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Photometric Stereo in a Scattering Medium
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Abstract—Photometric stereo is widely used for 3D reconstruction. However, its use in scattering media such as water, biological
tissue and fog has been limited until now, because of forward scattered light from both the source and object, as well as light scattered
back from the medium (backscatter). Here we make three contributions to address the key modes of light propagation, under the
common single scattering assumption for dilute media. First, we show through extensive simulations that single-scattered light from a
source can be approximated by a point light source with a single direction. This alleviates the need to handle light source blur explicitly.
Next, we model the blur due to scattering of light from the object. We measure the object point-spread function and introduce a simple
deconvolution method. Finally, we show how imaging fluorescence emission where available, eliminates the backscatter component
and increases the signal-to-noise ratio. Experimental results in a water tank, with different concentrations of scattering media added,
show that deconvolution produces higher-quality 3D reconstructions than previous techniques, and that when combined with
fluorescence, can produce results similar to that in clear water even for highly turbid media.

Index Terms—Photometric Stereo, Scattering Medium, Fluorescence
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1 INTRODUCTION

O BTAINING 3D information about an object submersed
in fog, haze, water, or biological tissue is difficult

because of scattering [1], [2], [3]. In this paper, we focus
on photometric stereo, which estimates surface normals
from intensity changes under varying illumination. In air,
photometric stereo produces high-quality geometry, even in
textureless regions with small details, and is a widely used
3D reconstruction method.

In a scattering medium, however, light propagation is
affected by scattering which degrades the performance of
photometric algorithms unless accounted for. Distance de-
pendent attenuation caused by the medium has been dealt
with in the past [4]. Here, our contributions lie in handling
three scattering effects (Fig. 1), based on a single scatter
model [5]: 1) light traveling from the source to the object is
blurred due to forward scattering; 2) light traveling from
the object to the camera is blurred due to forward scattering;
3) light traveling from the source is scattered back towards the
camera without hitting the object. This is known as backscat-
ter and is an additive component that veils the object. All
these effects are distance dependent and thus depend on
the object 3D surface: the property we aim to reconstruct.
To handle this we introduce the small surface variations
approximation for the object (Sec. 3), that assumes surface
changes are small relative to the distance from the object
(that is assumed to be known). This assumption removes
the dependence on the unknown surface heights Z , but
unlike the common distant light/camera approximations, it

• Z. Murez, R. Ramamoorthi, D. Kriegman are with the Department of
Computer Science and Engineering, University of California, San Diego,
9500 Gilman Drive, La Jolla, CA 92093-0404.

E-mail: {zmurez,ravir,kriegman}@cs.ucsd.edu.
• T. Treibitz is with the Department for Marine Technologies, Charney

School of Marine Sciences, University of Haifa, Haifa, Isreal
E-mail: ttreibitz@univ.haifa.ac.il

Manuscript received October 26, 2015

still allows for dependencies on spatial locations X and Y .
One important consequence of this is the ability to model
anisotropic light sources, which is not possible for distant
lights.

Forward scatter was previously compensated for iter-
atively for both pathways (light to object and object to
camera) simultaneously [6]. We analyze the paths separately.
The resulting algorithm is simpler, requires fewer images
and yields better results. First, consider the blurring of light
traveling to the object from the source (Fig. 1b). The pho-
tometric stereo formulation assumes a point light source,
illuminating from a single direction. However, if the source
is scattered by the medium, this no longer holds: the point
light source is spread, and the direction of light rays inci-
dent on the object changes. Nonetheless, for a Lambertian
surface, illuminated from a variety of directions, we still
get a linear equation between the image intensities and the
surface normals [7]. Here, we show through simulations in
a large variety of single scattering media, that a forward-
scattered light source illuminating a Lambertian surface can
be well approximated by a non-blurred light source in an
effective purely absorbing medium (Sec. 6). This allows for
much easier calibration in practice.

Next, we observe that the blur caused by scattering from
the object to the camera (Fig. 1c) significantly affects the
shape of the surface reconstructed by photometric stereo.
This important effect has been neglected in many previous
works. In general, the point-spread function (PSF) for an
object is spatially varying and dependent on the unknown
scene depths. However, we demonstrate that a spatially
invariant approximation can still achieve good results, when
calibrated for the desired medium and approximate object
distance. Although this means we must capture an ad-
ditional calibration image for each medium and working
distance, we do not believe this will be too cumbersome
based on previous experience in the field. We estimate the
PSF and use it to deconvolve the images after backscatter
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Fig. 1. A perspective camera is imaging an object point at X, with a normal N, illuminated by a point light source at S. The object is
in a scattering medium, and thus light may be scattered in the three ways shown, detailed in Sec. 3.

has been removed (Sec. 7). These corrected images are used
as input to a linear photometric stereo algorithm to recover
the surface normals, which are then integrated. This results
in much higher quality 3D surfaces across varying turbidity
levels.

