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Abstract
For computer graphics rendering, we generally assume that the ap-
pearance of surfaces remains static over time. Yet, there are a num-
ber of natural processes that cause surface appearance to vary dra-
matically, such as burning of wood, wetting and drying of rock and
fabric, decay of fruit skins, and corrosion and rusting of steel and
copper. In this paper, we take a significant step towards measuring,
modeling, and rendering time-varying surface appearance. We de-
scribe the acquisition of the first time-varying database of 26 sam-
ples, encompassing a variety of natural processes including burn-
ing, drying, decay, and corrosion. Our main technical contribution
is a Space-Time Appearance Factorization (STAF). This model fac-
tors space and time-varying effects. We derive an overall temporal
appearance variation characteristic curve of the specific process, as
well as space-dependent textures, rates, and offsets. This overall
temporal curve controls different spatial locations evolve at the dif-
ferent rates, causing spatial patterns on the surface over time. We
show that the model accurately represents a variety of phenomena.
Moreover, it enables a number of novel rendering applications, such
as transfer of the time-varying effect to a new static surface, control
to accelerate time evolution in certain areas, extrapolation beyond
the acquired sequence, and texture synthesis of time-varying ap-
pearance.

1 Introduction
Many interesting appearance properties of real-world surfaces are
directly related to their evolution with time. Consider the charring
of wood from heat or burning; the wetting and drying of marble,
granite or fabric due to rain or spillage of water; the ripening and
decay of fruit skins like apples or bananas; and the corrosion and
rusting of steel or the formation of oxides on copper. Each of these
natural processes forms a spatial pattern over time, often coupled
with a change in reflectance, which gives rise to dramatic effects.

These processes have been studied in biology, physics, and math-
ematics [Meinhardt 1992; Cross and Hohenberg 1993]. In com-
puter graphics, Dorsey and collaborators have developed a num-
ber of specific models for flows, patina formation, and weather-
ing [Dorsey and Hanrahan 1996; Dorsey et al. 1996; Dorsey et al.
1999]. However, the full generality of pattern formation remains
beyond the reach of any particular mathematical model or physical
simulation.

In this paper, we avoid the difficulties of mathematical modeling
by developing a data-driven approach, conceptually similar to re-
cent work on data-driven static reflectance [Matusik et al. 2003] or
texture [Dana et al. 1999]. We present a complete pipeline from ac-
quisition of the first dense database of Time and Spatially-Varying
appearance of flat samples (the TSV-BRDF) to the first data-driven
models and novel renderings of time-varying appearance:
Database of Time-Varying Surface Appearance: A major con-
tribution of our work is a database of time-varying appearance mea-
surements that is released along with the publication. We have cap-
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tured 26 samples listed in Figure 2. Some examples are shown in
Figures 1 and 4. Because of the complexity in preparing the sam-
ples and developing a suitable measurement system, this database
is likely to be a very relevant resource for future efforts.

Sample preparation requires careful control and significant
effort—for example, we must apply a heat gun for some of the
burning examples, and use special solutions to assist rusting and
copper patination. Capturing the full TSV-BRDF also necessitates
special measurement systems. We use a multi-light source multi-
camera dome, shown in Figure 3, to simultaneously acquire time-
lapse images from a variety of lighting and view directions. We
then fit spatially-varying BRDF models at each time instance, cap-
turing both spatial and temporal variation in a variety of real-world
processes. Since we acquire the full TSV-BRDF, we can capture
spatial patterns as well as changes in the BRDF, such as the sharp
reduction in specularities over time when a surface dries.

Space-Time Appearance Factorization (STAF): Time-varying
appearance is an intricate combination of many factors, such as the
static surface texture, temporal variation, and spatial patterns over
time. The acquired data can be used directly for rendering, but is
difficult to understand or modify for production applications (such
as making wood dry faster in a wet footprint). Linear data-reduction
techniques like Singular-Value Decomposition (SVD) do not easily
capture the complex structures in time-varying appearance data.

We introduce a simple Space-Time Appearance Factorization
(STAF) that is general and data-driven. It separates temporally
varying effects from spatial variation, estimating a “temporal char-
acteristic curve” in appearance that depends only on the physical
process, as well as static spatial textures that remain constant over
time. In addition, we estimate a rate and an offset at every point,
which control the speed of time evolution. Spatial patterns arise be-
cause different points evolve at different rates. STAF is non-linear,
with the temporal characteristic curve scaled and shifted by spatial
rate and offset parameters. Our model is intuitive and accurate for
the variety of time-varying phenomena in our database, and allows
a user to separately modify space and time-varying effects.

Rendering Time-Varying Effects: One of the chief benefits of
our data-driven STAF model is the ease with which we can gener-
alize beyond the acquired data to render a variety of time-varying
effects. For example, we cantransfera time-varying process like
rusting to a new static surface such as a steel plate. We cancontrol
the rate of time variation, such as having wet puddles or footprints
on an otherwise dry wooden floor, with drying happening more at
the boundaries. We canextrapolateto some extent beyond the ac-
quired data. Moreover, separation of spatial and temporal aspects
allows one to use standard 2D example-basedtexture synthesis.

