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Abstract tured 26 samples listed in Figure 2. Some examples are shown in
. . Figures 1 and 4. Because of the complexity in preparing the sam-
For computer graphics rendering, we generally assume that the apyjes and developing a suitable measurement system, this database
pearance of surfaces remains static over time. Yet, there are a numig jikely to be a very relevant resource for future efforts.
ber of natural processes that cause surface appearance to vary dra- gampjle preparation requires careful control and significant
matically, such as burning of wood, wetting and drying of rock and oot for example, we must apply a heat gun for some of the
fabric, decay of fruit skins, and corrosion and rusting of steel and , ning examples, and use special solutions to assist rusting and
copper. In this paper, we take a significant step towards measuring,.nner patination. Capturing the full TSV-BRDF also necessitates
modeling, and rendering time-varying surface appearance. We de-gnecia| measurement systems. We use a multi-light source multi-
scribe the acquisition of the first time-varying database of 26 sam- .5 mera dome, shown in Figure 3, to simultaneously acquire time-
ples, encompassing a variety of natural processes including burn-janee images from a variety of lighting and view directions. We
ing, drying, decay, and corrosion. Our main technical contribution e, it spatially-varying BRDF models at each time instance, cap-
is a Space-Time Appearance Factorization (STAF). This model fac- v, jnq hoth spatial and temporal variation in a variety of real-world
tors space and time-varying effects. We derive an overall temporal rocesses. Since we acquire the full TSV-BRDF, we can capture
;

appearance variation characteristic curve of the specific process, a : :
w%ﬁ)l s space dependent textures, rates, and offZets 'Iphis o ojEpatial patterns as well as changes in the BRDF, such as the sharp

. ” . - “reduction in specularities over time when a surface dries.
temporal curve controls different spatial locations evolve at the dif-
ferent rates, causing spatial patterns on the surface over time. WeSpace-Time Appearance Factorization (STAF). Time-varying
show that the model accurately represents a variety of phenomenaappearance is an intricate combination of many factors, such as the
Moreover, it enables a number of novel rendering applications, such static surface texture, temporal variation, and spatial patterns over
as transfer of the time-varying effect to a new static surface, control time. The acquired data can be used directly for rendering, but is
to accelerate time evolution in certain areas, extrapolation beyond difficult to understand or modify for production applications (such
the acquired sequence, and texture synthesis of time-varying ap-as making wood dry faster in a wet footprint). Linear data-reduction

pearance. techniques like Singular-Value Decomposition (SVD) do not easily
. capture the complex structures in time-varying appearance data.
1 Introduction We introduce a simple Space-Time Appearance Factorization

Many interesting appearance properties of real-world surfaces are(STAF) that is general and data-driven. It separates temporally
directly related to their evolution with time. Consider the charring Vvarying effects from spatial variation, estimating a “temporal char-
of wood from heat or burning; the wetting and drying of marble, acteristic curve” in appearance that depends only on the physical
granite or fabric due to rain or spillage of water; the ripening and process, as well as static spatial textures that remain constant over
decay of fruit skins like apples or bananas; and the corrosion andtime. In addition, we estimate a rate and an offset at every point,
rusting of steel or the formation of oxides on copper. Each of these which control the speed of time evolution. Spatial patterns arise be-
natural processes forms a spatial pattern over time, often coupledcause different points evolve at different rates. STAF is non-linear,
with a change in reflectance, which gives rise to dramatic effects.  with the temporal characteristic curve scaled and shifted by spatial

These processes have been studied in biology, physics, and mathrate and offset parameters. Our model is intuitive and accurate for
ematics [Meinhardt 1992; Cross and Hohenberg 1993]. In com- the variety of time-varying phenomena in our database, and allows
puter graphics, Dorsey and collaborators have developed a num-a user to separately modify space and time-varying effects.

ber of specific models for flows, patina formation, and weather- Rendering Ti : . : )
h X ‘ g Time-Varying Effects:  One of the chief benefits of
ng[gDorﬁey and H?]nr?hl?n 1996,|_Dor?ey et al.f1996, Dorsey et al. o, gata-driven STAF model is the ease with which we can gener-
]. However, the full generality of pattern formation remains iz heyond the acquired data to render a variety of time-varying

beyond the reach of any particular mathematical model or physical ottacts. For example, we cdransfera time-varying process like
S'mUI%t.'On' id the difficulties of math cal modeling 1usting to a new static surface such as a steel plate. Weagtrol

In this paper, we avoid the difficulties of mathematical modeling  yhq rate of time variation, such as having wet puddles or footprints
by developing a data-driven approach, conceptually similar to re- o, g otherwise dry wooden floor, with drying happening more at
cent work on data-driven static reflectance [Matusik et al. 2003] or e poundaries. We caxtrapolateto some extent beyond the ac-
texture [Dana et al. 1999]. We present a complete pipeline from ac- o ireq data. Moreover, separation of spatial and temporal aspects

quisition of the first dense database of Time and Spatially-Varying i ;
appearance of flat samples (the TSV-BRDF) to the first data-driven allows one to use standard 2D example-basetire synthesis

models and novel renderings of time-varying appearance: 2  Previous Work

Database of Time-Varying Surface Appearance: A major con- . . : . o .

tribution of our work is a database of time-varying appearance mea- E:%igzksérf?gé?st'c[’gor:s: beete;: i%%%?doassepeggg m:ni?ﬁgw%gz%q

surements that is released along with the publication. We have cap- rsey et al. ’ %4 '
Dorsey et al. 1999; Merillou et al. 2001; Chen et al. 2005].