Finally, consider the backscatter component (Fig. 1a).
In a previous work (Tsiotsios et al. [8]) backscatter was
calibrated and subtracted from the input images. This is
similar in spirit to, and can in fact be used in conjunction
with, ambient light subtraction, however underwater light is
rapidly attenuated and thus ambient light is often minimal.
However, when backscatter is strong relative to the object
signal, subtracting it after image formation leads to lack of
dynamic range and lower signal-to-noise ratios (SNR) [9]
that significantly degrades deblurring and reconstruction.
Here we show that if the object fluoresces, this can be
leveraged to optically remove the backscatter prior to image
formation (Sec. 8). Fluorescence is the re-emission of pho-
tons in wavelengths longer than the excitation light [10],
and therefore the backscatter can be eliminated by optically
blocking the excitation wavelengths and imaging only the
fluorescence emission. This improves SNR, especially in
high turbidity. This approach is feasible as many natural
underwater objects such as corals and algae fluoresce natu-
rally.

We demonstrate our method experimentally in a water
tank (Sec. 10) with varying turbidity levels. Deblurring can
be used separately or combined with fluorescence imaging
to significantly improve the quality of photometric stereo
reconstructions.

2 PREVIOUS WORK

The traditional setup for photometric stereo assumes a
Lambertian surface, orthographic projection, distant light
sources, and a non-participating medium [11]. However,
underwater light is exponentially attenuated with distance,
and thus the camera and lights must be placed close to the
scene for proper illumination. This means that the ortho-
graphic camera model, and the distant light assumptions,
are no longer valid. In addition, attenuation and scattering
by the medium need to be accounted for. These effects were
partially considered in previous works.
Near-Field Effects and Exponential Attenuation: Pho-
tometric stereo in air was solved with perspective cam-
eras [12], [13], nearby light sources [14], or both [15], [16].
Kolagani et al. [4] uses a perspective camera, nearby light
sources and includes exponential attenuation of light in a

medium. Their formulation leads to nonlinear solutions for
the normals and heights. We handle these near field effects
but linearize the problem (Sec. 3).
Photometric Stereo with Backscatter: Narasimhan et
al. [17] handles backscatter and attenuation, with the as-
sumption of distant light sources and an orthographic cam-
era. Tsiotsios et al. [8] extends this to nearby point sources
and assumes the backscatter saturates close to the camera
and thus does not depend on the unknown surface height.
Then, it can be calibrated and subtracted from the images.
We use the method in [8] in one of our variants.
Backscatter Removal: Backscatter was previously removed
for visibility enhancement, by structured light [18], range-
gating [2], or using polarizers [19]. Nevertheless, these
methods do not necessarily preserve photometric infor-
mation. It is sometimes possible to reduce backscatter by
increasing the camera light source separation [18], [20],
but this often leads to more shadowed regions, creating
problems for photometric stereo.
Fluorescence Imaging: Removing scatter using fluores-
cence is used in microscopy [21], where many objects of
interest are artificially dyed to fluoresce. Hullin et al. [22]
imaged objects immersed in a fluorescent liquid to recon-
struct their 3D structure. It was recently shown that the
fluorescence emission yields photometric stereo reconstruc-
tions [23], [24] in air that are superior to reflectance images
as the fluorescence emission behaves like a Lambertian
surface due to its isotropic emission.
Deblurring Forward Scatter: Zhang et al. [25] and Negah-
daripour et al. [6] handle blur caused by forward scatter
using the PSF derived in [20], [26]. Their PSF depends on the
unknown distances, as well as three empirical parameters,
and affects both the path from the light source to the object
and from the object to the camera. They iteratively decon-
volve and update the depths until a good result is achieved.
Trucco et al. [27] simplify the PSF of [20], [26] to only depend
on two parameters while assuming the depth is known. Our
PSF is nonparametric, independent of the unknown depths
and only affects the path to the camera, which allows for a
direct solution without iteration. While we look at a Lamber-
tian surface in a scattering medium, Inoshita et al. [28] and
Dong et al. [29] consider the problem of photometric stereo
in air on a surface that exhibits subsurface scattering, which
blurs the radiance across the surface. They deconvolve the
images to improve the quality of the normals recovered
using linear photometric stereo. Tanaka et al. [30] also model
forward scatter blur as a depth dependent PSF and combine
it with multi (spatial) frequency illumination to recover the
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Our Algorithm

Input:
3 or more images: Li

source positions: Si

mean depth: Z̄
backscatter images: Lib
scattering parameters: PSF and σ̃ (Sec. 9.3)

Output:
normals: N
surface heights: Z

1: if reflectance images then
2: subtract backscatter: Li − Lib (Sec. 5)
3: end if
4: deblur images: Lio ← h−1 ∗ (Li − Lib) (Eq. 19)
5: solve linear PS: Nj ← [L̃eqj ]−1[Loj ] (Eq. 10,12)
6: integrate normals: Z ←

∫
N

Fig. 2. Our Algorithm. Steps 2 and 4 are applied to each image i
independently. Step 5 is applied to each pixel j independently with the
data from each image i stacked into a matrix.

appearance of a small number of inner slices of a translucent
material.

An earlier version of this paper was originally presented
in [31]. Here we have provided additional analysis of the
effective point source approximation, a more complete de-
scription of our experimental procedure and more detailed
results. We have also clarified details of our algorithm and
added a summary in the form of pusdocode.

3 OVERVIEW AND ASSUMPTIONS

In this section we introduce the image formation model,
considering each of the modes of light propagation in a
single scattering medium, as shown in Fig. 1. We derive
expressions for each component in the following sections.