2 Previous Work
Physical simulation has been applied to specific weathering and
corrosion effects [Dorsey et al. 1996; Dorsey and Hanrahan 1996;
Dorsey et al. 1999; Merillou et al. 2001; Chen et al. 2005].
Patina formation has also been modelled based on surface acces-
sibility [Miller 1994], while dust accumulation has been simu-
lated based on surface geometry [Hsu and Wong 1995]. Jensen et
al. [1999] render wet surfaces by combining a reflection model for
surface water with subsurface scattering. Our data-driven approach
generalizes and complements physical simulation of specific phe-
nomena, much as static data-driven reflectance models complement
and extend specific physically-based analytic BRDFs.

Some recent work has made a first attempt at measuring appear-
ance changes. Koudelka [2004] considers time-varying textures im-
aged with fixed lighting and a single view, and extends static tex-
ture synthesis to time-varying texture synthesis. We generalize this
method with images from multiple light sources and viewpoints,
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Figure 1: Some examples of the 26 samples in our database, shown here with variation across time (in minutes m or hours h) for a single light source and
view. We acquire images from1,280 light and view directions at each time step. Some of these images are shown for one of the samples in Figure 4.



Appearance Time-Varying Appearance
TF (2D Texture Function) TTF (3D)
BRDF (4D) TBRDF (5D)
SV-BRDF (6D) TSV-BRDF (7D)
BTF (6D) TBTF (7D)

Table 1: Extension of common appearance concepts to time-varying ap-
pearance. We also indicate the dimensionality of the function for each cat-
egory. In this paper, we focus on TSV-BRDFs.
which allows us to fit a true TSV-BRDF model and enables com-
puter graphics rendering with any lighting and view. More impor-
tantly, we develop an intuitive data-driven STAF model to separate
spatial and temporal effects, allowing a variety of rendering algo-
rithms including transfer, control, extrapolation, and synthesis.

For the specific case of drying on stone, [Lu et al. 2005] measure
the change in diffuse appearance and propose a sigmoid model with
two spatial parameters. Similar equations can be deduced from the
literature on drying [Jankowsky and Santos 2004]. We generalize
this work significantly by acquiring a database of a variety of time-
varying phenomena, including specular effects. Our STAF model
is general and data-driven, capturing many types of time-varying
processes, with intuitive rate and offset parameters at each spatial
location. For specific drying scenarios we essentially reproduce the
results of [Lu et al. 2005], with our temporal characteristic curves
being close to sigmoidal in those cases.

The STAF model in this paper relates to work in the statis-
tical and speech recognition literature known as dynamic time-
warping [Sakoe and Chiba 1978]. Their goal is to align time-
varying curves for different subjects in many applications such
as speech signals and human growth curves. Their data vary
not only in amplitude, but also with respect to the time axis—
different subjects experience events sooner or later. Classical linear
methods, e.g., Principal Component Analysis (PCA), cannot han-
dle this second type of variability well [Wang and Gasser 1999].
Recently, [Kneip and Engel 1995] proposed the “shape-invariant”
model, with the overall time variation known as the “structural av-
erage curve.” (Shape and structure are used rather differently from
their traditional meaning in graphics.)

In our application, we seek to align time-varying appearance
curves (representing BRDF parameters like diffuse color and spec-
ular intensity) for different pixels. We must relate this alignment to
intuitive parameters, for example, the rates and offsets at different
spatial locations, as well as the static initial and final appearance.
Moreover, as discussed in Section 5, we develop methods to esti-
mate the time variation of the process across the full range seen by
any pixel, allowing extrapolation beyond the observed sequence.

3 Time-Varying Appearance
We first formalize the notion of time-varying appearance. One
can imagine extending common appearance concepts, such as the
BRDF or texture, to include an additional time dimension, as shown
in Table 1. In this paper, we extend spatially-varying BRDFs (SV-
BRDFs) to time and space-varying BRDFs (TSV-BRDFs). A gen-
eral TSV-BRDF is a function of 7 dimensions—2 each for spatial
location, incident angle, and outgoing direction, and 1 for time vari-
ation. For surfaces that are rough, or have relief at a macroscopic
scale, the term Bidirectional Texture Function or BTF [Dana et al.
1999] and its time-varying extension TBTF is more appropriate, al-
though it has the same dimensionality. While a small number of
the examples in our database do have some surface relief (and may
therefore not be as well modelled by the approach presented here),
we focus in this paper primarily on flat surfaces or TSV-BRDFs.

4 Acquisition and Database
The first step in understanding time-varying surface appearance is
to acquire datasets representing it—some examples are shown in
Figure 1. Figure 2 lists all of the 26 samples we have acquired and
processed1. These samples cover 5 categories—burning and char-
ring (wood, waffles), drying of smooth surfaces (wood, fabric), dry-

1This entire database and our STAF model fits will be made available
online. To request a copy, send e-mail to staf@cs.columbia.edu.