Patina formation has also been modelled based on surface acces-
sibility [Miller 1994], while dust accumulation has been simu-
lated based on surface geometry [Hsu and Wong 1995]. Jensen et
al. [1999] render wet surfaces by combining a reflection model for
surface water with subsurface scattering. Our data-driven approach
generalizes and complements physical simulation of specific phe-
nomena, much as static data-driven reflectance models complement
and extend specific physically-based analytic BRDFs.

Some recent work has made a first attempt at measuring appear-
ance changes. Koudelka [2004] considers time-varying textures im-
aged with fixed lighting and a single view, and extends static tex-
ture synthesis to time-varying texture synthesis. We generalize this
method with images from multiple light sources and viewpoints,
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Figure 1: Some examples of the 26 samples in our database, shown here with variation across time (in minutes m or hours h) for a single light source an
view. We acquire images frol280light and view directions at each time step. Some of these images are shown for one of the samples in Figure 4.



Appearance Time-Varying Appearance Type Sample Time Frames | Average Time Interval
TF (2D Texture Function)] TTF (3D) gga"eg woog ; éi g-é m
BRDF (4D) TBRDF (SD) Burning Wa?frI(reeToa:t(i)ng 30 6:3 m
SV-BRDF (6D) TSV-BRDF (7D) Bread Toasting 30 59m
BTF (6D) TBTF (7D) Light Wood 1 14 31m
Light Wood 2 34 23m
Table 1: Extension of common appearance concepts to time-varying ap- Drying Orange Cloth 33 49m
pearance. We also indicate the dimensionality of the function for each cat- (Smooth Surfaces) | Cotton Cloth 30 11.3m
egory. In this paper, we focus on TSV-BRDFs. \F;Vﬁgnl:g'tmh ‘Z’g j’i m
which allows us to fit a true TSV-BRDF model and enables com- Dark Wood & S8 m
puter graphics rendering with any lighting and view. More impor- Paper Towel 32 70m
tantly, we develop an intuitive data-driven STAF model to separate Brick 32 22.1m
spatial and temporal effects, allowing a variety of rendering algo- Drying Rock 1 20m
rithms including transfer, control, extrapolation, and synthesis. (Rough Surfaces) | Cardboard 2 Jom
For the specific case of drying on stone, [Lu et al. 2005] measure Tree Bark 11 34m
the change in diffuse appearance and propose a sigmoid model with Rusting Steel 1 22 73m
two spatial parameters. Similar equations can be deduced from the Rusting Steel 2 35 10.8 m
literature on drying [Jankowsky and Santos 2004]. We generalize Corroson Cast Iron Rusting 30 13.9m
this work significantly by acquiring a database of a variety of time- Copper with Patina 34 316 m
varying phenomena, including specular effects. Our STAF model 2"”:2 "Svl'it:ec‘”e ‘z’g g'gm
is general and data-driven, capturing many types of time-varying pecaying Bgﬁana 33 11.3m
processes, with intuitive rate and offset parameters at each spatial Potato 31 83m
location. For specific drying scenarios we essentially reproduce the Leaf under Humid Heat 30 126 m

results of [Lu et al. 2005], with our temporal characteristic curves Figure 2: The 26 samples in our database, grouped into categories. For
being close to sigmoidal in those cases. each sample, we list the number of time frames acquired and average time

The STAF model in this paper relates to work in the statis- interval between frames (in minutes m).
tical and speech recognition literature known as dynamic time-
warping [Sakoe and Chiba 1978]. Their goal is to align time-
varying curves for different subjects in many applications such
as speech signals and human growth curves. Their data vary
not only in amplitude, but also with respect to the time axis—
different subjects experience events sooner or later. Classical linear
methods, e.g., Principal Component Analysis (PCA), cannot han-
dle this second type of variability well [Wang and Gasser 1999].
Recently, [Kneip and Engel 1995] proposed the “shape-invariant”
model, with the overall time variation known as the “structural av-
erage curve.” (Shape and structure are used rather differently from
their traditional meaning in graphics.)