Consider a perspective camera placed at the origin, with
the image (x, y) coordinates parallel to the world’s (X,Y )
axes, and the Z-axis aligned with the camera’s optical axis.
Let the point X = (X,Y, Z) be the point on the object’s
surface along the line of sight of pixel x = (x, y). Let S
be the world coordinates of a point light source, and define
D(X) = S−X as the vector from the object to the source.

We assume a single scattering medium which allows us
to express the radiance Lo reflected by a surface point as the
sum of two terms:

Lo(x) = Ld(x) + Ls(x) (1)

where Ld is the direct radiance from the source (Sec. 4), and
Ls is the radiance from the source which is scattered from
other directions onto X (Sec. 6 and Fig. 1b).

Next, we express the radiance arriving at the camera as
the sum of three terms:

L(x) = Lo(x)e−σ‖X‖ + Lb(x) + Lc(x) (2)

where Lo is the light reflected by the surface point X which
arrives at the camera without undergoing scattering. Note
that it is attenuated by e−σ‖X‖ where σ is the extinction
coefficient. Lb is composed of rays of light emitted by the
source that are scattered into x’s line of sight before hitting

the surface (Sec. 5 and Fig. 1a). This term is known as
backscatter. Finally, Lc, is composed of rays of light reflected
by other points on the surface that are scattered into pixel
x’s line of sight (Sec. 7 and Fig. 1c).

In order to write analytic expressions for these terms and
derive a simple solution we make two assumptions. First,
the surface is Lambertian with a spatially varying albedo
ρ(X). Second, we assume that surface variations in height
are small compared to object distance from the camera. We
call this the small surface variations approximation and note
that it is weaker than the common distant light sources
and orthographic projection approximations. Let Z̄ be the
average Z coordinate of the surface (assumed to be known).
Then, the approximation claims that for every point on the
surface: |Z(X)− Z̄| � Z̄ , ∀X.

The approximation results in a weak perspective such
that the projection x of X in the image plane is given by

x =

(
f
X

Z̄
, f
Y

Z̄

)t
; X =

(
Z̄

f
x,
Z̄

f
y, Z̄

)t
, (3)

where f is the known focal length. Note that for a given
pixel, since we know its (x, y) coordinates and the average
object distance Z̄ , the world coordinates X are known.
Specifically, D(X) is independent of the unknown object
height Z but still depends on X and Y , whereas in the
distant light sources approximation D(X) is a constant.

Outline of Our Method
Given an input image L we eliminate the backscatter Lb
by one of two methods. The first follows [8]: backscatter
from each light source is measured by imaging it with no
objects in the scene, and then the measured backscatter is
subtracted from the input images. In the second, backscatter
is optically eliminated using fluorescence as we explain in
Sec. 8. Once backscatter is removed, the resulting images
are deblurred, using a calibrated PSF, to recover Lo (Sec. 7,
Eq. 19). Next we write Lo as a linear equation between the
unknown surface normals, albedo and an equivalent light
source (Sec. 6, Eq. 10), which we approximate as an effective
point source in a purely absorbing medium with effective
extinction coefficient (Sec. 6, Eq. 12). With a minimum of
3 images under distinct light locations the normals can
be solved for, as in conventional photometric stereo. The
normals are then integrated to recover a smooth surface.
This algorithm is summarized in Fig. 2.

4 DIRECT RADIANCE

First, consider the direct reflected radiance from a Lamber-
tian surface [11]:

Ld(x) = I(X)
ρ(X)

π
D̂(X) · N̂ , (4)

where N̂ is the unit surface normal and D̂ is the normalized
source-to-object vector. The radiance on the object surface
I(X) depends on the radiant intensity I0 of the source in
direction1 (−D̂):

I(X) =
(
I0
(
− D̂(X)

)
e−σ‖D(X)‖

)
/‖D(X)‖2 . (5)

1. the direction is negative as we consider outgoing rays from the
source.
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Eq. 5 accounts for nearby angularly-varying sources, ex-
ponential attenuation along the optical path length with
extinction coefficient σ, and inverse-square distance falloff.

Can Distance-Dependent Falloff Be Neglected?
We have introduced a near-field source, but often, in photo-
metric stereo, the distant light source assumption is used, as
it simplifies the mathematical development, computation of
shape, and calibration of implemented systems because the
light source direction can be treated as a constant, and the
incident irradiance does not depend upon depth allowing it
to also be treated as a constant. In this section, we explore
whether similar simplifications are possible for photometric
stereo in a medium.

In a medium, the incident irradiance falls off as function
of distance due to the product of two factors; free space
falloff and medium attenuation. Consider the situation de-
picted in Fig. 3a for which two points P and P∆ are illumi-
nated by a light source that is respectively at distances d and
d+∆ from the points. The ratio Ψ of the irradiance at P and
P∆ can be expressed as Ψ = EP∆

/EP = ΨfreespaceΨmedium.
The irradiance of a point light source propagating in a
medium at distance d, falls off by 1/d2, and is attenuated
by the medium by e−βd. Thus,

Ψfreespace = d2/(d+ ∆)2 , Ψmedium = e−β∆ . (6)

Interestingly, Ψfreespace depends on both the absolute
distance d to the light source as well as ∆, while Ψmedium is
independent of d, and depends only on the path difference
∆ and on the attenuation coefficient β. To get an idea of
object dimensions where the variation in incident irradiance
is small and might be treated as constant, let us consider an
example where the path difference ∆ yields Ψ = 0.9 (i.e.,
a 10% difference in the incident irradiance at P and P∆).
Figure 3b shows a plot of ∆ vs d where Ψfreespace = 0.9,
and we see that the object’s size can increase linearly with
distance. Figure 3b shows a plot of ∆ vs β the attenuation
parameter where Ψmedium = 0.9, and we see that as the
medium becomes murkier the size decreases and is indepen-
dent of distance. In other words, the opportunity to neglect
distance-dependent falloff of lighting in a medium depends
upon the clarity of the medium, even when the distance is
large enough to allow the freespace falloff to be ignored.
Due to this we chose to use the small surface variations
approximation instead of the distant source approximation.