Type Sample Time Frames Average Time Interval
Charred Wood 1 11 2.1 m
Charred Wood 2 31 9.9 m

Burning Waffle Toasting 30 6.3 m
Bread Toasting 30 5.9 m
Light Wood 1 14 3.1 m
Light Wood 2 34 2.3 m

Drying Orange Cloth 33 4.9 m
(Smooth Surfaces) Cotton Cloth 30 11.3 m

Pattern Cloth 32 4.8 m
White Felt 28 4.4 m
Dark Wood 32 3.8 m
Paper Towel 32 7.0 m
Brick 32 22.1 m

Drying Rock 11 2.0 m
(Rough Surfaces) Cardboard 29 7.0 m

Granite 27 2.6 m
Tree Bark 11 3.4 m
Rusting Steel 1 22 7.3 m
Rusting Steel 2 35 10.8 m

Corrosion Cast Iron Rusting 30 13.9 m
Copper with Patina 34 31.6 m
Apple with Core 33 9.6 m
Apple Slice 13 3.0 m

Decaying Banana 33 11.3 m
Potato 31 8.3 m
Leaf under Humid Heat 30 12.6 m

Figure 2: The 26 samples in our database, grouped into categories. For
each sample, we list the number of time frames acquired and average time
interval between frames (in minutes m).

Figure 3: A photograph of the multi-light source multi-camera dome used
for acquisition of our database of time-varying measurements.

ing of rough surfaces (rock, granite), corrosion and rusting (steel,
copper), and decay and ripening (apples, banana).

4.1 Acquisition
Acquisition of time-varying appearance is challenging. While some
natural processes such as drying occur over fairly short time scales
(a few minutes), many others occur over a considerable duration
under normal circumstances (several hours to days for decay of fruit
skins, or a few months for corrosion of metals). In the case of
burning and charring, we have used a heat gun to carefully control
the process. At each time interval, we uniformly heat the sample for
a fixed duration of time (typically 30 seconds). For metal corrosion,
we have decided to speed up the process using specially prepared
solutions [Hughes and Rowe 1991]. We spray a chemical solution
before each measurement and wait a few hours. Decay of organic
samples takes several hours, and is fairly difficult to speed up—we
have decided to measure these processes without alteration.

A second difficulty is designing and building a measurement
system that meets the following resolution requirements: 1) Dy-
namic range—many of the processes (e.g., drying or rusting) in-
volve significant changes in specularity. 2) Light and view di-
rection resolution—the sampling of the light and view directions
should be sufficiently high to capture specular materials. 3) Tempo-
ral resolution—a complete acquisition at each time step, involving
images with multiple lights, views, and exposure settings needs to
be conducted in a few seconds to avoid the sample changing sig-
nificantly over this time. This rules out gantry-based systems that
typically take a few seconds to acquire even a single image.
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Figure 4: Acquired images of wood drying. We show two separate
views/time instances, and all of the useful lighting directions for those.

We have decided to use a multi-light source multi-camera dome,
shown in Figure 3. The dome skeleton is based on an icosahedron.
We use 16 Basler cameras (resolution 1300×1030 pixels) placed
on the icosahedron vertices and 150 white LED light sources spaced
evenly on the edges. (Approximately 80 of these lights lie in the vis-
ible hemisphere with respect to the flat sample, and therefore give
useful images.) This design is similar to the light stage [Debevec
et al. 2002], but includes multiple cameras as well. The cameras
and light sources are synchronized using a custom-built controller.

The cameras are geometrically calibrated by moving a small
LED diode in the working volume and detecting its 2D location in
all cameras. A bundle adjustment is performed to obtain the precise
geometric location and projection matrices for all cameras. Since
we know the dome’s design specifications, this allows us to reg-
ister all light and camera positions to a common coordinate frame.
We also perform a photometric calibration by capturing images of a
perfectly white diffuse standard (spectralon) from all camera view-
points under all light combinations. To obtain normalized BRDF
values for each surface point, measured values are divided by the
corresponding observation of the white diffuse standard.

For acquisition, we place a prepared sample in the center of the
dome. At each time step, we capture a high dynamic range data
set—we take images at two different exposures (typically 2 and 82
msec) for each light-camera pair. This results in 4,800 photographs
captured in 22 seconds. It takes about 90 seconds to save the data
to the hard disk. (Therefore, the minimum time between two con-
secutive measurements is about 2 minutes.) We typically capture
appearance data sets at 30 time frames.

Once a complete time-varying appearance data set is captured,
we resample the data on a uniform grid (typically 400×400 pixels)
for each light and view direction. Some of our data, showing time
variation for a single light source and view, has already been seen in
Figure 1. Figure 4 shows all of the 80 useful images (lighting direc-
tions in the visible hemisphere) for two time instances/viewpoints.

4.2 Time and Spatially-Varying Parametric Reflectance
Initially we attempted to take a straightforward non-parametric ap-
proach to represent the BRDF at every point directly by the ac-
quired raw data. For rendering (i.e., to create images under novel
view and lighting), we used the algorithm in [Vlasic et al. 2003]
and performed barycentric interpolation twice, once over view and
then over lighting. A similar algorithm is used in [Vasilescu and
Terzopoulos 2004]. However, as shown in Figure 5, since the light-
view sampling of our samples is not dense enough, direct interpola-
tion produces artifacts. In Figure 5, we have “texture-mapped”2 the
TSV-BRDF onto a 3D sphere to better make these comparisons.