In our application, we seek to align time-varying appearance
curves (representing BRDF parameters like diffuse color and spec-
ular intensity) for different pixels. We must relate this alignment to
intuitive parameters, for example, the rates and offsets at different ,
spatial locations, as well as the static initial and final appearance. Figure 3: A photograph of the multi-light source multi-camera dome used
Moreover, as dlsqus.sed in Section 5, we develop methods to estl-fo, acquisition of our database of time-varying measurements.
mate the time variation of the process across the full range seen by ] ) )
any pixel, allowing extrapolation beyond the observed sequence. ~ing of rough surfaces (rock, granite), corrosion and rusting (steel,

. . copper), and decay and ripening (apples, banana).
3 Time-Varying Appearance 41 Acquisiti
) ; ) i . . cquisition
We first formalize the notion of time-varying appearance. One acquisition of time-varying appearance is challenging. While some
can imagine extending common appearance concepts, such as thgatyral processes such as drying occur over fairly short time scales
BRDF or texture, to include an additional time dimension, as shown (a few minutes), many others occur over a considerable duration
in Table 1. In this paper, we extend spatially-varying BRDFs (SV- nder normal circumstances (several hours to days for decay of fruit
BRDFs) to time and space-varying BRDFs (TSV-BRDFs). A gen- gkins, or a few months for corrosion of metals). In the case of
eral TSV-BRDF is a function of 7 dimensions—2 each for spatial pyrming and charring, we have used a heat gun to carefully control
location, incident angle, and outgoing direction, and 1 for time vari- he process. At each time interval, we uniformly heat the sample for
ation. For surfaces that are rough, or have relief at a macroscopic fixed duration of time (typically 30 seconds). For metal corrosion,
scale, the term Bidirectional Texture Function or BTF [Dana et al. e have decided to speed up the process using specially prepared
1999] and its time-varying extension TBTF is more appropriate, al- sojutions [Hughes and Rowe 1991]. We spray a chemical solution
though it has phe same dimensionality. While a small number of pefore each measurement and wait a few hours. Decay of organic
the examples in our database do have some surface relief (and May¥amples takes several hours, and is fairly difficult to speed up—we
therefore not be as well modelled by the approach presented here)paye decided to measure these processes without alteration.
we focus in this paper primarily on flat surfaces or TSV-BRDFs. A second difficulty is designing and building a measurement
it system that meets the following resolution requirements: 1) Dy-

4 'A_‘Cqu'S't'_on and Dat_aba_se ) _ namic range—many of the processes (e.g., drying or rusting) in-
The first step in understanding time-varying surface appearance isyolve significant changes in specularity. 2) Light and view di-
to acquire datasets representing it—some examples are shown irvection resolution—the sampling of the light and view directions
Figure 1. Figure 2 lists all of the 26 samples we have acquired and should be sufficiently high to capture specular materials. 3) Tempo-
processetl These samples cover 5 categories—burning and char- ral resolution—a complete acquisition at each time step, involving
ring (wood, waffles), drying of smooth surfaces (wood, fabric), dry- images with multiple lights, views, and exposure settings needs to
be conducted in a few seconds to avoid the sample changing sig-

1This entire database and our STAF model fits will be made available nificantly over this time. This rules out gantry-based systems that
online. To request a copy, send e-mail to staf@cs.columbia.edu. typically take a few seconds to acquire even a single image.
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Figure 5: Comparison of (a) barycentric interpolation and (b) parametric
spatially-varying reflectance fits, texture-mapped onto a sphere. The para-
metric reflectance model is quite accurate, preserving the fine details of the
wood grain, while eliminating artifacts in the highlights and boundaries.

) Lo . Fortunately, we have enough measurements to effectively fit
Figure 4: Acquired images of wood drying. We show two separate parametric reflectance models, including specular lobes, to each
views/time instances, and all of the useful lighting directions for those. spatial location. We use a simple combination of diffuse Lamber-

. . . ian and simplified Torrance- rrow reflectance, with the BRDF
We have decided to use a multi-light source multi-camera dome, ;ﬂ/eﬁbgls plified Torrance-Sparrow reflectance, with the

shown in Figure 3. The dome skeleton is based on an icosahedron.
We use 16 Basler cameras (resolution 180030 pixels) placed Lo Ks(X,Y,t) @A \?
on the icosahedron vertices and 150 white LED light sources spaced P(X.¥, @, Gb,t) = Kqg(x,y,t) + @M (1) exp|— <W> ;
evenly on the edges. (Approximately 80 of these lights lie in the vis- e
ible hemisphere with respect to the flat sample, and therefore give
useful images.) This design is similar to the light stage [Debevec
et al. 2002], but includes multiple cameras as well. The cameras
and light sources are synchronized using a custom-built controller.
The cameras are geometrically calibrated by moving a small
LED diode in the working volume and detecting its 2D location in
all cameras. A bundle adjustment is performed to obtain the precise
geometric location and projection matrices for all cameras. Since
we know the dome’s design specifications, this allows us to reg-
ister all light and camera positions to a common coordinate frame.
We also perform a photometric calibration by capturing images of a

perfectly white diffuse standard (spectralon) from all camera view- view, which gives the highest-resolution image. At each spatial

\F/’gl'ﬂéss ‘#8?2;3:\' 28Pftaggn;g;ﬂ?t'%gszfegT;E‘egoé:gagﬁ?eg'E)?'t:helocation, we optimize over only those light source directions where
. . ' i specular highlights are not present. (Conservatively, we require the
corresponding observation of the white diffuse standard. P ghig P ( Y. d

e X light source and the reflected view direction to be separated by at
For acquisition, we place a prepared sample in the center of the |g4530° which works well for most of the samples in the database.)