5 BACKSCATTER

Light is scattered as it travels through a medium. The
fraction of light scattered to each direction is determined
by the phase function P (α), where α ∈ [0, 2π] is the angle
between the original ray direction and scattered ray, and β
is the scattering coefficient.

Light which is scattered directly into the camera by the
medium without reaching the object is termed backscatter
and is given by [5], [32] (Fig. 1a):

Lb(x) = β

∫ ‖X‖
0

I(rX̂)P (α)e−σrdr (7)

The integration variable r is the distance from the camera
to the imaged object point X along the line of sight (LOS),

Fig. 3. (a) Light source can be considered distant if the irradiant
light intensity across it is uniform. (b) Path length differences
yield 10% intensity difference of point light source intensity due
to free space falloff, as a function of d. (c) Path length differences
along an object that yield 10% difference in medium attenuation
across it, as a function of β. For β > 1m−1, which represents
fairly clear water, path lengths greater than 10cm already result
in noticeable intensity changes, ruling out the distant light source
assumption.

that is a unit direction X̂. The scattering angle α is given by
cos(α) = D̂ · X̂ (recall that D is the direction to the light)
and I(rX̂) is the direct radiance of the source at point rX̂
as defined in Eq. 5.

Note that for the small surface variations approximation, X
and hence the limits of the integral are known for a given
pixel. Therefore, the backscatter does not depend on the
unknown height of the object and is a (different) constant
for each pixel, similar to Tsiotsios et al. [8].

Instead of analytically computing Lb, we found that it
was easier and more accurate to directly measure it using
the calibration method of [8]: for each light an image is
captured with no object in the field-of-view.

6 SINGLE SCATTERED SOURCE RADIANCE

Because of the medium, light rays that are not originally
pointed at an object point may be scattered and reach it
from the entire hemisphere of directions Ω (Fig. 1b), termed
forward scattered radiance

Ls(x) =
ρ(X)

π

∫
ω∈Ω

Li(ω)(ω · N̂) dω . (8)

where Li(ω) is the total radiance scattered into the direction
ω and is given by

Li(ω) = β

∫ ∞
t=0

I(X + tω)P (α)e−σtdt , (9)

where t is the distance from the object, and the angle α is
given by cos(α) = D̂(X+tω)·ω. Note that D is the direction
of the integration point to the light.

Substituting Eqs. 4,8 into Eq. 1 and rearranging yields:

Lo(X) = Ld(X) + Ls(X) =
ρ(X)

π
Leq(X) · N̂ , (10)

where

Leq(X) = I(X)D̂(X) +

∫
ω∈Ω

Li(ω)ω dω . (11)

Here, the direct light as well as the integrated scattered
contributions can be thought of as an equivalent distant
source. However, this equivalent source may be different (in
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direction and magnitude) for each surface point, and thus
is not a true distant source. Furthermore, the integration
domain Ω in Eq. 11 depends on N̂, preventing Eq. 10 from
giving us a simple linear equation for the unknown normals
and albedo.

We next show through simulations, that for a wide va-
riety of media, Leq(X) can be approximated as an effective
point source in a purely absorbing medium with effective
extinction coefficient. This eliminates the non-linearity in
Eq. 10 allowing for a linear solution for the normals given 3
or more images.

Effective Point Source Simulations

We approximate Leq(X) as:

L̃eq(X) ≈
κI0
(
− D̂(X)

)
e−σ̃‖D(X)‖

‖D(X)‖2
D̂(X) , (12)

which has the same form as Eq. 5, but the extinction coeffi-
cient is replaced by the effective extinction coefficient σ̃, and
the intensity is scaled by κ. The effective source has the same
position S and intensity distribution I0 as the real source.
Note that κ is a global brightness scale, which is the same
for all the lights, and thus does not need to be explicitly
calibrated, as it cancels out in the normal estimation.

The intuition for why the source direction is unchanged
is visualized in Fig. 4a. Although light is arriving from the
entire hemisphere of directions, the vector sum of most
of these directions lies in the original direction due to
symmetry. Only the area of asymmetric scattering does not
have symmetrical rays since the symmetrical rays lie below
the visible hemisphere (in attached shadow) for the surface
point. Although these asymmetric rays could potentially
shift the equivalent direction, their contribution is often
small for two reasons. First, these rays correspond to larger
scattering angles, which are often much weaker than for
rays with smaller scattering angles. Second, these paths are
on average longer than for paths with smaller scattering
angles and thus are more attenuated. Guided by this in-
tuition we formulated the effective source approximation,
and verified it’s accuracy through extensive simulations in
a wide variety of media.