2When we refer to “texture mapping” throughout this paper, we mean
mapping the complete TSV-BRDF, i.e., all 5 BRDF parameters, including
diffuse RGB color and specularKs and σ , and including time variation.
These BRDF parameters at each point in space and time can then be used
with any lighting model and rendering computation.
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Figure 5: Comparison of (a) barycentric interpolation and (b) parametric
spatially-varying reflectance fits, texture-mapped onto a sphere. The para-
metric reflectance model is quite accurate, preserving the fine details of the
wood grain, while eliminating artifacts in the highlights and boundaries.

Fortunately, we have enough measurements to effectively fit
parametric reflectance models, including specular lobes, to each
spatial location. We use a simple combination of diffuse Lamber-
tian and simplified Torrance-Sparrow reflectance, with the BRDF
given by

ρ(x,y, ~ωi , ~ωo, t) = Kd(x,y, t)+
Ks(x,y, t)

4(~ωi ·~n) (~ωo ·~n)
exp

[
−

(
~ωh ·~n

σ(x,y, t)

)2
]

,

(1)
where~ωi and ~ωo are incident and outgoing directions,~n is the sur-
face normal, and~ωh is the half-angle vector. The BRDF parameters
are the diffuse intensityKd, the specular intensityKs, and the sur-
face roughnessσ . SinceKd is an RGB color, we have a total of 5
parameters for each spatial location(x,y) and timet.

Note that the BRDF model used to fit the raw data is independent
of the STAF model in the remaining sections. Other kinds of para-
metric BRDF models(e.g., Lafortune model) could also be used.

The diffuse and specular parameters are estimated separately in
two steps, since for some materials there are only a few samples in
the specular lobe. To fit the diffuse colorKd, we consider a frontal
view, which gives the highest-resolution image. At each spatial
location, we optimize over only those light source directions where
specular highlights are not present. (Conservatively, we require the
light source and the reflected view direction to be separated by at
least30◦ which works well for most of the samples in the database.)
We consider each time instance separately for the fits.

We fit the specular intensityKs and roughnessσ separately for
each spatial location. To do so, we consider all light source di-
rections and views. Sinceσ is the only non-linear parameter, we
have found it most robust to do a linear exhaustive search to deter-
mine it. For a givenσ , we solve a linear system forKd andKs,
choosing theσ (andKs) that has minimum error. Although we do
estimate the diffuseKd in this process again, we prefer to use theKd
described earlier, which is determined from the highest-resolution
frontal view, and with specularity completely absent. To make the
two estimates ofKd consistent, we scale the earlier estimate ofKd
by the average value of the latter estimate ofKd over all spatial
locations. As seen in Figures 5 and 6, we capture the important
qualitative aspects of the specularity, without artifacts. Quantitative
analysis is difficult, since some spatial locations have only a sparse
set of BRDF samples in the specular lobe.

4.3 Summary and Results
From now on, we will use the notationp(x,y, t) for the paramet-
ric fits to the TSV-BRDF. The functionp can be thought of as a
vector of 5 space and time-varying parameters, the diffuse RGB
color Kd(x,y, t) and the specularKs(x,y, t) andσ(x,y, t). The an-
gular dependence is implicit in the form of the specular term con-
trolled by Ks andσ . Note that although the BRDF representation
is parametric, the estimated parametersp(x,y, t) capture the space
and time-variation of surface appearance in a non-parametric way
(i.e., directly from the acquired raw data).

Even without the analysis and modeling in the rest of this paper,
our database of TSV-BRDFs can be texture-mapped onto arbitrary
3D objects and used directly for rendering with general lighting
direction, viewing angle, and time variation. Indeed, our use of
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Figure 6: Drying wood TSV-BRDF, texture-mapped onto a sphere. This example demonstrates the power of our database, which enables us to render with
simultaneous changes in lighting and evolution with time. Note the diffuse spatial drying patterns, and the early dimming and diffusing of specularities. The
elevation angle of the light with respect to the center is fixed atθ(L) = 30◦, while the azimuthal lighting angle varies as the sample dries.

standard parametric models allows time-varying effects to be easily
incorporated in almost any interactive or off-line rendering system.
As one example, Figure 6 shows drying wood texture-mapped onto
a sphere. We show a sequence of frames, where we simultaneously
change the lighting and evolve the sample over time. Note the spa-
tial drying patterns, as well as BRDF changes, wherein the initial
sharp specularity quickly diffuses and dims over time.

5 Modeling and Analysis of Time Variation
While our TSV-BRDF database can often be used directly, there are
many rendering applications where the user desires more control.
For example, he may want to control the spatial drying patterns on
a wooden floor to dry slower near recent wet footprints. Or he may
want to remove the spatial drying patterns altogether to allow the
surface to dry uniformly. The user might also want to change the
underlying spatial texture to create a different appearance for the
wood grain. These effects are difficult to create because space and
time variation are deeply coupled in the TSV-BRDF, while we seek
to separately modify or edit intuitive spatial or temporal functions
(like overall spatial texture or rate of variation).