dome. At each time step, we capture a high dynamic range datayye consider each time instance separately for the fits.

set—we take images at two different exposures (typically 2 and 82 " \ue fit the specular intensitis and roughness' separately for

msec) for each light-camera pair. This results in 4,800 photographs gach spatial location. To do so, we consider all light source di-

captured in 22 seconds. It takes about 90 seconds to save the datgyctions and views. Since is the only non-linear parameter, we

to the hard disk. (Therefore, the minimum time between two con- haye found it most robust to do a linear exhaustive search to deter-

secutive measurements is about 2 minutes.) We typically capture mine it. For a giveno, we solve a linear system fdty andKs,

All 80 Lights

(€]
whered andd, are incident and outgoing directiortsis the sur-
face normal, ands, is the half-angle vector. The BRDF parameters
are the diffuse intensiti(y, the specular intensit{s, and the sur-
face roughnese. SinceKy is an RGB color, we have a total of 5
parameters for each spatial locatioqy) and timet.

Note that the BRDF model used to fit the raw data is independent
of the STAF model in the remaining sections. Other kinds of para-
metric BRDF models(e.g., Lafortune model) could also be used.
The diffuse and specular parameters are estimated separately in
0 steps, since for some materials there are only a few samples in
the specular lobe. To fit the diffuse colg, we consider a frontal

appearance data sets at 30 time frames. _ choosing thes (andKs) that has minimum error. Although we do
Once a complete time-varying appearance data set is capturedestimate the diffusky in this process again, we prefer to use kae
we resample the data on a uniform grid (typically 4@@O0 pixels) described earlier, which is determined from the highest-resolution

for each light and view direction. Some of our data, showing time frontal view, and with specularity completely absent. To make the
variation for a single light source and view, has already been seeniny g estimates oKy consistent, we scale the earlier estimat&gf
Figure 1. Figure 4 shows all of the 80 usefulimages (lighting direc- py the average value of the latter estimateKgfover all spatial
tions in the visible hemisphere) for two time instances/viewpoints. |gcations. As seen in Figures 5 and 6, we capture the important

4.2 Time and Spatially-Varying Parametric Reflectance qualitative aspects of the specularity, without artifacts. Quantitative

o ) . analysis is difficult, since some spatial locations have only a sparse

Initially we attempted to take a straightforward non-parametric ap- set of BRDF sambples i
. y ples in the specular lobe.

proach to represent the BRDF at every point directly by the ac-
quired raw data. For rendering (i.e., to create images under novel4.3 Summary and Results
view and lighting), we used the algorithm in [Vlasic et al. 2003] From now on, we will use the notatiop(x,y,t) for the paramet-
and performed barycentric interpolation twice, once over view and ric fits to the TSV-BRDF. The functiop can be thought of as a
then over lighting. A similar algorithm is used in [Vasilescu and vector of 5 space and time-varying parameters, the diffuse RGB
Terzopoulos 2004]. However, as shown in Figure 5, since the light- color Kq4(x,y,t) and the speculas(x,y,t) and o(x,y,t). The an-
view sampling of our samples is not dense enough, direct interpola- gular dependence is implicit in the form of the specular term con-
tion produces artifacts. In Figure 5, we have “texture-mappé trolled by Ks ando. Note that although the BRDF representation
TSV-BRDF onto a 3D sphere to better make these comparisons. is parametric, the estimated parametefs,y,t) capture the space
and time-variation of surface appearance in a non-parametric way

2When we refer to “texture mapping” throughout this paper, we mean (i-€., directly from the acquired raw data). )
mapping the complete TSV-BRDF, i.e., all 5 BRDF parameters, including ~ Even without the analysis and modeling in the rest of this paper,
diffuse RGB color and speculd¢s and o, and including time variation. our database of TSV-BRDFs can be texture-mapped onto arbitrary
These BRDF parameters at each point in space and time can then be use@D objects and used directly for rendering with general lighting
with any lighting model and rendering computation. direction, viewing angle, and time variation. Indeed, our use of
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Figure 6: Drying wood TSV-BRDF, texture-mapped onto a sphere. This example demonstrates the power of our database, which enables us to render w
simultaneous changes in lighting and evolution with time. Note the diffuse spatial drying patterns, and the early dimming and diffusing of specularities. Thi
elevation angle of the light with respect to the center is fixel(&) = 30°, while the azimuthal lighting angle varies as the sample dries.

standard parametric models allows time-varying effects to be easily R(x,y) and O(x,y) — Spatial Rate and Offset : Different spatial
incorporated in almost any interactive or off-line rendering system. locations evolve differently. We capture these effects with spatially
As one example, Figure 6 shows drying wood texture-mapped onto varying rateR(x,y) and offsetO(x,y) parameters. IRis large, the

a sphere. We show a sequence of frames, where we simultaneouslyate of change will be rapid. I® is positive, the point will start
change the lighting and evolve the sample over time. Note the spa-from an earlier state. Theffective time’ for a given point is given
tial drying patterns, as well as BRDF changes, wherein the initial byt’ = R(x,y)t — O(x,y), where we refer to as theglobal time

sharp specularity quickly diffuses and dims over time. A(x,y) and D(x,y) — Static SV-BRDFs : A(x.y) andD(x,y) are