For our simulations we used an isotropic point source
at a distance d from a Lambertian surface patch with an
angle φ between the surface normal and light direction.
Note that the parametrization of a surface patch by d and
φ fully parametrize the space of possible surface patches.
For the scattering function, we used the common Henyey-
Greenstein phase function [33], which can represent a large
space of scattering functions by tuning a single parameter
g ∈ [−1, 1]. In water, g is usually between 0.7− 0.9 [32].

We compute Lo(d, φ) for d ∈ [200, 600]mm, φ ∈ [0, π],
for a variety of media given by β ∈ [0, 0.005]mm−1 and
g ∈ [0, 0.9]. Note that we choose I0 such that Lo(200, 0)
is normalized to 1. To reduce the number of parameters
we set σ = β, which does not influence the analysis2. For

2. In general β ≤ σ, but since β purely scales Ls, a smaller value of
beta would make Lo closer to Ld and thus L̃0 would be an even better
fit than we calculated.

each parameter pair g, β we compute the approximation
parameters κ and σ̃ by minimizing:

min
κ,σ̃

∑
d,φ

|Lo(d, φ)− L̃o(d, φ)|2 . (13)

The error in the approximation is then given by the residuals
RE(d, φ) = |Lo(d, φ)− L̃o(d, φ)|.

The residuals for g = 0.8, β = 0.0026 (common in our
setup) are plotted in Fig. 4b. We can see that the difference
between the approximation and true values are small for all
values of d and φ. Note that the error is largest near φ = 90◦,
where the area of asymmetric scattering is largest.

For each β ∈ [0, .005]mm−1 and g ∈ [0, .9] we compute
the mean residual (MRE) over d, φ and plot it in Figure 4c.
We see that the MRE is less than 2% across all medium
conditions tested justifying the approximation. Further, we
see that the MRE increases slowly with scattering coefficient
β, and more rapidly with phase parameter g. As such,
in water, which is mostly forward scattering (g between
0.7 − 0.9), our approximation is very accurate, even for
highly turbid media. On the other hand, if scattering is more
isotropic (g close to zero), then the approximation might not
be valid for large β.

7 SINGLE SCATTER OBJECT BLUR

Similar to the light source blur, radiance from the object
is also blurred while it propagates to the camera (Fig. 1c).
As we demonstrate, this effect deteriorates the performance
of photometric stereo, although it has been neglected in
previous works [5].

The contribution of object blur to the pixel intensity is
computed by integrating light scattered into the LOS of X
from all other points on the surface:

Lc(x) = β

∫ ‖X‖
r=0

∫
ω∈Ω

Lo(X
′)P (α)e−σ(t+r) dωdr. (14)

Here r is the distance along the LOS, X′ is the object surface
point intersected by the ray starting at point rX in direction
ω. Its radiance is Lo(X′) and its distance to the scatter point
in the LOS is given by t = ‖rX̂−X′‖ with scattering angle
cosα = ω · (−X̂).

We now show that Lo can be recovered from Loe
−σ‖X‖+

Lc by deconvolution with a constant PSF.

Deblurring Object Scatter

First we rewrite Eq. 14 to integrate over the area of the object
surface dA = dω · t2/ cos θ instead of solid angle dω, where
t is the distance from X′ to the scattering event, and θ is the
angle between the normal at X′ and the ray of light before
scattering. Eq. 14 now becomes

Lc(x) = β

∫
X′
Lo(X

′)

∫ ‖X‖
0

P (α)e−σ(t+r) cos θ

t2
dr dA.

(15)
Now we define the scattering kernel

K(X,X′) = δ(X−X′)e−σ‖X‖ +

β

∫ ‖X‖
0

P (α)e−σ(t+r) cos θ

t2
dr, (16)
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Fig. 4. a) Diagram of the intuition for the effective source approx-
imation. Although light is arriving from the entire hemisphere of
directions, the vector sum of most of these directions lies in the
original direction due to symmetry. Only the area of asymmetric
scattering does not have symmetrical rays since the symmetrical
rays lie below the visible hemisphere (in attached shadow) for
the surface point. The contribution from these rays are often
small. b) The relative error between Lo(d, φ) and L̃o(d, φ) for
g = 0.8 and β = 0.0026. Note that the spike only reaches 3%
and is located at φ = 90◦ where L̃o = 0 due to shadowing.
φ near 90◦ and above is not usually relevant for photometric
stereo. c) The mean relative error between Lo and L̃o for
β ∈ [0, 0.005]mm−1 and g ∈ [0, 0.9]. The approximation errors
are small over a wide variety of media.

where δ(X−X′) is the Dirac delta function. Now,

Lo(x)e−σ‖X‖ + Lc(x) =

∫
X′
K(X,X′)Lo(X

′) dA(X′) .

(17)
In general, the kernel K , depends on X, X′ and the

unknown normals N̂′. For an orthographic camera viewing
a plane at constant depth, K is shift invariant and Eq. 17 can
be written as a convolution with a PSF. Motivated by this,
we found empirically that for a given Z̄ it is approximately
shift invariant (and rotationally symmetric).

Denoting the PSF as h, we get

Lo(x)e−σ‖X‖ + Lc(x) ≈ h ∗ Lo . (18)

We emphasize here that we have shown that under a
single scattering model, the forward scatter from the object
can be written as an integral transform with kernel K .
This justifies approximating the forward scattering as a PSF
which is not obvious in the form of Eq. 14.