In this section, we propose the Space-Time Appearance Factor-
ization (STAF) model, which separates effects because of space and
time-variation and shows how they interact. We then show how to
estimate the STAF model from the TSV-BRDF and present results
indicating its accuracy for the large variety of time-varying phe-
nomena in our database. In Section 6, we will show the power of
the STAF model in creating novel rendering effects.

5.1 Space-Time Appearance Factorization (STAF)
Our approach is based on the observation that most physical pro-
cesses have an overall temporal behavior associated with them. For
example, drying wood may get lighter over time. For a given pa-
rameter of the BRDF, for example, the diffuse red channel, this time
variation can be expressed by a curvep(x,y, t) for each spatial lo-
cation. Different points can dry at different rates and with different
offsets. For example, the points in a puddle start out wetter than
others. Intuitively, we seek to align the time variation for differ-
ent spatial locations by deforming a single “temporal characteris-
tic curve” φ(t) according to spatially-varying parameters for “rate”
R(x,y) and “offset”O(x,y),

p(x,y, t) = A(x,y)φ(t ′)+D(x,y)

t ′ = R(x,y)t−O(x,y). (2)

In this equation, we consider each of the 5 parameters of the TSV-
BRDF separately. For example, for the diffuse component, one can
think of all quantities as being RGB colors. The model is data-
driven, since the factors or termsA, D, R, O, andφ are estimated
directly from the acquired data, and are represented in a purely data-
driven way. We now describe the meanings of the various terms.
φ(t ′) – Temporal Characteristic Curve: The overall time varia-
tion characteristic of the physical process is captured by the curve
φ(t ′). The form ofφ will vary with the specific phenomenon. It can
be exponential for some decays, sigmoidal for drying and burning,
a more complex polynomial form for rusting, or any other type of
curve. Since our representation is fully data-driven, we can handle
a variety of effects.φ is a function oft ′, which we call theeffective
time, as described below.

R(x,y) and O(x,y) – Spatial Rate and Offset : Different spatial
locations evolve differently. We capture these effects with spatially
varying rateR(x,y) and offsetO(x,y) parameters. IfR is large, the
rate of change will be rapid. IfO is positive, the point will start
from an earlier state. Theeffective timet ′ for a given point is given
by t ′ = R(x,y)t−O(x,y), where we refer tot as theglobal time.

A(x,y) and D(x,y) – Static SV-BRDFs : A(x,y) andD(x,y) are
static over time. The diffuse components correspond to standard
spatial textures like wood grain that remain fixed throughout the
time variation. Consider the special case whenR(x,y) = 1 and
O(x,y) = 0. Thus, all points evolve the same way, and Equation 2
becomesA(x,y)φ(t)+ D(x,y). In this case, we simply interpolate
from one texture (or more generally, SV-BRDF) to another. The
initial and final appearance areAφ(0)+D andAφ(1)+D.

5.2 Discussion
Separating Spatial and Temporal Variation: The STAF model
in Equation 2 has factored spatial and temporal variation in a com-
pact representation. We now have quantities (A,D,R,O) that depend
only on spatial location(x,y), and a temporal characteristic curve
φ(t) that controls time variation. Unlike linear decompositions, the
STAF model isnon-linearbecauseφ(t) is stretched and offset by
the spatial rate and offsetR(x,y) andO(x,y). A similar separation
of spatial and temporal effects could not be accurately achieved by
linear methods such as PCA, nor would the terms in a linear model
correspond to physically intuitive and editable factors.

Extrapolation: Another interesting aspect of the model is its
power to extrapolate beyond the acquired sequence. Let us nor-
malize the global timet in the range of[0. . .1]. Now, consider
the effective timet ′ = R(x,y)t −O(x,y), which lies in the range
J(x,y) = [−O(x,y),R(x,y)−O(x,y)]. If eitherR and/orO is large,
this range can extend considerably beyond the global[0. . .1] time.
The valid domain of effective times for the full curveφ(t ′) is now

J =
⋃

(x,y)

J(x,y) =
[
min
(x,y)

(−O(x,y)) , max
(x,y)

(R(x,y)−O(x,y))
]
, (3)

which considers the minimum and maximum effective timet ′ over
all points(x,y). By definition, the overall range ofJ is a superset
of that for each point, enabling individual pixels to be backed up or
extended beyond the sequence captured, and allowing time extrap-
olation. This is reasonable because early starting points can provide
information for other similar points that start later by some offset.