5 Modeling and Analysis of Time Variation static over time. The diffuse components correspond to standard
. ) spatial textures like wood grain that remain fixed throughout the

While our TSV-BRDF database can often be used directly, there aré time variation. Consider the special case whm,y) = 1 and

many rendering applications where the user desires more control.q x,y) = 0. Thus, all points evolve the same Way,’and Equation 2

For example, he may want to control the spatial drying patterns on becomesA(x, y)@(t) + D(x,y). In this case, we simply interpolate

a wooden floor to dry slower near recent wet footprints. Or he may from one texture (or more generally, SV-BRDF) to another. The

want to remove the spatial drying patterns altogether to allow the jnhitial and final appearance 0)+D andAg(1) +D.
surface to dry uniformly. The user might also want to change the PP atep(0) o)

underlying spatial texture to create a different appearance for the’5.2 Discussion

wood grain. These effects are difficult to create because space andseparating Spatial and Temporal Variation:  The STAF model
time variation are deeply coupled in the TSV-BRDF, while we seek i Equation 2 has factored spatial and temporal variation in a com-
to separately modify or edit intuitive spatial or temporal functions pact representation. We now have quantit®®(R,0) that depend
(like overall spatial texture or rate of variation). only on spatial locatiorfx,y), and a temporal characteristic curve
_In this section, we propose the Space-Time Appearance Factor-t) that controls time variation. Unlike linear decompositions, the
ization (STAF) model, which separates effects because of space an&STAF model isnon-linearbecausep(t) is stretched and offset by
time-variation and shows how they interact. We then show how to he spatial rate and offs&(x,y) andO(x,y). A similar separation
estimate the STAF model from the TSV-BRDF and present results of spatial and temporal effects could not be accurately achieved by

indicating its accuracy for the large variety of time-varying phe- |inear methods such as PCA, nor would the terms in a linear model
nomena in our database. In Section 6, we will show the power of correspond to physically intuitive and editable factors.

the STAF model in creating novel rendering effects. . ) ) o
Extrapolation: ~ Another interesting aspect of the model is its

5.1 Space-Time Appearance Factorization (STAF) power to extrapolate beyond the acquired sequence. Let us nor-
Our approach is based on the observation that most physical pro-malize the global time in the range ofl0...1]. Now, consider
cesses have an overall temporal behavior associated with them. Fothe effective timet’ = R(x,y)t — O(x,y), which lies in the range
example, drying wood may get lighter over time. For a given pa- J(x,y) = [-O(x,y),R(x,y) — O(x,y)]. If either Rand/orO is large,
rameter of the BRDF, for example, the diffuse red channel, this time this range can extend considerably beyond the glffhal 1] time.
variation can be expressed by a cup(g,y,t) for each spatial lo- The valid domain of effective times for the full curggt’) is now
cation. Different points can dry at different rates and with different
offsets. For example, the points in a puddle start out wetter than 5 _ — |min(— _
others. Intuitively, we seek to align the time variation for differ- 3= Ixy) ?x"y?( oty)), msﬁ(R(x,y) oty 3
ent spatial locations by deforming a single “temporal characteris- ()
tic curve” @(t) according to spatially-varying parameters for “rate”  which considers the minimum and maximum effective tirhever
R(x,y) and “offset”O(x,y), all points(x,y). By definition, the overall range dfis a superset
_ / of that for each point, enabling individual pixels to be backed up or
px.y.t) = AXY)e(t)+D(xy) extended beyond the sequence captured, and allowing time extrap-
' = RXY)t—0(XY). (2) olation. This is reasonable because early starting points can provide

In this equation, we consider each of the 5 parameters of the TSV- information for other similar points that start later by some offset.

BRDF separately. For example, for the diffuse component, one cang 3 Estimating the STAF model
think of all quantities as being RGB colors. The model is data- ) . . o . .
driven, since the factors or terms D, R, O, and ¢ are estimated We use a simple iterative optimization to estimate the factors in

directly from the acquired data, and are represented in a purely data-Equation 2. Each iteration consists of two steps. In the first step,
driven way. We now describe the meanings of the various terms, ~ We fix t]tlehspat;]al parameteﬁsfl_), '3 andoto upldat((aj_our ?S““?ate
(') — Temporal Characteristic Curve: The overall time varia- g(tu)étilont Ze ?.L:;éecror?% i[g ')éfe tﬁgvitee?aat?of\(}i\;gté)lraer?é ysgl)\ye]zs
tion characteristic of the physical process is captured by the curve fo? the s afial arametefs DpR andO. This requires non-linear
@(t"). The form ofg will vary with the specific phenomenon. It can P P Y . q

. - ; . : timization, but can be carried out separately for each spatial lo-
be exponential for some decays, sigmoidal for drying and burning, opt ! - ,
a more complex polynomial form for rusting, or any other type of cation (x,y). We have found that only 5 iterations are needed to

curve. Since our representation is fully data-driven, we can handle obtain accurate estimates of all parameters. This algorithm is very

- : : / . . easy to implement, requiring fewer than 50 lines of Matlab code,
erz“:;y d%fsiﬁigj(g;o?,\,funcmn oit’, which we call theeffective while being robust and effective for the entire variety of samples in

our database. We describe the technical details below.
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Figure 7: Estimating the factored representatiomop: A range of different phenomena, with 3 spatial locations marked on each sahijuldle: Time-

varying curve(x,y,t) (for the red diffuse component) for spatial locations A, B, and C. The curves are quite different for different points A, BB@itohC.