We solve Eq. 18 for Lo by writing the image as a
column vector and representing the convolution as a matrix
operation

(L− Lb) = HLo (19)

where we have substituted the known backscatter compen-
sated image (L−Lb) for Loe−σ‖X‖+Lc, andH is the matrix
representation of h. Here H is a large nonsparse matrix
and thus storing it in memory and directly inverting it is
infeasible. Instead we solve the linear system of Eq. 19 using
conjugate gradient descent. This requires only the matrix
vector operation which can be computed as a convolution
and implemented using a Fast Fourier Transform (FFT).

8 BACKSCATTER REMOVAL USING FLUORES-
CENCE

While we are able to subtract the backscatter component,
it is an additive component that effectively reduces the
dynamic range of the signal from the object, degrades the
image quality and reduces SNR [9]. As such it is bene-
ficial to optically remove it when imaging. Here, we use
the observation that for fluorescence images taken with
non-overlapping excitation and emission filters, there is no
backscatter in the image (Fig. 5a). In fluorescence imaging,
the signal of interest is composed of wavelengths that are
longer than that of the illumination, and a barrier filter on
the camera is used to block the reflected light. The backscat-
ter is composed of light scattered by the medium before
it reaches the object. Thus, the backscatter has the same
spectral distribution as the light source, which is blocked by
the barrier filter on the camera. This insight enables imaging
without loss of dynamic range even in highly turbid media.
Compared to a backscatter subtracted reflectance image, a
fluorescence image has less noise (Fig. 5b,c). This difference
becomes even more apparent after deconvolution (Fig. 5d,e).

In addition, in [23], [24] it was shown that the fluores-
cence emission acts as a Lambertian surface in photometric
reconstructions. Thus, imaging fluorescence has an addi-
tional advantage as it relaxes the need for a Lambertian
surface.

In the development of our algorithm we assumed a
single set of medium parameters β, σ and P (α). However
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Fig. 5. a) Backscatter is caused by light that is scattered into
the camera by a medium, before it reaches the object and
has the same color as the illumination. Thus, the barrier filter
used to block fluorescence excitation also blocks backscatter,
while imaging the signal from the object. We use this property
to remove backscatter in input images. b) Photometric stereo
reconstruction of a fluorescent sphere using backscatter sub-
tracted reflectance images. One of the input images is shown
on the left, with visible noise and blur. Blur in the input images
flattens the reconstruction. c) Looking at fluorescence images
as an input, the backscatter is eliminated while maintaining a
higher SNR. However the blur still flattens the reconstruction.
d) Deblurring the backscatter subtracted images recovers the
general shape but suffers from noise as seen by the spiky
surface. e) Deblurring the fluorescence results in the correct
shape with much less noise.

these quantities are in general wavelength dependent. In
reflectance imaging, the wavelength of the light is the same
on both pathways: light to object, and object to camera.
However, in fluorescence imaging they are different. Nev-
ertheless, the only parameters that require calibration in our
solution are the effective extinction coefficient σ̃ and the PSF.
The parameter σ̃ is estimated for the excitation wavelength
and the PSF is estimated for the emission wavelength, and
as such we do not need to calibrate any extra parameters in
the case of fluorescence imaging.

9 IMPLEMENTATION

9.1 Experimental Setup

Our setup is shown in Fig. 6. We used a Canon 1D camera
with a 28mm lens placed 2cm away from a 10 gallon glass
aquarium. All sides except the front (where the camera looks
in) were painted black to reduce reflection. In addition, a
black panel was suspended just below the surface of the
water to remove reflection from the air-water interface. The
objects were placed at an average distance of 40cm from
the front of the tank. For point illumination we used Cree
XML - RGBW Star LEDs. The LEDs were water proofed by
coating the electrical terminals with epoxy. Reflection im-
ages were taken under white illumination while fluorescent
images were taken under blue illumination with a Tiffen #12
emission filter on the camera. We used tap water, and the
turbidity was increased using a mixture of whole milk and
grape juice (milk is nearly purely scattering, while grape
juice is nearly purely absorbing and thus by mixing them

 

LED’sCamera

O
b

je
ct

LED

Backscatter
Camera

Object

Top ViewFront View

Fig. 6. [Left] Our experimental setup consists of a camera looking
through a glass port into a tank. [Right] 8 LEDs are mounted
inside the tank around the camera port illuminating the object
placed at the back of the tank.

Level 1 Level 2 Level 3 Level 4
Objects Spherical Cap & Lobster

Milk (ml) 1.25 2.50 3.75 5.00
juice (ml) 15.0 30.0 45.0 60.0

β(×10−3mm−1) .602 1.20 1.81 2.41
σ(×10−3mm−1) .642 1.28 1.93 2.57

Objects Toy Gun & Mask
Milk (ml) 1.25 2.50 3.75 5.00
juice (ml) 0 0 0 0

β(×10−3mm−1) .602 1.20 1.81 2.41
σ(×10−3mm−1) .602 1.20 1.81 2.41

Fig. 7. Tabulated values for the amount of milk and grape juice
added in our experiments, and the associated scattering and
extinction coefficients. The coefficients were computed using the
data provided in [32].