5.3 Estimating the STAF model
We use a simple iterative optimization to estimate the factors in
Equation 2. Each iteration consists of two steps. In the first step,
we fix the spatial parametersA, D, R, andO to update our estimate
φ(t ′). If the other terms are fixed, we can solve directly forφ in
Equation 2. The second step of the iteration fixesφ(t ′) and solves
for the spatial parametersA, D, R, andO. This requires non-linear
optimization, but can be carried out separately for each spatial lo-
cation (x,y). We have found that only 5 iterations are needed to
obtain accurate estimates of all parameters. This algorithm is very
easy to implement, requiring fewer than 50 lines of Matlab code,
while being robust and effective for the entire variety of samples in
our database. We describe the technical details below.
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Preprocessing: Our inputs are discrete fits of the parametersp
at pixels i and times j, which we denote aspi(t j ). The pixel i
corresponds to spatial location(xi ,yi). It is simpler to work with
continuous functions of time. For each pixel, we construct a con-
tinuous curvepi(t) using the kernel-based method [Gasser et al.
1985]. Splines or local polynomial fitting can also be used. We are
now ready to begin our iterative optimization. To initialize, we set
Ai = 1 , Di = 0 andRi = 1 , Oi = 0 for all pixels i.

Step 1 – Estimatingφ(t ′) : We first fix the spatial parametersA,
D, R, O in order to estimateφ(t ′). For estimation, we rearrange
Equation 2, writingt = (t ′+Oi)/Ri to derive for pointi:

Aiφ(t ′)+Di = pi

(
t ′+Oi

Ri

)

φ(t ′) =
pi ((t ′+Oi)/Ri)−Di

Ai
, (4)

for t ′ ∈ Ji , whereJi is the range of effective times. For robustness,
and to consider the full effective time range, we add multiple points,

φ(t ′) =
∑i:t ′∈Ji

pi((t ′+Oi)/Ri)−∑i:t ′∈Ji
Di

∑i:t ′∈Ji
Ai

. (5)

Step 2 – EstimatingA, D, R, O : We now keep our value for the
overall time curveφ(t ′) fixed, and estimate the spatial parameters.
This is a separate optimization problem for each spatial locationi:

min
N

∑
j=1

[
pi(t j )−Aiφ

(
Rit j −Oi

)−Di
]2

. (6)

Note that this expression uses the discrete observationspi(t j ), find-
ing spatial parameters that best match our input data. This is a non-
linear least-squares optimization problem, and we use thelsqnonlin
function in Matlab, with Levenberg-Marquardt minimization.

Normalization: We are now almost ready to start a new iteration
in the optimization, returning to step 1. One final detail is that the
STAF model involves a product, and requires normalization of the
factors for uniqueness. We use the following normalization:

< Ai >= 1, < Di >= 0 < Ri >= 1, < Oi >= 0, (7)

where< · > stands for the average over all spatial locations. This
simply says that the overall spatial textures are normalized, and that
the average rate is1, while the average offset is0.

Let us call the un-normalized results at the end of step 2Âi , D̂i ,
R̂i andÔi . To normalizeAi andRi , we simply divide by the average
values forÂi andR̂i . Then, we normalizeDi andOi as follows:

Di = D̂i −Ai < D̂ j >, Oi = Ôi −Ri < Ô j > . (8)

We can now start the next iteration of the optimization, returning to
step 1. In general, we find five iterations enough for convergence.

Efficiency and Robustness: For efficiency, instead of using all
the points on the sample, we randomly select400 points as input
to the algorithm. Therefore, the iterative optimization itself takes
only a few minutes. Once the finalφ(t ′) is known, we use step
2 (Equation 6) to directly estimateA,D,R,O for all points on the
original sample. Since the sample resolution is large (400×400),
and we must solve a nonlinear optimization for each pixel, the total
time can be a few hours, but the process is completely automated.

One final issue is that we want to estimateφ(t ′) in the full range
J, while the iterative optimization uses only part of the data. The
kernel-based curvepi(t) cannot be extrapolated well, and therefore
neither canφ(t ′) from step 1 of the optimization. Therefore, in step
2 of the algorithm, instead of usingφ(t ′) in Equation 6, we fitφ(t ′)
by a smooth polynomialq(t ′) and useq(t ′) to estimateA,D,R,O.
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5.4 Results
The top row of Figure 7 shows five samples, with three spatial lo-
cations marked on each. The middle row shows curves for the red
diffuse component over time (similar results are obtained for other
parameters). As can be seen, the curves from different points on the
sample are quite different. In the bottom row, we show alignment
of these separate time-varying curves by estimating our factored
representation (theφ(t ′) curve is plotted in black). Specifically,
thex-axis is theeffective timet ′, while they-axis is the normalized
function value(p(x,y, t)−D(x,y))/A(x,y). The green/red/blue dots
overlayed on the black curves show which portions of the black
curvesφ(t ′) correspond to each of the three original curves in the
second row. Note that theφ(t ′) curves extrapolate beyond the data,
having a larger range of effective times than[0. . .1].

If the model in Equation 2 is perfect, the curves from different
spatial locations should now all be aligned, exactly fittingφ(t ′). In-
deed, the time-aligned data in the bottom row of Figure 7 matches
very well to the canonical curve. The overall RMS image recon-
struction errors are computed across all temporal frames and spatial
locations. The range of image intensity is generally in[0,1], ex-
cept for samples with strong specularity, such as the steel for which
the intensity of the specular pixels is in[0,30]. Note that Figure 7
shows a variety of time-varying phenomena, with a number of dif-
ferent curve-types for the canonicalφ(t ′).