We align these time-varying curves using our model. The data accurately matches the temporal characterigfi¢t’guemputed from all the points on the
sample. The overall RMS image reconstruction error (across all temporal frames and spatial locations) is very low. This indicates the generality of our model

Preprocessing: Our inputs are discrete fits of the parametprs ~ Normalization:  We are now almost ready to start a new iteration
at pixelsi and timesj, which we denote agj(tj). The pixeli in the optimization, returning to step 1. One final detail is that the
corresponds to spatial locatidw;,y;). It is simpler to work with STAF model involves a product, and requires normalization of the
continuous functions of time. For each pixel, we construct a con- factors for uniqueness. We use the following normalization:
tinuous curvep;(t) using the kernel-based method [Gasser et al.

1985]. Splineglc()r)local golynomial fitting can also be[ used. Weare ~ <Ai>=1 <Di>=0 <R>=1 <G >=0 (7)
now ready to begin our iterative optimization. To initialize, we set \here< . > stands for the average over all spatial locations. This

Ai=1,Dj=0andR =1, O; = 0forall pixelsi. simply says that the overall spatial textures are normalized, and that
Step 1 - Estimatingg(t’) :  We first fix the spatial parametefs the average rate & while the average offset &
D, R Oin order to esu;natep(t’). For estimation, we rearrange Let us call the un-normalized results at the end of stép, D;,
Equation 2, writing = (' +O;)/R; to derive for point: R and®;. To normalizeA; andR;, we simply divide by the average
/ ) A. S, i . " .
AO)+D; = b (t EQ) values forA; a?dR. TheAn, we normahz?. andO, ri1s follows:
Di=Di—A <Dj >, 0=0-R<0Oj>. (8)
n _ R(+0)/R)-D; " - U .
o) = A ) 4 We can now start the next iteration of the optimization, returning to

, ) o step 1. In general, we find five iterations enough for convergence.
fort’ € J, whereJ; is the range of effective times. For robustness,

and to consider the full effective time range, we add multiple points, o o ) ]
Efficiency and Robustness: For efficiency, instead of using all

o) = Yitey Pi((t'+0i)/R) — Fivey Di ] (5) the points on the sample, we randomly selé@0 points as input
Yivey A to the algorithm. Therefore, the.iterativ.e optimization itself takes
Step 2 — EstimatingA, D, R, O:  We now keep our value for the only a few minutes. Once the fingl(t’) is known, we use step

overall time curvep(t') fixed, and estimate the spatial parameters. 2 (Equi’ition 6|) toSd.irectlytq estimatlﬁ, D, R’IO for alllpoints o4r2)the
This is a separate optimization problem for each spatial location ~ ©figinal sample. Since the sample resolution is larf#0(< 400),
and we must solve a nonlinear optimization for each pixel, the total

N . .
. " .~ 12 time can be a few hours, but the process is completely automated.
min 'Z1 [pi(t) ~A@(Rt; — ) ~DIJ". (©) One final issue is that we want to estimaig’) in the full range
= J, while the iterative optimization uses only part of the data. The

Note that this expression uses the discrete observapidn$, find- kernel-based curvp;(t) cannot be extrapolated well, and therefore
ing spatial parameters that best match our input data. This is a non-neither carp(t’) from step 1 of the optimization. Therefore, in step
linear least-squares optimization problem, and we uststfr®nlin 2 of the algorithm, instead of using(t’) in Equation 6, we fitp(t')

function in Matlab, with Levenberg-Marquardt minimization. by a smooth polynomiai(t’) and usey(t’) to estimateA, D, R, O.
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Figure 8: Factored representation for drying wood. The panel above compares STAF to the original sample for one light and view in the acquired dataset
Our model is seen to be quite accurate, and can also be used for time normalization, wherein we keep the overall appearance changes but eliminate t
spatial drying patterns. The panel below shows the estimpttd for both diffuse and specular parameters. We also show visualizations of the spatial diffuse
“textures” A,D, R, O. In particular, we show the normalized initial frarep(0) + D, and final frameAg(1) + D. We showR(x,y) that controls the drying rate

and is responsible for the spatial patterns. Finally, the of3gt y) is mostly uniform, but indicates a slightly faster start to drying in the left region.