 

Fig. 8. Cross-sections of the spherical cap reconstruction in
turbid medium using various methods compared to ground truth.
The clear water reconstruction resembles the ground truth. Only
correcting for the backscatter (by subtraction or fluorescence)
yields flattened results. Deblurring the backscatter subtracted
images recovers the shape but is degraded by noise (the surface
is jagged). Deblurring the fluorescence images produces the
best results.

we can achieve a variety of scattering conditions [32]). The
LEDs were mounted inside the tank on a square around the
camera, four on the corners and four on the edges. Their
positions were measured. Images were acquired in Raw
mode which is linear and the normal integration was done
using the method of [34].
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Fig. 9. Errors in the reconstructions of four objects as a function
of turbidity, compared to clear water reconstruction. Top rows
are average percent errors in heights and bottom rows are aver-
age angular errors in normals. Removing backscatter by either
subtraction or using fluorescence performs similarly. Deblur-
ring the backscatter compensated images significantly improves
the reconstructions. In high turbidity where the backscatter is
strong compared to the object signal deblurring the backscatter
subtracted images degrades due to noise, while deblurring the
fluorescence suffers less, as the fluorescence images have a
higher SNR.

9.2 Geometric and Radiometric Calibration
Images of a checkerboard (in clear water) were used to cali-
brate the intrinsic camera parameters (implicitly accounting
for refraction) [35]. The location of each light was measured
using a ruler, and transformed to the camera reference
frame. To calibrate each light’s angular intensity distribution
we imaged a matte painted (assumed to be Lambertian)
plane at a known position under illumination from each
light in clear water. Using Eq. 4, the known geometry, and
σ = 0, we compute I0(−D̂), the angular dependence of the
light source.

9.3 Calibration of Medium Parameters
The backscatter component is measured using the calibra-
tion method of [8]. For each light an image is captured with
no object in the field-of-view and subsequently subtracted
from future reflectance images. This is not used when imag-
ing fluorescence.

Our method works independent of how the PSF is
calibrated and thus a variety of methods could be used
including that of Narasimhan et. al. [36]. Here we chose
a procedure using a calibration target similar to [37] due
to its ease of implementation. We use a matte painted

checkerboard which is imaged with its axis aligned to the
image plane at the approximate depth of the objects we
plan to reconstruct. As the PSF is rotationally symmetric its
parameters are the values along a radius [h0, ..., hs], where
h0 is the center value and hs is the value on the support
radius s. The PSF and the effective extinction coefficient σ̃
are estimated by optimizing

min
σ̃

min
h0...hs

∑
x

‖h ∗ Lo(x, σ̃)− (L− Lb)‖ (20)

where L is the image of the checkerboard in the medium
and Lb is the image of the backscatter. Lo is computed
from Eq. 10 using the calibrated lights, known geometry,
and registering the checkerboard albedo, measured in clear
water to the image in turbid water. The inner optimization is
an overdetermined linear system holding σ̃ fixed. We sweep
over the values of σ̃ and choose the one with the minimum
error. Note that the PSF is not normalized due to loss of
energy (attenuation) from the object to the camera.

10 RESULTS

We imaged four objects: a spherical cap (Fig. 10), a plastic
toy lobster (Fig. 11), a plastic toy squirt gun (Fig. 12),
and a fluorescent painted mask (Fig. 13) in clear water
as well as four increasing turbidities. Each turbidity level
corresponded to adding 1.25ml of milk to the 10 gallon tank.
For the spherical cap and the lobster, we also added 15ml
of grape juice per turbidity level to increase absorption. In
this case, since attenuation is exponential with distance, the
signal from the object, which travels further, is relatively
weaker than the backscatter which comes mostly from
shorter paths. This exacerbates the loss of signal-to-noise
ratio in backscatter subtracted images. To get an idea of the
true scattering parameters of our various media we use the
data provided in [32]. Tabulated values are shown in Fig. 7.

We employ two error metrics to evaluate the quality of
our reconstructions: The mean absolute difference in heights
(Err Z = mean(Z −Zgt)) and the mean angular error in the
normals (Err N = mean(acos(N ·Ngt)), where Zgt and Ngt
are the ground truth heights and normals. Note that during
integration, random noise in the normals cancels out locally,
resulting in reconstructions with the correct overall shape,
but with rough surfaces. As such Err Z captures systematic
errors that affect the overall shape, but is less sensitive to
noise in the normals.

We see that the reconstructed spherical cap in clear water
nearly perfectly matches the ground truth (Fig. 8) with an
Err Z of 1.4% and Err N of 3◦. This justifies our use of clear
water reconstructions as ground truth for the other objects
where true ground truth is not available.

The quality of results as a function of turbidity level
is demonstrated in Fig. 9. The plots show how Err Z and
Err N increase for each method as the turbidity increases,
where the lowest error is achieved using the deblurred
fluorescence images. In the highest turbidity level, the de-
blurred reflectance image often performs worse than all
other methods, as the deblurring degrades with noise.