The accuracy of our factored model is evaluated in Figure 8.
We accurately capture drying patterns over time. We also show
the estimated diffuse “textures.” Instead ofA and D, which are
somewhat harder to interpret, we show the normalized initial frame
A(x,y)φ(0)+D(x,y) and final frameA(x,y)φ(1)+D(x,y). We also
show R(x,y) that controls the rate at which different points dry.
It corresponds closely with the spatial patterns observed at later
frames. Finally, we show the offsetO(x,y). It is mostly close to
0, since we wet our sample uniformly before starting acquisition.
However, it does indicate small non-uniformities and the slightly

faster start to drying in the top left region. We also show the canon-
ical diffuse and specularφ(t ′) curves. The specularKs decreases
exponentially, changing more rapidly than diffuse color.

One of the principal benefits of our factored representation is
that it enables a variety of rendering applications, as discussed in
the next section. Figure 8 indicates one way in which we can
separate space and time-varying effects by “time-normalization”,
making all points on the surface evolve at the same rate. For this
purpose, we leaveA(x,y), D(x,y) andφ(t) unchanged. However,
we setO(x,y) = 0 to eliminate offsets andR(x,y) = 1 to eliminate
differences in rates. The third row of Figure 8 compares the time-
normalized results with the original, showing that all pixels now
change at the same rate, which removes the spatial patterns. For
rendering in the next section, we can now modifyRandO to create
the spatial patterns and variations we desire, while still preserving
the essence of the acquired time-varying phenomenon.

Figure 9 uses the rusting steel sample to compare renderings
from the STAF model with the original TSV-BRDF. This example
is particularly challenging because theφ(t) red curve is not even
monotonic. (When rust forms, it reddens the material but also dark-
ens its base color.) Nevertheless, our factored data-driven model is
accurate. We capture the dimming of the specular highlight, and
the intricate spreading of the spatial rust patterns over time.

In terms of compression, the average size of the raw data (high
dynamic range images) of one sample is about 30 GB. Fitting para-
metric BRDF models for each time step reduces the size to about
80 MB. The STAF model can further reduce the size of one sam-
ple to about 6 MB on average—we need to store only four texture
imagesA,D,R,O and the curveφ(t) for each of the five parameters
in the BRDF model. Using other image compression techniques
(e.g., JPEG), we can reduce the size even further to about 1-2 MB
without producing noticeable artifacts.
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Figure 9: Comparison of original rust TSV-BRDF (texture mapped onto a sphere and rendered) with our STAF model for several time frames.

6 Rendering
It is possible to use the TSV-BRDF database directly for rendering,
even without the STAF model. However, the types of appearance
we could create are limited, since one cannot control or modify
the TSV-BRDF. On the other hand, the STAF model completely
factors space and time-varying effects, allowing either or both to be
manipulated and edited separately.
Extrapolation: The temporal characteristic curveφ(t ′) extends
beyond the actual global time range over which the data is acquired,
allowing us to back up or extend the process beyond the acquired
data for many pixels.
Control: By changing rate and offset parametersR(x,y) and
O(x,y), we can control the rate at which different points on the
surface change, while still preserving the characteristic features of
the time-varying process. We could setRandO according to phys-
ical principles like the amount of light or humidity. In practice, we
use simple procedural ideas—for example, a wet puddle dries faster
near the edges, so we increase the rates in those regions.
Transfer: By changing the texturesA(x,y) andD(x,y) to those
obtained from a new static photograph, we can transfer the time-
varying effect, such as burning or rusting, to a new object while
still preserving the essence of the data-driven appearance change.
Time-Varying Texture Synthesis: Our database is acquired on
small flat samples. Of course, we can texture map these onto arbi-
trary 3D objects, but we also seek to use texture synthesis to create
larger spatial patterns. With our factored form, we simply synthe-
size the spatial textures using standard 2D methods.

We now use these ideas to render a variety of examples that show
the full power of our method. The 3D renderings were done using
the PBRT package [Pharr and Humphreys 2004].

Figure 10 shows a texture synthesis of the drying rock example
to create a much larger spatial pattern. To maintain temporal co-
herence from initial to final frame, we treat the spatial texturesA
andD together. We first synthesizeI0 = Aφ(0) + D using image
quilting [Efros and Freeman 2001], and then use the same patches
to synthesizeI1 = Aφ(1)+ D. Given the synthesized “initial” and
“final” textures I0 and I1, it is easy to find the newA andD. It is
possible to also apply texture synthesis to the rate and offset inde-
pendently, in a similar fashion. However, in this caseR(x,y) and
O(x,y) are not textures in the conventional sense but encode an
overall variation over the surface, where the rock dries from left
to right. In this example, we choose to preserve this overall effect,
simply enlargingR andO with standard image processing.

Figure 11 shows how standard static texture-mapping may be
combined with TSV-BRDFs. In this case, we use a photograph of
an Apple Records logo from a Beatles album to modulate the TSV-
BRDF in the mapping region (with an alpha blend near the edges).
Thus, we create the effect of the cut apple logo decaying.