5.4 Results faster start to drying in the top left region. We also show the canon-

The top row of Figure 7 shows five samples, with three spatial lo- ical diffuse and speculap(t’) curves. The speculdfs decreases
cations marked on each. The middle row shows curves for the red exponentially, changing more rapidly than diffuse color.

diffuse component over time (similar results are obtained for other o . o
parameters). As can be seen, the curves from different points on the One of the principal benefits of our factored representation is
sample are quite different. In the bottom row, we show alignment that it enables a variety of rendering applications, as discussed in
of these separate time-varying curves by estimating our factoredthe next section. Figure 8 indicates one way in which we can
representation (the(t’) curve is plotted in black). Specifically, ~— separate space and time-varying effects by “time-normalization”,
thex-axis is theeffective time’, while they-axis is the normalized making all points on the surface evolve at the same rate. For this
function value(p(x,y,t) — D(x,y))/A(x,y). The green/red/blue dots ~ Purpose, we leavé(x,y), D(x,y) and¢(t) unchanged. However,
overlayed on the black curves show which portions of the black We setO(x,y) = 0 to eliminate offsets an&(x,y) = 1 to eliminate
curvesg(t') correspond to each of the three original curves in the differences in rates. The third row of Figure 8 compares the time-
second row. Note that the(t') curves extrapolate beyond the data, normalized results with the original, showing that all pixels now

having a larger range of effective times th@n. . 1]. change at the same rate, which removes the spatial patterns. For
If the model in Equation 2 is perfect, the curves from different rendering in the next section, we can now modifandO to create
spatial locations should now all be aligned, exactly fittig(tf). In- the spatial patterns and variations we desire, while still preserving

deed, the time-aligned data in the bottom row of Figure 7 matches the essence of the acquired time-varying phenomenon.
very well to the canonical curve. The overall RMS image recon-
struction errors are computed across all temporal frames and spatia
locations. The range of image intensity is generallydri], ex-

cept for samples with strong specularity, such as the steel for which
the intensity of the specular pixels is [®,30]. Note that Figure 7
shows a variety of time-varying phenomena, with a number of dif-
ferent curve-types for the canoniag(t’).

The accuracy of our factored model is evaluated in Figure 8.
We accurately capture drying patterns over time. We also show
the estimated diffuse “textures.” Instead Afand D, which are
somewhat harder to interpret, we show the normalized initial frame
A(X,Y)@(0) +D(x,y) and final frameA(x,y) (1) + D(x,y). We also
show R(x,y) that controls the rate at which different points dry.
It corresponds closely with the spatial patterns observed at late
frames. Finally, we show the offs€(x,y). It is mostly close to
0, since we wet our sample uniformly before starting acquisition.
However, it does indicate small non-uniformities and the slightly

Figure 9 uses the rusting steel sample to compare renderings
%rom the STAF model with the original TSV-BRDF. This example

is particularly challenging because tipét) red curve is not even
monotonic. (When rust forms, it reddens the material but also dark-
ens its base color.) Nevertheless, our factored data-driven model is
accurate. We capture the dimming of the specular highlight, and
the intricate spreading of the spatial rust patterns over time.

In terms of compression, the average size of the raw data (high
dynamic range images) of one sample is about 30 GB. Fitting para-
metric BRDF models for each time step reduces the size to about
80 MB. The STAF model can further reduce the size of one sam-
rple to about 6 MB on average—we need to store only four texture
imagesA, D, R, O and the curvep(t) for each of the five parameters
in the BRDF model. Using other image compression techniques
(e.g., JPEG), we can reduce the size even further to about 1-2 MB
without producing noticeable artifacts.
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Figure 9: Comparison of original rust TSV-BRDF (texture mapped onto a sphere and rendered) with our STAF model for several time frames.

6 Rendering the corresponding 10 initial frames only for this figure. We show a

It is possible to use the TSV-BRDF database directly for rendering, Significant backing up of the process for many pixels up+to—-20

even without the STAF model. However, the types of appearance Minutes, to the point where the apple is much greener. We can also
we could create are limited, since one cannot control or modify decay the apple beyond the end-point of the acquisition.

the TSV-BRDF. On the other hand, the STAF model completely  Figure 12 shows how the drying wood can be controlled to create
factors space and time-varying effects, allowing either or both to be the appearance of drying footprints on a wooden floor. The offsets
manipulated and edited separately. O(x,y) ensure the floor starts out d@ & —1), while the lower left
Extrapolation:  The temporal characteristic curggt’) extends footprint dries earlier (has a smaller off€gt= 0, compared t® =
beyond the actual global time range over which the data is acquired, 0-3 for the upper right footprint). We s&(x,y) to control the rate
allowing us to back up or extend the process beyond the acquiredof drying, depending on the distance from the edge of the footprint.
data for many pixels. Motivated by observation, the rate is set higher towards the edges
Control: By changing rate and offset parametéti,y) and and decreases towards the center. We compute a distance transform

O(x,y), we can control the rate at which different points on the d(x,y) for points inside the footprint, and sB(x,y) ~ d~%(x,y).
surface change, while still preserving the characteristic features of Finally, we use & x 7 Gaussian filter on the resulting maiRé&, y)

the time-varying process. We could $&€andO according to phys- andO(x,y) to ensure smooth transitions, especially at the edges.
ical principles like the amount of light or humidity. In practice, we In Figure 13, wetransferthe rusting steel time-varying process
use simple procedural ideas—for example, a wet puddle dries fasterto a new (unrusted) steel plate, using only a single image of its
near the edges, so we increase the rates in those regions. initial condition. The ratio of the new photograpfw to frame 0