Figures 10,11,12,13 depict an input image and the result-
ing reconstruction for the spherical cap, the toy lobster, the
toy squirt gun, and the mask respectively. In each figure, the
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Fig. 10. Input images and resulting surface reconstructions of the spherical cap. The columns depict three levels of increasing
turbidity from left to right. [1st row] result of standard photometric stereo (scattering is ignored). The shape is not reconstructed
correctly. [2nd row] Result of removing the backscatter as in [8]. The reconstruction is improved but still unsatisfactory. [3rd
row] Using fluorescence to remove backscatter. The result is basically the same as backscatter subtraction. [4th row] result of
deblurring the backscatter subtracted images. This recovers the shape quite well when the SNR is not too low. However this is not
the case in high turbidity. [5th row] result of deblurring the fluorescence images. Here the SNR remains high even in high turbidity
and thus we continue to get excellent quality reconstructions. Note the roughness on the fourth row, second column due to noise.
[Bottom row] Clear water reconstruction (ground truth).

rows show various reconstruction methods and the columns
show the results for turbidity levels 2-4. The bottom row
shows an input image and reconstruction in clear water
which are treated as ground truth.

In all results, reconstructions from uncorrected images
are flattened. Removing backscatter, either by backscatter
subtraction (current state-of-the-art [8]), or using fluores-
cence, but without handling blur, also produces flattened
results. For lower turbidities deblurring backscatter sub-
tracted images produces excellent results, but in the highest
turbidity, where the backscatter dominates the signal, using
fluorescence reduces the noise and results in a smoother
surface.

11 CONCLUSION

In this paper, we have developed a comprehensive and
novel solution for photometric stereo in a scattering
medium. We address each of the three key modes of single
scattering, showing how a scattered light source can be

modeled as an unscattered point light source, accounting
for blur due to scattering from the object through a novel
deconvolution framework, and demonstrating how fluores-
cence imaging can optically eliminate backscatter, increasing
SNR in high turbidity. With the simple small surface variations
approximation, we reduce the problem to a linear system for
the surface normals, almost identical to conventional photo-
metric stereo. Our practical methods for deconvolution and
fluorescence can be combined to produce reconstructions
almost as accurate as those obtained in air, and significantly
better than previous methods.

Future work includes removing the need to know the
average object distance, removing the small surface variations
approximation, and an automated PSF calibration procedure
for varying turbidities and depths. Although our theory
only applies to a single scattering medium, in practice, our
calibrated PSF may be taking multiple scattering effects into
account. Extending our theory to multiple scattering would
provide further insight.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. , NO. , OCTOBER 2015 10

 

B
ac

ks
ca

tt
er

 C
o

m
p

en
sa

te
d

D
eb

lu
rr

ed

Fl
u

o
re

sc
en

ce
Fl

u
o

re
sc

en
ce

R
ef

le
ct

an
ce

R
ef

le
ct

an
ce

U
n

co
rr

ec
te

d

Increasing Turbidity

Clear Water
(Ground Truth)

Fig. 11. Input images and resulting surface reconstructions of the toy lobster. The columns depict three levels of increasing turbidity
from left to right. [1st row] result of standard photometric stereo (scattering is ignored). The shape is not reconstructed correctly.
[2nd row] Result of removing the backscatter as in [8]. The reconstruction is improved but still unsatisfactory. [3rd row] Using
fluorescence to remove backscatter. The result is basically the same as backscatter subtraction. [4th row] result of deblurring the
backscatter subtracted images. This recovers the shape quite well when the SNR is not too low. However this is not the case in
high turbidity. [5th row] result of deblurring the fluorescence images. Here the SNR remains high even in high turbidity and thus
we continue to get excellent quality reconstructions. Note the roughness on the fourth row, second column due to noise. [Bottom
row] Clear water reconstruction (ground truth).
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Fig. 12. Input images and resulting surface reconstructions of the toy squirt gun. The columns depict three levels of increasing
turbidity from left to right. [1st row] result of standard photometric stereo (scattering is ignored). The shape is not reconstructed
correctly. [2nd row] Result of removing the backscatter as in [8]. The reconstruction is improved but still unsatisfactory. [3rd
row] Using fluorescence to remove backscatter. The result is basically the same as backscatter subtraction. [4th row] result of
deblurring the backscatter subtracted images. This recovers the shape quite well when the SNR is not too low. However this is not
the case in high turbidity. [5th row] result of deblurring the fluorescence images. Here the SNR remains high even in high turbidity
and thus we continue to get excellent quality reconstructions. Note the roughness on the fourth row, third column due to noise.
The object signal is stronger in this case than the lobster and sphere since the medium doesn’t contain juice which increases
attenuation. [Bottom row] Clear water reconstruction (ground truth).
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Fig. 13. Input images and resulting surface reconstructions of the mask. The columns depict three levels of increasing turbidity
from left to right. [1st row] result of standard photometric stereo (scattering is ignored). The shape is not reconstructed correctly.
[2nd row] Result of removing the backscatter as in [8]. The reconstruction is improved but still unsatisfactory. [3rd row] Using
fluorescence to remove backscatter. The result is basically the same as backscatter subtraction. [4th row] result of deblurring the
backscatter subtracted images. This recovers the shape quite well when the SNR is not too low. However this is not the case in
high turbidity. [5th row] result of deblurring the fluorescence images. Here the SNR remains high even in high turbidity and thus we
continue to get excellent quality reconstructions. Note the roughness on the fourth row, third column due to noise. Similar to the toy
gun, the object signal is stronger in this case than the lobster and sphere since the medium doesn’t contain juice which increases
attenuation. [Bottom row] Clear water reconstruction (ground truth).
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