Figure 11 also demonstrates extrapolation on the apple slice
dataset to obtain virtual frames even before the actual start of ac-
quisition. For extrapolation, we simply use our factored represen-
tation, evaluatingφ(t ′) and clampingt ′ at its overall minimum and
maximum value as per Equation 3. In this dataset, most of the de-
cay actually happens in the first 30 minutes, and we use input from

the corresponding 10 initial frames only for this figure. We show a
significant backing up of the process for many pixels up tot =−20
minutes, to the point where the apple is much greener. We can also
decay the apple beyond the end-point of the acquisition.

Figure 12 shows how the drying wood can be controlled to create
the appearance of drying footprints on a wooden floor. The offsets
O(x,y) ensure the floor starts out dry (O=−1), while the lower left
footprint dries earlier (has a smaller offsetO = 0, compared toO =
0.3 for the upper right footprint). We setR(x,y) to control the rate
of drying, depending on the distance from the edge of the footprint.
Motivated by observation, the rate is set higher towards the edges
and decreases towards the center. We compute a distance transform
d(x,y) for points inside the footprint, and setR(x,y) ∼ d−1(x,y).
Finally, we use a7×7 Gaussian filter on the resulting mapsR(x,y)
andO(x,y) to ensure smooth transitions, especially at the edges.

In Figure 13, wetransferthe rusting steel time-varying process
to a new (unrusted) steel plate, using only a single image of its
initial condition. The ratio of the new photographInew to frame 0
of the original sampleI0 is used to modulate both static textures
Anew(x,y) = A(x,y)∗ Inew/I0 andDnew(x,y) = D(x,y)∗ Inew/I0. We
then texture-map the time-varying pattern onto a 3D teapot. Note
that both diffuse and specular effects and their time variations are
preserved. We also use control to increase the rate of rusting in high
curvature regions. In addition, we do edge detection on our static
2D image of the steel plate, to increase the rate near edges. The
net rate is defined asR(x,y) = κ(x,y)µ(x,y), whereµ is an edge
map andκ is the average curvature. The insets in the bottom row
clearly show that different parts of the object rust at different rates.
We have full 3D rendering capabilities and can see the teapot from
different viewpoints while the appearance is evolving.

Figure 14 shows how user-specified patterns can be created in
the otherwise natural time-varying processes, with implications for
special effects and animations. We texture-mapped the burning
wood onto a bowl model; the table cover is from our drying orange
cloth dataset. Control is effected through a virtual heat source, for
both burning and drying. In addition, we manually modify the rate
R(x,y) to resemble the Siggraph logo, for both the bowl and the
cloth. For the initial frame, the samples have their normal static ap-
pearance. As time progresses, the patterns gradually appear on the
bowl and table. With further progression, charring on the bowl and
drying of cloth is complete, and the patterns disappear.

7 Conclusions and Future Work
We have presented a complete pipeline from acquisition to render-
ing for time and space-varying appearance or TSV-BRDFs. This
leads to a new capability for computer graphics imagery to include
the dynamic evolution of surfaces and scenes. Our contributions in-
clude a newly acquired dataset of time-lapse images for many nat-
ural processes from multiple light source and viewing directions,
along with estimated parametric TSV-BRDFs. Our main techni-
cal contribution is a compact, intuitive, factored representation that
separates spatially varying aspects from temporal variation, being
accurate for a variety of natural phenomena. With this representa-
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Figure 10: Time-varying texture synthesis can be reduced to 2D synthesis of static spatial texturesA andD with our model. We choose to preserve the overall
drying pattern from left to right in the original sample.
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Figure 11: Decaying Apple Records logo using our apple slice dataset and modulating by a static texture map of the logo from a Beatles record. This example
demonstrates extrapolation, wherein we back up the decay process to considerably before actual start of acquisition—the decay is mostly complete at +30
minutes and we back up to -20 minutes, getting a much greener look on the apple. (We are also able to extrapolate beyond the final time frame.)
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Figure 12: Footprints drying on a wooden floor. We use the drying wood dataset, controlling the rate and offset of drying as shown in the maps on the far
right. Specifically, the prints dry faster towards the edges, and the left footprint has a lower offset (higher effective time) and so dries earlier.

tion, we can generalize to a number of novel rendering tasks such
as transfer, control, extrapolation, and texture synthesis.

In future work, we seek to address current limitations of the
STAF model. One example is the decaying apple slice with core,
where there are multiple types of time-varying processes occurring
so that the “single temporal characteristic curve” assumption does
not hold. Extending the STAF model to consist of multiple tempo-
ral characteristic curves is one possible solution. Another example
is the drying tree bark that is in fact a TBTF instead of TSV-BRDF.
Explicitly modeling the relations between neighboring spatial loca-
tions may be needed to handle these types of datasets.

The idea of time-varying surface appearance extends beyond
the datasets and models reported here. We currently represent the
temporal characteristic curveφ(t ′), which is effectively the over-
all time-varying BRDF, in a purely data-driven way without further
analysis. In future work, we seek to understand the time evolu-
tion of φ(t ′) to develop TBRDF models that would form the time-
varying counterpart of common static BRDF models. In general,
we believe that measuring, modeling, and rendering time-varying
surface appearance is an important problem, and this paper is a sig-
nificant step towards a comprehensive study of this new area.
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