Transfer: By changing the texture&(x,y) andD(x,y) to those of the original sampldg is used to modulate both static textures
obtained from a new static photograph, we can transfer the time- Anew(X,Y) = A(X,¥) * Inew/lo @ndDnew(X,¥) = D(X,Y) * Inew/lo. We
varying effect, such as burning or rusting, to a new object while then texture-map the time-varying pattern onto a 3D teapot. Note
still preserving the essence of the data-driven appearance change. that both diffuse and specular effects and their time variations are
Time-Varying Texture Synthesis:  Our database is acquired on  preserved. We also use control to increase the rate of rusting in high
small flat samples. Of course, we can texture map these onto arbi-curvature regions. In addition, we do edge detection on our static
trary 3D objects, but we also seek to use texture synthesis to create2D image of the steel plate, to increase the rate near edges. The
larger spatial patterns. With our factored form, we simply synthe- net rate is defined aB(x,y) = k(x,y)u(x,y), whereu is an edge

size the spatial textures using standard 2D methods. map andk is the average curvature. The insets in the bottom row

We now use these ideas to render a variety of examples that showclearly show that different parts of the object rust at different rates.
the full power of our method. The 3D renderings were done using We have full 3D rendering capabilities and can see the teapot from
the PBRT package [Pharr and Humphreys 2004]. different viewpoints while the appearance is evolving.

Figure 10 shows a texture synthesis of the drying rock example  Figure 14 shows how user-specified patterns can be created in
to create a much larger spatial pattern. To maintain temporal co- the otherwise natural time-varying processes, with implications for
herence from initial to final frame, we treat the spatial textukes  special effects and animations. We texture-mapped the burning
andD together. We first synthesidg = A@(0) + D using image wood onto a bowl model; the table cover is from our drying orange
quilting [Efros and Freeman 2001], and then use the same patchescloth dataset. Control is effected through a virtual heat source, for
to synthesizé; = A@(1) + D. Given the synthesized “initial” and  both burning and drying. In addition, we manually modify the rate

“final” textureslp andly, it is easy to find the new andD. ltis R(x,y) to resemble the Siggraph logo, for both the bowl and the
possible to also apply texture synthesis to the rate and offset inde-cloth. For the initial frame, the samples have their normal static ap-
pendently, in a similar fashion. However, in this c&¥e,y) and pearance. As time progresses, the patterns gradually appear on the

O(x,y) are not textures in the conventional sense but encode anbowl and table. With further progression, charring on the bowl and
overall variation over the surface, where the rock dries from left drying of cloth is complete, and the patterns disappear.
to right. In this example, we choose to preserve this overall effect,
simply enlargingR andO with standard image processing. .
Figure 11 shows how standard static texture-mapping may be / Conclusions and Future Work
combined with TSV-BRDFs. In this case, we use a photograph of We have presented a complete pipeline from acquisition to render-
an Apple Records logo from a Beatles album to modulate the TSV- ing for time and space-varying appearance or TSV-BRDFs. This
BRDF in the mapping region (with an alpha blend near the edges). leads to a new capability for computer graphics imagery to include
Thus, we create the effect of the cut apple logo decaying. the dynamic evolution of surfaces and scenes. Our contributions in-
Figure 11 also demonstrates extrapolation on the apple slice clude a newly acquired dataset of time-lapse images for many nat-
dataset to obtain virtual frames even before the actual start of ac-ural processes from multiple light source and viewing directions,
quisition. For extrapolation, we simply use our factored represen- along with estimated parametric TSV-BRDFs. Our main techni-
tation, evaluatingp(t’) and clamping’ at its overall minimum and cal contribution is a compact, intuitive, factored representation that
maximum value as per Equation 3. In this dataset, most of the de- separates spatially varying aspects from temporal variation, being
cay actually happens in the first 30 minutes, and we use input from accurate for a variety of natural phenomena. With this representa-
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Figure 10: Time-varying texture synthesis can be reduced to 2D synthesis of static spatial téxam@B with our model. We choose to preserve the overall
drying pattern from left to right in the original sample.
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Figure 11: Decaying Apple Records logo using our apple slice dataset and modulating by a static texture map of the logo from a Beatles record. This exampl
demonstrates extrapolation, wherein we back up the decay process to considerably before actual start of acquisition—the decay is mostly complete at +
minutes and we back up to -20 minutes, getting a much greener look on the apple. (We are also able to extrapolate beyond the final time frame.)
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Figure 12: Footprints drying on a wooden floor. We use the drying wood dataset, controlling the rate and offset of drying as shown in the maps on the far
right. Specifically, the prints dry faster towards the edges, and the left footprint has a lower offset (higher effective time) and so dries earlier.
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Figure 13: Rusting teapot example. We transfer the rust TSV-BRDF to a new static texture (shown at bottom right (d)). We show two views (a) and (b), witl
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specular and diffuse effects. The insets (c) in the bottom left show the effects of control, where edges and high curvature areas rust faster.
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