

2 6

93 51

7

Figure 1: Problem 4.19

5

2h-1

h-2 h-2

h-2 h-2

2h-1

h-2

after inserting 1, 2, ..., 2h-1.

after inserting 1, 2, ..., 2h-1, ..., 2h+2h-1-1.

2h-1

h-2 h-2

2h

after inserting 1, 2, ..., 2h-1, ..., 2h+2h-1.

h-2

2h-1

h-2 h-2

2h

h-1

after inserting 1, 2, ..., 2h-1, ..., 2h+2h-1, ... 2h+1-1.

Figure 2: Problem 4.20

6

